Homework Set \# 8

1. (§4.2) Page 234: \# 13.
2. An object travels along the path $\mathbf{c}(t)=\left(t, \frac{2}{3} t^{\frac{3}{2}}\right)$, for $0 \leq t \leq 1$. Find the arc length function $s(t)$ and use it to reparameterize the path so that the object's speed is a constant 1 unit/sec for all t.
3. (§4.3) Page 243: \# 5, 9, 16, 21.
4. Given that $\mathbf{F}(x, y)=\left(\{1+2 x \ln y\},\left\{\frac{x^{2}}{y}+2 y\right\}\right)=\nabla \phi(x, y)$, find the potential function $\phi(x, y)$ which satisfies $\phi(-1,1)=4$.
5. (§4.4) Page 258: $\# 2,3,14,24$.
6. Prove the Basic Identity \#11 on Page 255:

If $f: U \subset \mathbb{R}^{3} \longrightarrow \mathbb{R}$ is of class C^{2}, prove that $\nabla \times(\nabla f)=\mathbf{0}$.

