1. Compute the line integral $\int_{C} \tilde{\mathbf{F}} \bullet d \tilde{\mathbf{s}}$, where $\tilde{\mathbf{F}}=\left(2 x e^{2 y}-\cos y+2\right) \mathbf{i}+\left(2 x^{2} e^{2 y}+x \sin y\right) \mathbf{j}$ and C is any smooth curve starting at $(1,0)$ and ending at $(2,0)$. (Hint: Is $\tilde{\mathbf{F}}$ a gradient field ?)
2. Find the mass of a wire in the shape of a helix $\mathbf{c}(t)=(\cos 2 t, \sin 2 t, t)$ for $0 \leq t \leq \frac{\pi}{2}$, if the density is $f(x, y, z)=16 y$.
3. Compute the area of the surface $S: \Phi(u, v)=(u \cos v, u \sin v, v)$, where $D: 0 \leq u \leq \sqrt{8}, 0 \leq$ $v \leq u$.
4. Compute the surface integrals $\iint_{S} x d S$ and $\iint_{S} \tilde{\mathbf{F}} \bullet d \tilde{\mathbf{S}}$, where $\tilde{\mathbf{F}}(x, y, z)=(z, 4 x, 2 y+1)$ and S is that part of the plane $\frac{x}{2}+y+z=1$ in the $1^{s t}$ octant with upward normal.
5. Compute the flux of $\tilde{\mathbf{F}}$ across S, where $\tilde{\mathbf{F}}(x, y, z)=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$ and S is that part of the paraboloid $z=9-x^{2}-y^{2}$ which lies above the plane $z=5$ and $\tilde{\mathbf{N}}$ is the upward unit normal. What is the value of $\iint_{S}(\tilde{\mathbf{F}} \bullet \tilde{\mathbf{N}}) d S$?
6. Evaluate the line integral $\int_{C} x^{2} y d x+y^{2} d y$, along the simple closed curve C that is the positively oriented boundary of the region between $y=4-x^{2}$ and $y=0$.
7. Compute the line integral $\int_{C}(-5 x y) d y+\left(x^{3}+\cos ^{2} x-4 y\right) d x$, where C is the positively oriented boundary of the rectangle $R=[0,2] \times[0,3]$.
8. Using Green's Theorem find the value of the line integral $\int_{C} y d x+\left(x^{2}+y^{2}\right) d y$, where C is the circle $(x-3)^{2}+y^{2}=9$ traversed in a positive direction:

Hint: Use fact that the centroid of the region bounded by C is $(\bar{x}, \bar{y})=(3,0)$
9. Let S be the surface $z=x^{2}+y^{2}$ below $z=4$ and downward normal \mathbf{n} and $\tilde{\mathbf{F}}(x, y, z)=(-y z, x z, y)$.

10. Let $\tilde{\mathbf{F}}=x \mathbf{i}+y \mathbf{j}-3 z \mathbf{k}$. Compute $\iint_{S} \tilde{\mathbf{F}} \bullet d \tilde{\mathbf{S}}$, where S is the closed surface consisting of that part of the cone $z=\sqrt{x^{2}+y^{2}}$ below the plane $z=3$, including the top, with outward normal. Compute $\iint_{S} \tilde{\mathbf{F}} \bullet d \tilde{\mathbf{S}}$ directly by using the Divergence Theorem.
11. (§8.3) Page 459: \# 1.

