Math 362 - Practice Problems

- 1. Does $\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4+2y^2}$ exist? Why or why not?
- **2**. Let $h: \mathbb{R}^3 \to \mathbb{R}^2$ and $g: \mathbb{R}^2 \to \mathbb{R}^3$ be functions defined by

$$h(u, v, w) = (u^2, v^2 - 3w)$$
 and $g(x, y) = (2x + 1, x^2 + y^2, y)$.

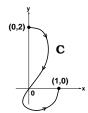
Compute $D(h \circ q)$.

- **3**. If z = z(x, y) is defined implicitly by the equation $z + ye^z x = 100$, compute $\frac{\partial z}{\partial x}$ and $\frac{\partial^2 z}{\partial x^2}$.
- **4**. If $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable, show that $\nabla(f^3) = 3f^2 \nabla(f)$.
- **5**. Find the equation of the tangent plane to the surface $x^2 + z^2 = ye^{3z} + 2$ at the point (1, -1, 0).
- **6**. If u(x,t) = f(x+at) and $f \in C^2$ on \mathbb{R} , show that $a^2 u_{xx} = u_{tt}$.
- 7. A particle travels along the path $\vec{c}(t) = (2t^2, 3t + 1)$. At t = 1, the particle flies off along a line tangent to the path with a speed of 2 units/sec. Where is the particle 5 seconds after it leaves the path?
- **8**. Given that $\vec{\mathbf{F}}(x,y,z) = (xz^4, e^{2x}, zy^2)$, compute curl $\vec{\mathbf{F}}$, $\nabla \cdot \vec{\mathbf{F}}$, and $\nabla (\operatorname{div} \vec{\mathbf{F}})$.
- **9**. Find all critical points of $f(x,y) = x^2 + 6xy + 6y^3 + 1$ and determine if they are relative maxima, minima or saddle points.
- **10**. A wire has shape of the ellipse $x^2 + 2y^2 = 9$ and the temperature of the wire at the point (x,y) is T(x,y)=2x-8y+12. What is the hottest temperature on the wire and where does it occur?
- 11. Compute these integrals:
 - (a) $I = \iint_D 30 x dA$, where D is the bounded region in the first quadrant between y = x and $x = y^2$.

(b)
$$J = \int_0^2 \int_{\frac{y}{2}}^1 \frac{1}{(1+x^2)^2} dx dy$$

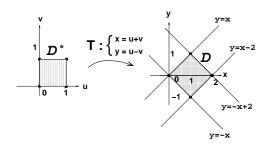
12. Compute the path integral $\int_C \frac{(x+y^2+1)}{\sqrt{4y^2+1}} ds$, where C is the curve $x=4-y^2, -1 \le y \le 3$.

- **13**. Find the length of the path $\vec{\mathbf{c}}(t) = (2t, t^2, \ln t)$ between the points (2, 1, 0) and $(4, 4, \ln 2)$.
- **14**. If $\vec{\mathbf{F}}(x,y) = (2x + y^2 e^x) \vec{\mathbf{i}} + (3 + 2y e^x) \vec{\mathbf{j}}$ and C is the curve shown below, compute the line integral $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{s}}$.

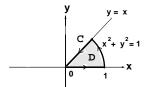


15. Given that the mapping T(u, v) = (u + v, u - v) maps the region D^* one-to-one and onto the region D, shown below, use the Change of Variables Formula to compute the double integral

$$I = \iint_D 3\left(x^2 - y^2\right) \, dx \, dy \, .$$



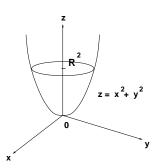
- **16**. Let W be the "ice cream cone" shaped solid between the sphere $x^2 + y^2 + z^2 = 4$ and the cone $z = \sqrt{x^2 + y^2}$.
 - (a) Express the solid W in Cylindrical and Spherical Coordinates.
 - (b) Find the volume of the "ice cream cone" shaped solid W.
- 17. Sketch the solid W whose volume is given by $\int_0^{\sqrt{2}} \int_{-\sqrt{2-x^2}}^0 \int_{x^2+y^2}^2 dz \, dy \, dx.$
- **18**. If C is the closed curve shown below, compute $\int_C (2 + \cos x) dx + (3x^2 + 3y^2) dy$.



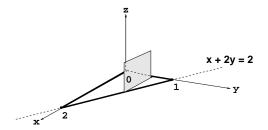
19. Let S denote the oriented surface which is that part of the paraboloid $z=3-x^2-y^2$ above the plane z=2. If $\vec{\mathbf{F}}(x,y,z)=\frac{x}{2}\vec{\mathbf{i}}+\frac{y}{2}\vec{\mathbf{j}}+z\,\vec{\mathbf{k}}$, compute the flux of $\vec{\mathbf{F}}$ across S.

20. If S is that part of the paraboloid $z = x^2 + y^2$ which lies below the plane $z = R^2$ as shown below (R > 0) is a fixed constant, show that

$$\iint_{S} \frac{1}{\sqrt{4z+1}} \ dS = \pi R^{2} \ .$$



- **21**. Evaluate $\iint_S (\nabla \times \vec{\mathbf{F}}) \cdot d\vec{\mathbf{S}}$, where S is the upper hemisphere $x^2 + y^2 + z^2 = 1$, $x \ge 0$ and $\vec{\mathbf{F}}(x, y, z) = x^3 \vec{\mathbf{i}} y^3 \vec{\mathbf{j}}$.
- **22**. Use Stokes' Theorem to compute $\int_C -y^3 dx + x^3 dy z^3 dz$, where C is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1 and the orientation of C corresponds to counterclockwise motion in the xy plane.
- **23**. The base of a solid S lies in the triangular region in the xy-plane between x + 2y = 2 and the coordinate axes as shown. If each plane section of S parallel to the x-axis is a square whose base lies in the triangular region, then the volume of S is



- **A.** $\frac{1}{3}$
- **B.** $\frac{2}{3}$
- **C.** 1
- **D.** $\frac{4}{3}$
- **E.** $\frac{5}{3}$

24. Given that
$$f'(u) = \frac{u}{1+u^3}$$
, if $z = f(u)$ and $u = x^2 + 2y$, then $\frac{\partial z}{\partial x} = \frac{1}{2}$

A.
$$\frac{2x}{1+(x^2+2y)^3}$$

$$\mathbf{B.} \ \frac{4x^2 + 2x}{1 + (x^2 + 2y)^3}$$

C.
$$\frac{x^2 + 2y}{1 + (x^2 + 2y)^3}$$

$$\mathbf{D.} \ \frac{2x^3 + 4xy}{1 + (x^2 + 2y)^3}$$

E.
$$\frac{2x(1-2(x^2+2y)^3)}{(1+(x^2+2y)^3)^2}$$

25. If D is the region
$$1 \le x^2 + y^2 \le 4$$
, in the first quadrant, then $\iint_D 2 \ln(x^2 + y^2) dx dy =$

A.
$$\frac{\pi}{2} (8 \ln 2 - 3)$$

B.
$$\frac{\pi}{2} (\ln 8 - 3)$$

C.
$$\frac{\pi}{2} (4 \ln 2 - 3)$$

D.
$$\frac{\pi}{2} (4 \ln 2 - 3)$$

E.
$$\frac{3\pi \ln 2}{4}$$