1 Distance Between Two Planes

Show that the distance d between the two parallel planes

$$Ax + By + Cz + D_1 = 0$$
 and $Ax + By + Cz + D_2 = 0$

is given by $d = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}.$

2 Mixed Partials Not Always Equal

Let
$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{(x^2 + y^2)} & , (x,y) \neq (0,0) \\ 0 & , (x,y) = (0,0) \end{cases}$$

Using the definition of partial derivative (using limits), show that

a
$$\frac{\partial f}{\partial x}(0,0) = 0$$
 and $\frac{\partial f}{\partial y}(0,0) = 0$
b $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$ and $\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1$

(Thus $f_{yx} \neq f_{xy}$ for this special function f.)

3 W.L.O.G. Quadratic Forms $Q(\mathbf{x}) = \mathbf{x}A\mathbf{x}^T$ have matrix A symmetric

If $A = [a_{ij}]$ is an $n \times n$ matrix and if $B = [b_{ij}]$, where $b_{ij} = \frac{1}{2}(a_{ij} + a_{ji})$, prove that for all $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbf{x} A \mathbf{x}^T = \mathbf{x} B \mathbf{x}^T.$$

4			
5_			
6			