MA 362 Challenge Problems

1 Distance Between Two Planes

Show that the distance d between the two parallel planes

$$
A x+B y+C z+D_{1}=0 \quad \text { and } \quad A x+B y+C z+D_{2}=0
$$

is given by $d=\frac{\left|D_{1}-D_{2}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$.
(2) Mixed Partials Not Always Equal

Let $f(x, y)=\left\{\begin{array}{cl}\frac{x y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)} & ,(x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{array}\right.$.
Using the definition of partial derivative (using limits), show that
(a) $\frac{\partial f}{\partial x}(0,0)=0$ and $\frac{\partial f}{\partial y}(0,0)=0$
b $\quad \frac{\partial^{2} f}{\partial x \partial y}(0,0)=1$ and $\frac{\partial^{2} f}{\partial y \partial x}(0,0)=-1$
(Thus $f_{y x} \neq f_{x y}$ for this special function f.)

5 W.L.O.G. Quadratic Forms $Q(\mathbf{x})=\mathbf{x} A \mathbf{x}^{T}$ have matrix A symmetric
If $A=\left[a_{i j}\right]$ is an $n \times n$ matrix and if $B=\left[b_{i j}\right]$, where $b_{i j}=\frac{1}{2}\left(a_{i j}+a_{j i}\right)$, prove that for all $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\mathbf{x} A \mathbf{x}^{T}=\mathbf{x} B \mathbf{x}^{T}
$$

4 _

5 _

