Basic Differentiation Rules for Paths

Let $\mathbf{b}, \mathbf{c} : [a, b] \longrightarrow \mathbb{R}^n$ be differentiable paths in \mathbb{R}^n and let $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ be a real-valued differentiable function, then

$$[\mathbf{i}] [\mathbf{b}(t) + k \mathbf{c}(t)]' = \mathbf{b}'(t) + k \mathbf{c}'(t), \ \forall k \in \mathbb{R}.$$

$$\boxed{\text{ii}} \left[\phi(t) \mathbf{c}(t) \right]' = \phi(t) \mathbf{c}'(t) + \phi'(t) \mathbf{c}(t).$$

$$[iii] [\mathbf{b}(t) \bullet \mathbf{c}(t)]' = \mathbf{b}(t) \bullet \mathbf{c}'(t) + \mathbf{b}'(t) \bullet \mathbf{c}(t).$$

iv If
$$n = 3$$
, then $[\mathbf{b}(t) \times \mathbf{c}(t)]' = \mathbf{b}(t) \times \mathbf{c}'(t) + \mathbf{b}'(t) \times \mathbf{c}(t)$.

$$[\mathbf{c}(\phi(t))]' = \mathbf{c}'(\phi(t)) \phi'(t).$$

Some Basic Identities for Curl and Divergence

Let $f, g : \mathbb{R}^n \longrightarrow \mathbb{R}$ be real-valued functions and $\mathbf{F}, \mathbf{G} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be vector fields in \mathbb{R}^n . Then, under appropriate differentiability conditions:

$$\boxed{1} \ \nabla(f+k\,q) = \nabla f + k\,\nabla q, \ \forall k \in \mathbb{R}.$$

$$\boxed{2} \ \nabla(f \, g) = f \, \nabla g + g \, \nabla f.$$

$$\boxed{\mathbf{3}} \ \nabla \left(\frac{f}{g}\right) = \frac{g \, \nabla f - f \, \nabla g}{g^2}, \ \text{whenever } g(\mathbf{x}) \neq 0.$$

$$\boxed{4} \operatorname{div} (\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$$

$$\boxed{5} \operatorname{div}(f\mathbf{F}) = f \operatorname{div}\mathbf{F} + \mathbf{F} \bullet \nabla f.$$

$$\boxed{\mathsf{6}} \ \mathsf{div} \left(\mathbf{F} \times \mathbf{G} \right) = \mathbf{G} \bullet \mathsf{curl} \, \mathbf{F} - \mathbf{F} \bullet \mathsf{curl} \, \mathbf{G} \ .$$

7 div (curl
$$\mathbf{F}$$
) = 0.

8 curl
$$(\nabla f) = \vec{\mathbf{O}}$$
.

$$9$$
 curl $(F + G) = \text{curl } F + \text{curl } G$.

10 curl
$$(f \mathbf{F}) = f \operatorname{curl} \mathbf{F} + \nabla f \times \mathbf{F}$$
.

$$\boxed{11} \operatorname{div} (\nabla f \times \nabla g) = 0.$$

Any identity above that involves **curl** holds only when n = 3.

$\underline{\mathbf{Remarks}}$:

(a) In
$$\mathbb{R}^3$$
, the *Del Operator* is $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$

(b) Divergence & Curl in Del Notation:
$$\boxed{\operatorname{div} \mathbf{F} = \nabla \bullet \mathbf{F}} \quad \mathrm{and} \quad \boxed{\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F}}$$

(c)
$$\nabla^2 f = \nabla \bullet (\nabla f) = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}$$
. This is the Laplacian of f .

(d) A path
$$\mathbf{c}(t)$$
 is a flow line for a vector field \mathbf{F} if $\mathbf{c}'(t) = \mathbf{F}(\mathbf{c}(t))$.