Basic Differentiation Rules

Let $\mathbf{f}: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ and $\mathbf{g}: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be differentiable at $\mathbf{x}_0 \in U$, then

- i Constant Multiple Rule : $\mathbf{D}(c\mathbf{f})(\mathbf{x}_0) = c \mathbf{D}\mathbf{f}(\mathbf{x}_0)$, for all $c \in \mathbb{R}$.
- $[ii] Sum Rule : \mathbf{D}(\mathbf{f} + \mathbf{g})(\mathbf{x}_0) = \mathbf{D}\mathbf{f}(\mathbf{x}_0) + \mathbf{D}\mathbf{g}(\mathbf{x}_0).$
- iii Product Rule : If m = 1, then $\mathbf{D}(fg)(\mathbf{x}_0) = f(\mathbf{x}_0)\mathbf{D}g(\mathbf{x}_0) + g(\mathbf{x}_0)\mathbf{D}f(\mathbf{x}_0)$.
- iv Quotient Rule: If m = 1, then $\mathbf{D}\left(\frac{f}{g}\right)(\mathbf{x}_0) = \frac{g(\mathbf{x}_0)\mathbf{D}f(\mathbf{x}_0) f(\mathbf{x}_0)\mathbf{D}g(\mathbf{x}_0)}{\{g(\mathbf{x}_0)\}^2}$, provided $g \neq 0$ on U.

Note that if $f : \mathbb{R}^n \longrightarrow \mathbb{R}$, then $\mathbf{D}f(\mathbf{x}) = \nabla f(\mathbf{x})$.

<u>**CHAIN RULE</u></u> - Let \mathbf{g} : U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m and \mathbf{f} : V \subset \mathbb{R}^m \longrightarrow \mathbb{R}^p, with U and V open sets and so that f \circ g is defined. If \mathbf{g} is differentiable at \mathbf{x}_0 \in U and \mathbf{f} is differentiable at \mathbf{g}(\mathbf{x}_0), then \mathbf{f} \circ \mathbf{g} is differentiable at \mathbf{x}_0 and</u>**

$$\mathbf{D}(\mathbf{f} \circ \mathbf{g})(\mathbf{x}_0) = ig[\mathbf{D}\mathbf{f}(\mathbf{g}(\mathbf{x}_0))ig]ig[\mathbf{D}\mathbf{g}(\mathbf{x}_0)ig]$$

<u>Note</u>: If $\mathbf{f}: V \subset \mathbb{R}^m \longrightarrow \mathbb{R}^p$, so that $\mathbf{f}(\mathbf{x}) = \left(f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_p(\mathbf{x})\right)$ and $\mathbf{x} = (x_1, x_2, \cdots, x_m)$, then $\mathbf{D}f$ is the $p \times m$ matrix of partial derivatives of \mathbf{f} :

$$\mathbf{D}f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_p}{\partial x_1} & \frac{\partial f_p}{\partial x_2} & \cdots & \frac{\partial f_p}{\partial x_m} \end{bmatrix}_{p \times m}$$

Special Case of Chain Rule - Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a real-valued differentiable function of n variables and $\mathbf{c} : \mathbb{R} \longrightarrow \mathbb{R}^n$ a differentiable path in \mathbb{R}^n so that $f \circ \mathbf{c}$ is defined, then

$$\mathbf{D}(f \circ \mathbf{c})(t) = \mathbf{D}(f(\mathbf{c}(t))) \mathbf{D}\mathbf{c}(t) = \nabla f(\mathbf{c}(t)) \bullet \mathbf{c}'(t)$$