Undetermined Coefficients

Method to find a particular solution $y_p(t)$ to a linear nonhomogeneous equation with constant coefficients L[y] = g(t), where g(t) has a very, very special form.

2^{*nd*} Order Nonhomogeneous Equations: L[y] = ay'' + by' + cy = g(t)

Factor its Characteristic Polynomial $P(r) = ar^2 + br + c$. The roots and their multiplicities are used below:

g(t)	Form of $y_p(t)$
$P_m(t) = \left(b_0 + b_1 t + \dots + b_m t^m\right)$	$t^{s} \left\{ A_{0} + A_{1}t + \dots + A_{m}t^{m} \right\}$ s = multiplicity of $\mathbf{r} = 0$ in $P(r)$
$e^{\alpha t}P_m(t)$	$t^{s} \left\{ e^{\alpha t} \left[A_{0} + A_{1}t + \dots + A_{m}t^{m} \right] \right\}$ s = multiplicity of $\mathbf{r} = \boldsymbol{\alpha}$ in $P(r)$
$e^{\alpha t} P_m(t) \begin{cases} \cos\beta t \\ \mathbf{or} \\ \sin\beta t \end{cases}$	$t^{s} \left\{ e^{\alpha t} \left[(A_{0} + A_{1}t + \dots + A_{m}t^{m}) \cos \beta t + (B_{0} + B_{1}t + \dots + B_{m}t^{m}) \sin \beta t \right] \right\}$ $s = \text{multiplicity of } \mathbf{r} = \mathbf{\alpha} + \mathbf{\beta}\mathbf{i} \text{ in } P(r)$

Equivalently, s is the smallest integer (0, 1, or 2) such that no term in $y_p(t)$ is a solution to L[y] = 0.

<u>*n*</u>th Order Nonhomogeneous Equations: $L[y] = a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = g(t)$

Factor its Characteristic Polynomial $P(r) = a_0 r^n + a_1 r^{n-1} + \cdots + a_{n-1} r + a_n$. The roots and their multiplicities are used below:

g(t)	Form of $y_p(t)$
$P_m(t) = \left(b_0 + b_1 t + \dots + b_m t^m\right)$	$t^{s} \left\{ A_{0} + A_{1}t + \dots + A_{m}t^{m} \right\}$ s = multiplicity of r = 0 in P(r)
$e^{\alpha t}P_m(t)$	$t^{s} \left\{ e^{\alpha t} \left[A_{0} + A_{1}t + \dots + A_{m}t^{m} \right] \right\}$ s = multiplicity of r = \alpha in P(r)
$e^{\alpha t} P_m(t) \begin{cases} \cos \beta t \\ \mathbf{or} \\ \sin \beta t \end{cases}$	$t^{s} \left\{ e^{\alpha t} \left[(A_{0} + A_{1}t + \dots + A_{m}t^{m}) \cos \beta t + (B_{0} + B_{1}t + \dots + B_{m}t^{m}) \sin \beta t \right] \right\}$ s = multiplicity of r = \alpha + \beta i in P(r)

Equivalently, s is the smallest integer $(0, 1, 2 \cdots, \text{ or } n)$ such that no term in $y_p(t)$ is a solution to L[y] = 0.