CHALLENGE PROBLEMS

1 If b > 0 and $y > -\frac{a}{b}x$, find the general solution of the first order nonlinear equation

$$\frac{dy}{dx} = \sqrt{ax + by} \,.$$

Express the general solution in *implicit* form.

2 The special pde
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 is called *Laplace's Equation*.

If f(t) is any arbitrary differentiable function and a, b > 0, show that the substitution

$$u(x,y) = e^{\frac{x}{a}} f(t) \,,$$

where t = (bx - ay), will transform Laplace's Equation into the following (simpler) ode:

$$(a^{2} + b^{2})f''(t) + \frac{2b}{a}f'(t) + \frac{1}{a^{2}}f(t) = 0.$$

<u>#</u> 3 Consider the differential equation M(x, y) dx + N(x, y) dy = 0. Prove that there exists an integrating factor, $\mu(y)$, depending only on y if and only if

$$\frac{\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)}{M(x, y)} = \omega(y)$$

Moreover, $\mu(y) = e^{-\int \omega(y) \, dy}$.

#4

An equation of the form: $t^2 \frac{d^2y}{dt^2} + \alpha t \frac{dy}{dt} + \beta y = 0$ (t > 0) (*) is called a **Cauchy-Euler Equation** and has applications in physics. (Note that the coefficients are functions of t.)

Use the substitution $x = \ln t$ to find $\frac{dy}{dt}$ and $\frac{d^2y}{dt^2}$ in terms of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ and then show that the equation (*) becomes

$$\frac{d^2y}{dx^2} + (\alpha - 1)\frac{dy}{dx} + \beta y = 0 \quad (**)$$

(Note that this transformed equation <u>does</u> have constant coefficients and can be easily solved using Characteristic Roots.)

If p(t) and q(t) are continuous on an open interval I and $y_1(t)$ and $y_2(t)$ are two solutions to #5

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$

prove that the Wronskian of y_1 and y_2 is given by

 $W(y_1, y_2)(t) = C e^{-\int p(t) dt}.$

(This is known as **Abel's Theorem** and says that given any two solutions to the differential equation L[y] = 0 above, either $W(y_1, y_2)(t) \equiv 0$ or $W(y_1, y_2)(t) \neq 0$ for all $t \in I$. Abel's Theorem also gives us a way to compute the Wronskian $W(y_1, y_2)$, without actually knowing what y_1 and y_2 are !)

If x, y > 0, find an explicit solution to # 6

$$xy' + y\ln x = y\ln y \,.$$

Show that $\frac{dy}{dx} = \frac{y}{x}F(xy)$ can be transformed into a Separable Equation. # 7

Let p(t), q(t) and q(t) be continuous on an open interval I containing t_0 . If $y_1(t)$ and $y_2(t)$ form # 8 a FSS for y'' + p(t)y' + q(t)y = 0, show that a particular solution to y'' + p(t)y' + q(t)y = q(t)is

$$y_p(t) = \int_{t_0}^t G(t,s) g(s) \, ds$$

where

$$G(t,s) = \frac{y_1(s) y_2(t) - y_1(t) y_2(s)}{W[y_1, y_2](s)}$$

The function G(t,s) is called a "Green's Function" and is very useful in solving differential equations.

Consider the n^{th} order linear homogeneous differential equation with constant coefficients **# 9**

$$L[y] = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0.$$

Suppose it has a characteristic root r_1 of multiplicity $m \ge 1$. In other words, the Characteristic equation looks like

$$P(r) = (r - r_1)^m Q(r) = 0$$
, where $\deg Q = n - m$ and $Q(r_1) \neq 0$.

Show that
$$\frac{\partial^k}{\partial r^k} \left(L[e^{rt}] \right) \Big|_{r=r_1} = \frac{\partial^k}{\partial r^k} \left(e^{rt} P(r) \right) \Big|_{r=r_1} = 0$$
, for $k = 0, 1, 2, \cdots, m-1$
but $\frac{\partial^m}{\partial r^m} \left(L[e^{rt}] \right) \Big|_{r=r_1} \neq 0$.

10 | Consider the $n \times n$ linear system

$$\mathbf{x}' = A\mathbf{x} \quad (*)$$

where A is an $n \times n$ matrix. If $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \cdots, \mathbf{v}^{(n)}$ are **<u>any</u>** set of n linearly independent vectors in \mathbb{R}^n , prove that the n vector functions

$$\mathbf{x}^{(k)}(t) = e^{At} \mathbf{v}^{(k)}$$
 for $k = 1, 2, \cdots, n$

is a Fundamental Set of Solutions (FSS) to $\mathbf{x}' = A\mathbf{x}$.

<u>Note</u>: This gives an alternative method of solving linear systems (*).

 $\begin{array}{c} \label{eq:Anderson} \fboxspace{-1.5mm} \# \ensuremath{\,\mathbf{11}} \end{array} \mbox{If } A = \left(\begin{array}{cc} 1 & 1 \\ 4 & 1 \end{array} \right), \mbox{ use mathematical induction to prove that} \\ \\ A^n = \left(\begin{array}{cc} \frac{3^n + (-1)^n}{2} & \frac{3^n - (-1)^n}{4} \\ \\ \left\{ 3^n - (-1)^n \right\} & \frac{3^n + (-1)^n}{2} \end{array} \right), \ \forall n \in \mathbb{N} \,. \end{array}$

12 | Sketch the phase portrait for the system

$$\mathbf{x}' = \left(\begin{array}{cc} 1 & -1 \\ 1 & -1 \end{array}\right) \mathbf{x} \,.$$

13