Problem Set \# 10

(due: April 16)

1. Page 427: \# 3(a).
2. Find the mass of a wire bent in the shape of a helix $\overrightarrow{\mathbf{c}}(t)=(\cos 2 t, \sin 2 t, t)$, for $0 \leq t \leq \frac{\pi}{2}$, and whose density is $f(x, y, z)=16 y$.
3. Page 447 : $\# 1(\mathrm{~d}), 2(\mathrm{a})(\mathrm{d}), 4(\mathrm{a}), 7$.
4. If C is the curve $y=x^{2}+2 x$ from $(0,0)$ to $(1,3)$, compute the following :
(a) Path integral: $I_{1}=\int_{C} f d s$, where $f(x, y)=x^{2}-y-2$.
(b) Line integral: $I_{2}=\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}}$, where $\overrightarrow{\mathbf{F}}=(x y+1) \overrightarrow{\mathbf{i}}-x \overrightarrow{\mathbf{j}}$.
(c) Line integral: $I_{3}=\int_{C} 2 x y d x+x d y$.
5. Compute the line integral $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}}$, where $\overrightarrow{\mathbf{F}}=\left(2 x e^{2 y}-\cos y\right) \overrightarrow{\mathbf{i}}+\left(2 x^{2} e^{2 y}+x \sin y-2 y\right) \overrightarrow{\mathbf{j}}$ and C is any smooth curve starting at $(1,0)$ and ending at $(2,1)$.
(Hint: Find a function $f(x, y)$, if possible, so that $\overrightarrow{\mathbf{F}}=\nabla f$.)
