$\underline{\text { Problem Set \# } 11}$

(due: April 23)

1. Page 459: \# 10, 12 .
2. Compute the area of the surface S parameterized by $\Phi(u, v)=(u \cos v, u \sin v, v)$ where $0 \leq u \leq \sqrt{8}, 0 \leq v \leq u$.
3. Parameterize the surface S given by $y=x^{2}+z^{2}-8$ where $1 \leq x^{2}+z^{2} \leq 4$. Find the area of the surface S.
4. Page 480 : \# 3, 10 .
5. Compute the surface integrals $\iint_{S} x d S$ and $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$, where $\overrightarrow{\mathbf{F}}(x, y, z)=(z, 4 x, 2 y+1)$ and S is that part of the plane $\frac{x}{2}+y+z=1$ in the $1^{\text {st }}$ octant:

6. Compute the surface integral $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$ where $\overrightarrow{\mathbf{F}}(x, y, z)=y \overrightarrow{\mathbf{i}}-x \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}}$ and S is that part of the paraboloid $z=9-x^{2}-y^{2}$ which lies above the plane $z=5$ and $\overrightarrow{\mathbf{N}}$ is the upward unit normal. What is the flux of $\overrightarrow{\mathbf{F}}$ across S ?
