$\frac{\text{PROBLEM SET } \# 12 \text{ (OPTIONAL)}}{(\text{due: April 30})}$

- **1. Page 178** : # 37(b).
- **2.** Page 243 : # 5.
- **3.** Let $f : \mathbb{R}^2 \to \mathbb{R}$ and $g : \mathbb{R}^2 \to \mathbb{R}$ be differentiable, prove that $\nabla(fg) = f\nabla g + g\nabla f$.
- **4.** If $g(x, y, z) = (x, x + y, x^2 + z, z)$ and $f(x_1, x_2, x_3, x_4) = (x_1^3 + x_3, x_2^2 x_4)$, then compute $D(f \circ g)(1, 1, 1).$
- **5.** If z = z(x, y) is defined implicitly by the equation $x^2 + z^3 + 3xy 3z = 1$, compute $\frac{\partial z}{\partial y}$.
- **6.** The base of a solid S lies in the region B between $y = x^2$ and y = x + 2 in the xy-plane as shown below. Plane sections perpendicular to the x-axis are squares with one side in the xy-plane. Find the volume of S.

- 8. If $\vec{\mathbf{F}}(x, y, z) = -yz \vec{\mathbf{i}} + xz \vec{\mathbf{j}} + y \vec{\mathbf{k}}$ and S is that part of $z = x^2 + y^2$ below z = 4 (the normal $\vec{\mathbf{n}}$ points downward), compute $\iint_{\mathbf{S}} (\nabla \times \vec{\mathbf{F}}) \cdot d\vec{\mathbf{S}}$ using STOKES' THEOREM.
- **9.** Let $\vec{\mathbf{F}}(x, y, z) = (x, y, -3z)$.
 - (a) Compute $\iint_{S_1} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$ where S_1 is that part of $z = \sqrt{x^2 + y^2}$ below the plane z = 3 and $\vec{\mathbf{J}} \cdot \vec{\mathbf{J}} \cdot \vec{\mathbf{J}}$
 - (b) Compute $\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$, where S is the *closed* surface consisting of that part of $z = \sqrt{x^2 + y^2}$ below the plane z = 3 together with the top and $\vec{\mathbf{n}}$ points outward.
- **10.** Page 574 : # 10.