## $\underline{\underline{\text { Problem Set } \# 12 \text { (Optional) }}}$

(due: April 30)

1. Page 178: \# 37(b).
2. Page 243 : \# 5 .
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable, prove that $\nabla(f g)=f \nabla g+g \nabla f$.
4. If $g(x, y, z)=\left(x, x+y, x^{2}+z, z\right)$ and $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{3}, x_{2}^{2}-x_{4}\right)$, then compute $D(f \circ g)(1,1,1)$.
5. If $z=z(x, y)$ is defined implicitly by the equation $\boldsymbol{x}^{2}+\boldsymbol{z}^{3}+3 \boldsymbol{x} \boldsymbol{y}-3 \boldsymbol{z}=1$, compute $\frac{\partial z}{\partial y}$.
6. The base of a solid $S$ lies in the region $B$ between $y=x^{2}$ and $y=x+2$ in the $x y$-plane as shown below. Plane sections perpendicular to the $x$-axis are squares with one side in the $x y$-plane. Find the volume of $S$.

7. Compute $\int_{C}-5 x y d y+\left(x^{3}+\cos ^{2} x-4 y\right) d x$ where $C$ is as shown:

8. If $\overrightarrow{\mathbf{F}}(x, y, z)=-y z \overrightarrow{\mathbf{i}}+x z \overrightarrow{\mathbf{j}}+y \overrightarrow{\mathbf{k}}$ and $S$ is that part of $z=x^{2}+y^{2}$ below $z=4$ (the normal $\overrightarrow{\mathbf{n}}$ points downward), compute $\iint_{S}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot d \overrightarrow{\mathbf{S}}$ using Stokes' Theorem.
9. Let $\overrightarrow{\mathbf{F}}(x, y, z)=(x, y,-3 z)$.
(a) Compute $\iint_{S_{1}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$ where $S_{1}$ is that part of $z=\sqrt{x^{2}+y^{2}}$ below the plane $z=3$ and $\overrightarrow{\mathrm{n}}$ is downward.
(b) Compute $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$, where $S$ is the closed surface consisting of that part of $z=\sqrt{x^{2}+y^{2}}$ below the plane $z=3$ together with the top and $\overrightarrow{\mathbf{n}}$ points outward.
10. Page 574: \# 10 .
