Worksheet # 3

1. Find the following unknown quantities:
 (a) \(X = 25.2 \ a_{0.10\%} \)
 (b) \(5 = a_{6\%} \)
 (c) \(Y = 30 \ s_{4\%} \)
 (d) \(45 = R \ a_{10\%} \)
 (e) \(100 = 4 \ \bar{s}_{2.08\%} \)

2. Page 67: \(\# 3-3, \ 3-4, \ 3-5, \ 3-6, \ 3-7(a) \).

3. Mario pays \$ 300 at the end of each month for 4 years to pay off his car loan. If the annual effective rate is 8%, what is the orginal amount of the loan?

4. What is the purchase price of an annuity which pays \$ 100 at the end of each month for 10 years if the interest rate is 8% converted quarterly?

5. Page 68: \(\# 3-18, \ 3-21, \ 3-35, \ 3-40, \ 3-42 \).

6. Lincoln Life Insurance donated \$ 200,000 at the beginning of 1999 to Purdue to establish a scholarship for hardworking actuary students. The scholarship, in the (level) amount \(P \), is then given annually at the end of each year (starting at end of 1999). The donation can be invested at an effective annual rate of 7.5 \%. Find the amount \(P \) so that the scholarship continues forever.

7. Find an expression for the present value of this perpetuity (assume an annual effective rate of \(i \)):

 \[\begin{array}{cccccccc}
 30 & 30 & 20 & 20 & 20 & \cdots & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots & \infty
 \end{array} \]

8. The present value of a series of payments of 2 at the end of every 8 years forever is equal to 5. Calculate the effective rate of interest. (SHOW WORK)

 \((A) \ .023 \quad (B) \ .033 \quad (C) \ .040 \quad (D) \ .043 \quad (E) \ .052 \)

9. Your parents took out a \$ 170,000 mortgage to buy a house. They repay the loan by making monthly payments of \(X \) for 30 years, with the first payment one month after the loan is given. If the interest rate is 8\% annual effective, calculate \(X \). If the monthly payments were instead put in a bank account earning the same interest rate as above, what will be the accumulated value of all the payments at the end of 30 years?

Answers

1. (a) \(X = 169.09 \) (b) \(i = 5.472\% \) (c) \(Y = 123.65 \) (d) \(R = 6.2095 \) (e) \(n = 20 \)
2. Page 67: \(\# 3-3 \) \(1098.41 \)
 \(\# 3-4 \) \(86.49 \)
 \(\# 3-5 \) \(22,240.32 \)
 \(\# 3-6 \) \(a \) \(5746.64 \)
 \(b \) \(11,487.56 \)
 \(c \) \(8443.70 \)
 \(d \) \(32.73 \)
 \(e \) NO value of \(n \) works
 \(\# 3-7(a) \) See solution sheet
3. 12,354.78
4. 8261
5. Page 68: (#3-18) 3896.14 (#3-21) 19140.80 (#3-35) 32.81 (#3-40) 0.20 (#3-42) 546.84
6. $P = 15,000$
7. Here are three of infinity many correct answers:
 (i) $PV = 30a \nu + \frac{20}{i} \nu^3$
 (ii) $PV = 10a \nu + \frac{20}{i} \nu^3$
 (iii) $PV = 30 \nu^2 + 30 \nu^3 + \frac{20}{i} \nu^3$
8. $i = 0.04296$ (D)
9. Monthly payments of $1214.47; FV=$ 1,710,629.90