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Abstract. Sharp distortion theorems for close-to-convex functions which satisfy

Re f ′(z) > γ are proved using extreme points.

1. Introduction

Let H(∆) be the class of all functions which are analytic in the unit disk ∆.
For 0 ≤ γ < 1, we let Rγ denote the subclass of functions f ∈ H(∆) which satisfy
the condition Re f ′(z) > γ for all z ∈ ∆, with the normalization f(0) = 0 and
f ′(0) = 1. By the Noshiro-Warschawski-Wolff Theorem (see [2] for example), it is
well-known that all functions in Rγ are univalent and belong to the classical family
of univalent functions S. In fact, functions in Rγ are close-to-convex. The class R0

has been studied and many results known ([7]). Thomas [9] proved that if f ∈ R0

and |z| = r < 1, then ∣∣∣∣zf ′(z)f(z)

∣∣∣∣ ≤ K

−(1− r) log(1− r)
and stated that extreme point methods did not seem to give sharp bounds. Later,
London [6] found the sharp bound without using extreme points. The purpose of
this paper is to show that extreme point methods can be used to both generalize
London’s result for all 0 ≤ γ < 1 and give sharp estimates for other distortion
results. The basic method given here may be used in other types of extremal
problems for other families of functions.

2. Main Results

For each 0 ≤ γ < 1, for convenience only, we henceforth set

(2.1) α = 1− 2γ

and define functions kα ∈ Rγ as follows :

(2.2) kα(z) = −αz − (1 + α) log(1− z) .
These and their rotations will turn out to be extremal functions. We can now state
our results.

1991 Mathematics Subject Classification. Primary 30C45; Secondary 30C75.
Key words and phrases. Close-to-convex functions, distortion estimates, extreme points.

Typeset by AMS-TEX

1



2 DISTORTION ESTIMATES

Theorem 2.1. If f ∈ Rγ , 0 ≤ γ < 1 and |z| = r < 1, then

|f ′(z)|
Re

{
f(z)
z

} ≤ rk′α(r)

kα(r)
=

r(1 + α r)

(1− r)[−α r − (1 + α) log(1− r)] .

Equality holds for 0 < r < 1 when f(z) = kα(z).

The above result also gives the sharp upper bound for both |zf ′(z)/f(z)| and for
Re {f ′(z)}/ Re {f(z)/z}.

Theorem 2.2. If f ∈ Rγ , 0 ≤ γ < 1 and |z| = r < 1, then

|zf ′′(z)|
Re {f ′(z)} ≤

rk′′α(r)

k′α(r)
=

r(1 + α)

(1− r)(1 + α r)
.

Equality holds for 0 < r < 1 when f(z) = kα(z).

It is known (see [1] or[5]) that if Re f ′(z) > γ, then Re {f(z)/z} > γ. However,
the sharp estimate is given by :

Theorem 2.3. If f ∈ Rγ , 0 ≤ γ < 1 and |z| = r < 1, then

Re

{
f(z)

z

}
≥ −kα(−r)

r
= −α+

(1 + α)

r
log(1 + r) .

Equality holds for 0 < r < 1 when f(z) = −kα(−z).

3. Proofs

There are some elementary properties of the class Rγ which we now state. It is
clear that Rγ is a compact family in H(∆) (endowed with the topology of uniform
convergence on compacta in ∆). It is a convex family, i.e., if f, g ∈ Rγ , then
tf +(1− t)g ∈ Rγ for all t ∈ [0, 1]. This class is also rotationally invariant : f ∈ Rγ
if and only if e−iνf(eiνz) ∈ Rγ for all ν ∈ R. Observe that the derivatives of
functions in Rγ are related to functions in the classical Carathéordory class P by
f ∈ Rγ if and only if (f ′− γ)/(1− γ) ∈ P. From this and the well-known fact that
the extreme points of P are given by

E(P) =

{
1 + eiµz

1− eiµz : 0 ≤ µ ≤ 2π

}
,

it follows that the extreme points of Rγ are

(3.1) E(Rγ) =
{
e−iµkα(eiµz) : 0 ≤ µ ≤ 2π

}
.

We need two preliminary results. The first may be compared here with that of
Ruscheweyh [8]. It is the convexity of certain functionals which will be important
to prove our results. (Recall that a functional Φ is convex if Φ(tf + (1 − t)g) ≤
tΦ(f) + (1 − t)Φ(g) for f, g ∈ H(∆) and all t ∈ [0, 1].) The second contains the
computations necessary to complete our proofs.
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Lemma 1. Let F be a compact and convex family of functions in H(∆). If Φ
and L are real-valued continuous functionals on H(∆) which are convex and linear,
respectively, with L(F) > 0 and |Φ(F)| <∞, then

max
f∈F

Φ(f)

L(f)
= max
f∈E(F)

Φ(f)

L(f)
.

Lemma 2. If J(t, x) ≡ 1 + t2 − 2tx and 0 < r < 1, then

(i)

∫ r

0

ρ (1− ρ2)

J(ρ, x)2
dρ ≤ r2

J(r, x)
, −1 ≤ x ≤ 1

(ii)

∫ r

0

ρ (1− ρ2)

J(ρ, x)2
dρ ≤

[
r(1 + r2)

J(r,−x) J(r, x)

] ∫ r

0

(1− ρ2)

J(ρ, x)
dρ , −1 ≤ x ≤ 1

(iii)

∫ r

0

ρ (1− ρ2)

J(ρ, x)2
dρ ≤

[
r

J(r, x)

] ∫ r

0

(1− ρ x)
J(ρ, x)

dρ , −1 ≤ x ≤ 1

(iv)

∫ r

0

(ρ x− ρ2)

J(ρ, x)
dρ ≤

[
1 + αr2

J(α r,−x)

] ∫ r

0

(1− ρ x) + α (ρ x− ρ2)

J(ρ, x)
dρ , 0 ≤ α, x ≤ 1 .

We proceed now with the proofs of the main results. The lemmas are proved at
the end of this section.

Proof of Theorem 2.1 . Since Rγ is rotationally invariant, it suffices to prove
the inequality for z = r. Thus define Φ(f) ≡ |f ′(r)| and L(f) ≡ Re {f(r)/r}.
Note that L(Rγ) > γ. Applying Lemma 1, using (2.2) and (3.1), we conclude that
for every f ∈ Rγ ,

(3.2)
|f ′(r)|

Re
{
f(r)
r

} ≤ max
0≤θ≤2π

F (θ) ,

where

(3.3) F (θ) =

∣∣∣1+αreiθ

1−reiθ

∣∣∣
Re {−α− (reiθ)−1(1 + α) log(1− reiθ)} .

By symmetry, it is without loss of generality to suppose that 0 ≤ θ ≤ π. The result
is proved if we show that F (θ) ≤ F (0).

If we let J(t, x) = 1 + t2 − 2tx, where x = cos θ, then

Re

{
−α− (1 + α)

reiθ
log(1− reiθ)

}
=

1

r

∫ r

0

(1− ρ x) + α(ρ x− ρ2)

J(ρ, x)
dρ
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and

∂

∂θ
Re

{
−α− (1 + α)

reiθ
log(1− reiθ)

}
= −(1 + α)

r
(sin θ)

∫ r

0

ρ(1− ρ2)

J(ρ, x)2
dρ

and also
∂
∣∣∣1+αreiθ

1−reiθ

∣∣∣
∂θ

= −r(1 + α)(1 + αr2) sin θ

J(α r,−x) J(r, x)

∣∣∣∣1 + α reiθ

1− reiθ

∣∣∣∣ .
It follows that

(3.4) F ′(θ) =
(1 + α)

r( Re {kα(reiθ)/(reiθ)})2
(sin θ)

∣∣∣∣1 + αreiθ

1− reiθ

∣∣∣∣ H(x) ,

where

H(x) =

[∫ r

0

ρ(1− ρ2)

J(ρ, x)2
dρ

]
−
[

r(1 + αr2)

J(α r,−x) J(r, x)

] ∫ r

0

(1− ρ x) + α(ρ x− ρ2)

J(ρ, x)
dρ ,

with x = cos θ and 0 ≤ θ ≤ π. It is now necessary to consider cases.

Case 1 : 0 ≤ α ≤ 1 and − 1 ≤ x ≤ 1 . From the above, it is enough to show that
H(x) ≤ 0, or equivalently {J(αr,−x) J(r, x)/r}H(x) ≤ 0, which is true if and only
if G(α) ≤ 0, where

(3.5) G(α) = Aα2 +Bα+ C

and

A = r2

[
J(r, x)

r
I −

∫ r

0

ρ x− ρ2

J(ρ, x)
dρ

]
B = 2xJ(r, x) I −

∫ r

0

r2(1− ρ x) + (ρ x− ρ2)

J(ρ, x)
dρ

C =
J(r, x)

r
I −

∫ r

0

(1− ρ x)
J(ρ, x)

dρ

with I =

∫ r

0

ρ(1− ρ2)

J(ρ, x)2
dρ . By Lemma 2 (ii) and (iii), respectively, we get G(1) ≤ 0

and G(0) ≤ 0. Hence if A ≥ 0, we have G(α) ≤ 0 and so H(x) ≤ 0. Hence suppose
A < 0, that is

(3.6)
J(r, x)

r
I <

∫ r

0

ρ x− ρ2

J(ρ, x)
dρ .

In order for (3.6) to hold, note that we must necessarily have 0 ≤ x ≤ 1. Hence to
show that H(x) ≤ 0, using (3.6) we need only verify if 0 ≤ x ≤ 1 and 0 ≤ α ≤ 1,
then ∫ r

0

ρ x− ρ2

J(ρ, x)
dρ ≤

(
1 + αr2

J(αr,−x)

)∫ r

0

(1− ρ x) + α(ρ x− ρ2)

J(ρ, x)
dρ .

This is Lemma 2 (iv). Hence H(x) ≤ 0, F ′(θ) ≤ 0 and so F (θ) ≤ F (0) .
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Case 2 : −1 < α ≤ 0 and
r(1− α)

2
≤ x ≤ 1 . In this case we must have

1 + α r2

J(αr,−x) ≥ 1

and hence H(x) ≤ 0 (and also F ′(θ) ≤ 0) follows if we show that∫ r

0

ρ(1− ρ2)

J(ρ, x)2
dρ ≤ r

J(r, x)

∫ r

0

(1− ρ x) + α(ρ x− ρ2)

J(ρ, x)
dρ ≡M(α) .

Since M is linear in α, the above inequality holds by Lemma 2 (i) and (iii).

Case 3 : −1 < α ≤ 0 and − 1 ≤ x ≤ r(1− α)

2
. In this situation, we see that

∣∣∣∣1 + αreiθ

1− reiθ

∣∣∣∣ ≤ 1

and so the expression∣∣∣∣1 + αreiθ

1− reiθ

∣∣∣∣ {−α− (1 + α)

r
log(1− r)

}
−
(

1 + α r

1− r

)
Re

{
−α− (1 + α)

reiθ
log(1− reiθ)

}
is bounded above by H(α, θ),where

H(α, θ) =

{
−α− (1 + α)

r
log(1− r)

}
−
(

1 + α r

1− r

)
Re

{
−α− (1 + α)

reiθ
log(1− reiθ)

}
.

We can show directly that H(α, θ) ≤ 0, which is equivalent to F (θ) ≤ F (0). For
convenience, set µ(θ) = Re

{
(reiθ)−1 log(1− reiθ)

}
. Because 1

z
log(1 − z) is a

convex univalent function which maps disks |z| ≤ r onto convex regions symmetric
with respect to the real axis, we get

(3.7) Re
{
(reiθ)−1 log(1− reiθ)

}
≤ −1

r
log(1 + r) .

Now we have

∂H

∂α
=
r(1 + 2α)

1− r − 1

r
log(1− r) + µ

[
1 + (1 + 2α)r

1− r

]
.

This function is linear in µ and (3.7) gives µ(θ) ≤ −1
r

log(1 + r) and hence

r(1− r) ∂H
∂α
≤ r2(1 + 2α)− (1− r) log(1− r)− [1 + (1 + 2α)r] log(1 + r) .

The right hand side is linear in α so a brief calculation then gives ∂H
∂α
≤ 0. We are

done because H(α, θ) < H(−1, θ) = 0.

Proof of Theorem 2.2 . As in the proof of the previous theorem, it suffices to
prove our result for z = r. Put Φ(f) ≡ |r f ′′(r)|, L(f) ≡ Re {f ′(r)} and apply
Lemma 1 with (3.1) to conclude that for any f ∈ Rγ,
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|r f ′′(r)|
Re {f ′(r)} ≤ max

0≤θ≤2π
K(θ) ,

where

(3.8) K(θ) =
r(1 + α)

|1− reiθ|2

/
Re

{
1 + αreiθ

1− reiθ

}
.

We wish to show that K(θ) ≤ K(0), but this is equivalent to

(1− r)(1 + α r)− |1− reiθ|2 Re

{
1 + αreiθ

1− reiθ

}
≤ 0.

This in turn is equivalent to (1 − α)(cos θ − 1) ≤ 0. The proof of the theorem is
complete.

Proof of Theorem 2.3 . We prove this result for z = r. Here we let Φ(f) ≡ 1
and L(f) ≡ Re {f(r)/r}. From Lemma 1 and (3.1) we conclude that for any
f ∈ Rγ ,

(3.9) Re

{
f(r)

r

}
≥ min

0≤θ≤2π
N(θ) ,

where N(θ) ≡ Re
{
kα(reiθ)/(reiθ)

}
. We need only prove that N(θ) ≥ N(π),

which is equivalent to Re {(reiθ)−1 log(1− reiθ)} ≤ −1
r

log(1 + r). This is (3.7).

We now turn our attention to the proofs of the lemmas. A very useful result due
to Hallenbeck and MacGregor[4,p45] is as follows:

Proposition. Let F be a compact family in H(∆). If J is a real-valued continuous
convex functional on CH(F), the closed convex hull of F , then

max
f∈F

J(f) = max
f∈E(CH(F))

J(f) .

Proof of Lemma 1 . Since F is compact, there always exists an extremal func-
tion g ∈ F such that

M = sup
f∈F

Φ(f)

L(f)
=

Φ(g)

L(g)
.

(By hypothesis M is finite.) If we let J(f) ≡ Φ(f)−M L(f), then J is a continuous
real-valued convex functional whose maximum on F is zero. In our case F is a
convex family hence by the above Proposition there exists g∗ ∈ E(F) such that
J(g∗) = 0, i.e., for any f ∈ F ,

Φ(f)

L(f)
≤M =

Φ(g∗)

L(g∗)
.

The proof of this lemma is complete.
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Proof of Lemma 2 . We consider each inequality separately.

(i) : This inequality holds if

∫ r

0

∂

∂t
{G(t, x)} dt ≤ 0, where

G(t, x) =

∫ t

0

ρ (1− ρ2)

J(ρ, x)2
dρ− t2

J(t, x)
.

But clearly we see that
∂G

∂t
= −t/J(t, x) ≤ 0, so (i) is proved.

(ii) : This inequality is proved in London [6,p523].

(iii) : This inequality is true if

∫ r

0

∂

∂t
{G(t, x)} dt ≤ 0, where

G(t, x) =

∫ t

0

ρ(1− ρ2)

J(ρ, x)2
dρ− t

J(t, x)

∫ t

0

1− ρ x
J(ρ, x)

dρ .

It follows that

J2(t, x)
∂G

∂t
= −(1− t2)

∫ t

0

1− ρ x
J(ρ, x)

dρ+ t2(x− t) .

If −1 ≤ x ≤ 0, then ∂G
∂t
≤ 0 and so (iii) holds in this case.

Suppose now that we have 0 ≤ x ≤ 1 . By (ii), to prove (iii) we need only verify
that

(3.10)
1 + r2

J(r,−x)

∫ r

0

1− ρ2

J(ρ, x)
dρ ≤

∫ r

0

1− ρ x
J(ρ, x)

dρ ,

which is true if and only if

(3.11)

∫ r

0

Ψ(x, ρ)

J(ρ, x)
dρ ≤ 0 ,

where

Ψ(x, ρ) = (1 + r2)(1− ρ2) + (ρ x− 1)J(r,−x) = Ax2 +Bx+ C .

Now clearly A = 2ρ r ≥ 0, Ψ(0, ρ) = −ρ2(1 + r2), and, since 0 ≤ ρ ≤ r, we get
Ψ(1, ρ) = (1− ρ)(ρ+ r2ρ− 2r) ≤ (1− ρ)(r3 − r). Hence Ψ(x, ρ) ≤ 0 for 0 ≤ x ≤ 1,
so (3.11) and (3.10) hold and thus (iii) holds.

(iv) : After multiplying both sides by J(αr,−x), we see that this inequality holds
if and only if K(α, x) ≤ 0, where

K(α, x) =

∫ r

0

α
[
(2rx− 1)(ρ x− ρ2)− r2(1− ρ x)

]
− J(ρ, x)

J(ρ, x)
dρ .

Clearly K(0, x) ≤ 0 and K(1, x) =

∫ r

0

ω(x)

J(ρ, x)
dρ, where

ω(x) = (2rx− 1)(ρ x− ρ2)− r2(1− ρ x)− J(ρ, x) = Ax2 +Bx+ C ,

with A = 2ρ r ≥ 0, ω(0) = −(1 + r2) and ω(1) ≤ (1 − ρ)(r2 − 1). Hence we get
K(1, x) ≤ 0 and since K is linear in α, this proves K(α, x) ≤ 0 and (iv) is proved.
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4. Remarks

(1) By tracing through the cases of equality, we have shown that equality in
all our main results are in fact achieved only for the indicated extremal
functions.

(2) It is essential that we separate cases in the proof of Theorem 2.1 since
F ′(θ) ≤ 0 is false for all 0 ≤ θ ≤ π when −1 < α < 0. For example,
ifα = −0.8, r = 0.8 and θ0 = 1.4266 then F ′(θ0) > 0. Also, we note that
cases (ii) and (iii) are completely independent of each other.

(3) Theorem 2.1 is a rather curious result since both |f ′(z)| and Re {f(z)/z}
are maximized for kα(z) (and both minimized for −kα(−z)), while their
quotient |f ′(z)|/ Re {f(z)/z} is maximized by the single function kα(z) for
each 0 ≤ γ < 1. This is not always true for estimates of other such func-
tionals over Rγ. Indeed, it is of interest to observe that for fixed z ∈ ∆,

max
f∈Rγ

Re {f(z)/z}
Re {f ′(z)}

is not always attained for the single function −kα(−z) (or kα(z)) for all
0 ≤ γ < 1. Upon selecting z = 0.85, α = 0 (i.e., γ = 1

2 ) and µ = π
2 , a

numerical check shows that

Re {kα(r)/r}
Re {k′α(r)} <

Re {kα(−r)/(−r)}
Re {k′α(−r)} <

Re
{
kα(reiµ)/(reiµ)

}
Re {k′α(reiµ)} .

Thus by Theorem 2.1, the maximum of the the functional Re {f ′(z)}/ Re {f(z)/z} is
attained for f(z) = kα(z) while the minimum is not attained (for all
0 ≤ γ < 1) for f(z) = −kα(−z) (or kα(z)) as one might expect.

(4) Theorem 2.3 was proved earlier by Hallenbeck[3] via subordination meth-
ods. Subordination methods and extreme point methods complement each
other in considering extremal problems. For example subordination can be
used to show that for all f ∈ Rγ ,∫ 2π

0

|f ′(reiθ)|p dθ ≤
∫ 2π

0

|k′α(reiθ)|p dθ , 0 < p <∞ ,

while extreme point methods can be used to obtain

∫ 2π

0

|f(reiθ)|p dθ ≤
∫ 2π

0

|kα(reiθ)|p dθ , 1 ≤ p <∞ .
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