Homework Set # 9

2. Compute \(I = \int_C \frac{e^{\pi z}}{z^2(z^2 + 1)} \, dz \) using Partial Fractions and using the Generalized Cauchy Theorem, where \(C \) is the contour:

![Contour Diagram]

3. If \(C \) is the circle \(|z - 3i| = 4\) traversed once in a positive sense, compute these integrals:

(a) \(\int_C \frac{e^{\pi z}}{z^4 + 16z^2} \, dz \)

(b) \(\int_C \frac{\cos z}{(z + 1)^4} \, dz \)

4. Show that \(\int_{|z|=R} e^{(\frac{1}{z})} \sin \left(\frac{1}{z}\right) \, dz = 2\pi i \), where the circle \(|z| = R\) is traversed in a positive sense and \(R > 0 \). (Hint: change variables, let \(w = \frac{1}{z} \). What happens to the circle \(|z| = R \)?)

Extra Credit Problem: Let \(D \) be the doubly-connected domain bounded by simple closed contours \(\Gamma \) and \(\gamma \) as shown below. If \(f \) is analytic in \(D \) and on the boundary of \(D \), show that

\[
\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} \, dz = f(z_0) + \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} \, dz
\]

for any \(z_0 \) inside \(D \):

![Doubly-Connected Domain Diagram]

(This is sometimes called the Cauchy Integral Formula For Doubly-Connected Domains.)