Review - Quiz # 3

(1) <u>Spring-Mass Systems</u> $\begin{cases} m x'' + c x' + k x = F(t) \\ x(0) = x_0, \ x'(0) = x_1 \end{cases}$

m = mass of object, c = damping constant, k = spring constantWeight w = m g, <u>Hooke's Law</u>: $F_s = k d$, F(t) = external force

A. Undamped Free Vibrations : m x'' + k x = 0 (Simple Harmonic Motion) Note that $a \cos \omega t + b \sin \omega t = A \cos(\omega t - \phi)$, where $A = \sqrt{a^2 + b^2} = amplitude$, $\omega = frequency$, $\frac{2\pi}{\omega} = period$ and $\phi = phase shift$ (Note: $\phi = \cos^{-1}\left\{\frac{a}{A}\right\}$ or $\phi = -\cos^{-1}\left\{\frac{a}{A}\right\}$, it depends on which quadrant the angle ϕ lies in).

- B. Damped Free Vibrations : m x'' + c x' + k x = 0
 - (i) $c^2 4km > 0$ (overdamped) \Rightarrow distinct real roots to CE
 - (ii) $c^2 4km = 0$ (*critically damped*) \Rightarrow repeated roots to CE
 - (iii) $c^2 4km < 0$ (underdamped) \Rightarrow complex roots to CE (motion is <u>oscillatory</u>)
- C. <u>Forced Vibrations</u> : $(F(t) = F_0 \cos \omega t \text{ or } F(t) = F_0 \sin \omega t$, for example)
 - (i) $\underline{m \, x'' + k \, x = F_0 \, \cos \omega t}$ (no damping) If $\omega = \omega_0 = \sqrt{\frac{k}{m}} \Rightarrow \underline{\text{Resonance}}$ occurs and the solution is unbounded; while if $\omega \neq \omega_0$ then motion is a series of *beats* (solution is bounded)
 - (ii) $\frac{m x'' + c x' + k x = F(t)}{x(t) = x_h(t) + x_p(t)}$ (damping) If you write the general solution as (Note: transient solution satisfies $x_h(t) \to 0$ as $t \to \infty$)

(2) Systems of Linear Differential Equations $\vec{\mathbf{X}}'(t) = A \vec{\mathbf{X}}(t)$

- A. Should be able to rewrite a single n^{th} order equation as a system of 1^{st} order equations.
- B. Should be able to solve 2×2 systems of 1^{st} order equations $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

using the Elimination Method and using Eigenvalues and Eigenvectors :

<u>Eigenvalues</u> : roots to $|A - \lambda I| = \begin{vmatrix} (a - \lambda) & b \\ c & (d - \lambda) \end{vmatrix} = 0$ **Eigenvector** : $\vec{\mathbf{v}}$ is a nonzero solution to $(A - \lambda I) \vec{\mathbf{v}} = \vec{\mathbf{0}}$.

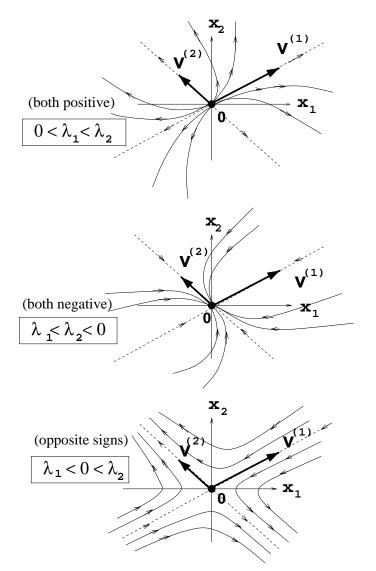
C. If $\vec{\mathbf{x}}^{(1)}(t) = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \end{pmatrix}$ and if $\vec{\mathbf{x}}^{(2)}(t) = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \end{pmatrix}$, the Wronskian is $W = \begin{vmatrix} x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t) \end{vmatrix}$. If $\vec{\mathbf{x}}^{(1)}(t)$ and $\vec{\mathbf{x}}^{(2)}(t)$ are linearly independent solutions of $\vec{\mathbf{X}}'(t) = A \vec{\mathbf{X}}(t)$, then a Fundamental matrix of the system is $\Phi(t) = \begin{pmatrix} x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t) \end{pmatrix}$.

(3) <u>Undetermined Coefficients for Systems</u> : Want to find a particular solution, $\vec{\mathbf{x}}_p(t)$, of

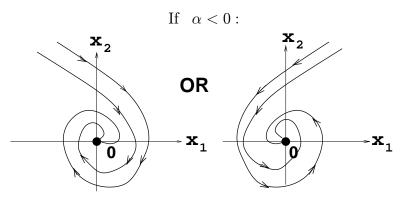
$$\vec{\mathbf{X}}'(t) = \mathbf{A}\,\vec{\mathbf{X}}(t) + \vec{\mathbf{F}}(t)$$

The column vector $\vec{\mathbf{F}}(t) = \begin{pmatrix} f_1(t) \\ f_2(t) \end{pmatrix}$ must have component functions $f_1(t)$ and $f_2(t)$ as one of the three special forms like those for Undetermined Coefficients for regular 2^{nd} order equations (see Review Sheet # 2). The main difference is if $\vec{\mathbf{F}}(t) = \vec{\mathbf{u}} e^{\lambda t}$ and λ is also an eigenvalue of A, then try a particular solution of the form $\vec{\mathbf{x}}_p = \vec{\mathbf{a}} t e^{\lambda t} + \vec{\mathbf{b}} e^{\lambda t}$.

- (4) <u>Mixing Problems (several tanks)</u> : Flow through several connected tanks leads to a system of linear 1^{st} order equations. You should be able to set up and solve such problems. (Draw a picture to help with the analysis.)
- (5) <u>Phase Portraits</u>: A plot of the trajectories (solutions) of a given system $\vec{\mathbf{X}}'(t) = A \vec{\mathbf{X}}(t)$ is called a **phase portrait**. To sketch the phase portrait, we need to consider 3 cases :
 - (i) $\frac{\lambda_1 < \lambda_2, \text{ real and distinct}}{\text{respectively}} \Rightarrow \vec{\mathbf{x}}^{(1)}(t) = e^{\lambda_1 t} \vec{\mathbf{v}}^{(1)}, \vec{\mathbf{v}}^{(2)}$ are e-vectors corresponding to λ_1 and λ_2 , general solution is $\vec{\mathbf{x}}(t) = C_1 \vec{\mathbf{x}}^{(1)}(t) + C_2 \vec{\mathbf{x}}^{(2)}(t) = e^{\lambda_2 t} \vec{\mathbf{v}}^{(2)}$ are solutions and hence



(ii) $\underline{\lambda_1 = \alpha + i\beta}$ If $\mathbf{\vec{w}} = \mathbf{\vec{a}} + i\mathbf{\vec{b}}$ is a complex e-vector corresponding to λ_1 then $\mathbf{\vec{x}}^{(1)}(t) = \Re e \left\{ e^{\lambda_1 t} \mathbf{\vec{w}} \right\} = e^{\alpha t} \left(\mathbf{\vec{a}} \cos\beta t - \mathbf{\vec{b}} \sin\beta t \right)$ and $\mathbf{\vec{x}}^{(2)}(t) = \Im m \left\{ e^{\lambda_1 t} \mathbf{\vec{w}} \right\} = e^{\alpha t} \left(\mathbf{\vec{a}} \sin\beta t + \mathbf{\vec{b}} \cos\beta t \right)$ are real-valued solutions and hence general solution is $\mathbf{\vec{x}}(t) = C_1 \mathbf{\vec{x}}^{(1)}(t) + C_2 \mathbf{\vec{x}}^{(2)}(t)$.



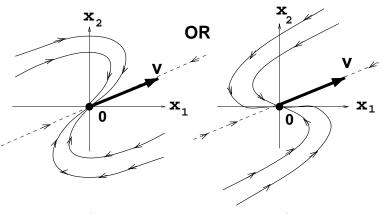
(Test a point to decide which)

(iii) $\underline{\lambda_1 = \lambda_2} \Rightarrow \text{Solutions are} \quad \vec{\mathbf{x}}^{(1)}(t) = e^{\lambda_1 t} \vec{\mathbf{v}} \text{ and } \vec{\mathbf{x}}^{(2)}(t) = t e^{\lambda_1 t} \vec{\mathbf{v}} + e^{\lambda_1 t} \vec{\mathbf{w}} \text{ , where}$ $(A - \lambda_1 I) \vec{\mathbf{v}} = \vec{\mathbf{0}}$ $(A - \lambda_1 I) \vec{\mathbf{w}} = \vec{\mathbf{v}}$

 $(\vec{\mathbf{v}} \text{ is an eigenvector while } \vec{\mathbf{w}} \text{ is a "generalized eigenvector"})$

The general solution of system is $\vec{\mathbf{x}}(t) = C_1 \vec{\mathbf{x}}^{(1)}(t) + C_2 \vec{\mathbf{x}}^{(2)}(t)$.

If $\lambda_1 < 0$:



(Test a point to decide which)

PRACTICE PROBLEMS

- 1. For what nonnegative values of γ will the the solution of the initial value problem $u'' + \gamma u' + 4u = 0$, u(0) = 4, u'(0) = 0 oscillate ?
- 2. (a) For what positive values of k does the solution of the initial value problem $2u'' + ku = 3\cos(2t), \ u(0) = 0, \ u'(0) = 0, \ become \ unbounded \ (Resonance) \ ?$
 - (b) For what positive values of k does the solution of the initial value problem $2u'' + u' + ku = 3\cos(2t), \ u(0) = 0, \ u'(0) = 0, \ become \ unbounded \ (Resonance) \ ?$
- 3. Find the steady-state solution of the IVP $y'' + 4y' + 4y = \sin t$, y(0) = 0, y'(0) = 0.
- 4. A 4-kg mass stretches a spring 0.392 m. If the mass is released from 1 m below the equilibrium position with a downward velocity of 10 m/sec, what is the maximum displacement ?

5. Use the Elimination Method to solve the system
$$\begin{cases} x'_1 = x_1 + x_2 \\ x'_2 = 4x_1 + x_2 \end{cases}$$

- 6. Rewrite the 2^{nd} order differential equation $y'' + 2y' + 3ty = \cos t$ with y(0) = 1, y'(0) = 4 as a system of 1^{st} order differential equations.
- 7. Find eigenvalues and corresponding eigenvectors of (a) $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$ (b) $A = \begin{pmatrix} -2 & 0 \\ 1 & -1 \end{pmatrix}$
- 8. Find the solution of the IVP $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$ Find a fundamental matrix $\Phi(t)$.

9. Solve
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $\vec{\mathbf{x}}(0) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

10. Find the general solution of the system $\vec{\mathbf{x}}'(t) = A \vec{\mathbf{x}}(t)$, where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

11. Tank # 1 initially holds 50 gals of brine with a concentration of 1 lb/gal, while Tank # 2 initially holds 25 gals of brine with a concentration of 3 lb/gal. Pure H₂O flows into Tank # 1 at 5 gal/min. The well-stirred solution from Tank # 1 then flows into Tank # 2 at 5 gal/min. The solution in Tank # 2 flows out at 5 gal/min. Set up and solve an IVP that gives $x_1(t)$ and $x_2(t)$, the amount of salt in Tanks # 1 and # 2, respectively, at time t.

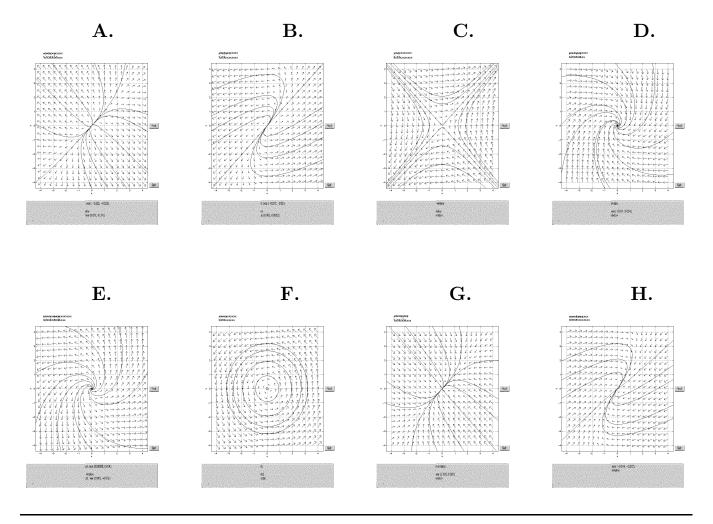
12. Tank # 1 initially holds 50 gals of brine with concentration of 1 lb/gal and Tank # 2 initially holds 25 gals of brine with concentration 3 lb/gal. The solution in Tank # 1 flows at 5 gal/min into Tank # 2, while the solution in Tank # 2 flows back into Tank # 1 at 5 gal/min. Set up an IVP that gives $x_1(t)$ and $x_2(t)$, the amount of salt in Tanks # 1 and # 2, respectively, at time t.

13. Find the general solution of
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} -2 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^t$$
.

- 14. Find a particular solution of $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.
- 15. Find the general solution of $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} 6e^{-t} \\ 1 \end{pmatrix}$.

16. Match the phase portraits shown below that best corresponds to each of the given systems of differential equations:

(i)
$$\vec{\mathbf{x}}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \vec{\mathbf{x}}$$
; Solution : $\vec{\mathbf{x}}(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}$
(ii) $\vec{\mathbf{x}}' = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \vec{\mathbf{x}}$; Solution : $\vec{\mathbf{x}}(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3t}$
(iii) $\vec{\mathbf{x}}' = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \vec{\mathbf{x}}$; Solution : $\vec{\mathbf{x}}(t) = C_1 \begin{pmatrix} 2 \\ 2 \end{pmatrix} e^t + C_2 e^t \left\{ \begin{pmatrix} 2 \\ 2 \end{pmatrix} t + \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$
(iv) $\vec{\mathbf{x}}' = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} \vec{\mathbf{x}}$; Solution : $\vec{\mathbf{x}}(t) = C_1 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} e^{-t}$



ANSWERS

1. $0 \le \gamma < 4$ 2. (a) k = 8 (resonance) (b) NO value of k, all solutions are bounded. 3. $y = \frac{1}{25}(3\sin t - 4\cos t)$ 4. $x(t) = \cos 5t + 2\sin 5t = \sqrt{5}\cos(5t - \phi), \ \phi = \cos^{-1}\frac{1}{\sqrt{5}} \approx 1.1$ Thus amplitude $= \sqrt{5}$. 5. $x_1(t) = C_1 e^{3t} + C_2 e^{-t}, \ x_2(t) = 2C_1 e^{3t} - 2C_2 e^{-t}$ 6. Let $x_1 = y, \ x_2 = y'$, then $\begin{cases} x_1' = x_2 \\ x_2' = -3tx_1 - 2x_2 + \cos t \end{cases}$, where $x_1(0) = 1, \ x_2(0) = 4$ 7. (a) $\lambda_1 = 3, \ \mathbf{v}^{(1)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $\lambda_2 = -1, \ \mathbf{v}^{(2)} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

$$\begin{aligned} \mathbf{7.} \text{ (b) } \lambda_{1} &= -1, \, \vec{\mathbf{v}}^{(1)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \, \lambda_{2} = -2, \, \vec{\mathbf{v}}^{(2)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\ \mathbf{8.} \, \vec{\mathbf{x}}(t) &= 2 \, e^{3t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + e^{-t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \, \Phi(t) = \begin{pmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{pmatrix} \\ \mathbf{9.} \, \vec{\mathbf{x}}(t) &= 2 \, e^{t} \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} - e^{t} \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} \quad \mathbf{10.} \quad \vec{\mathbf{x}}(t) = C_{1}e^{t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_{2} \left\{ e^{t} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + te^{t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \\ \mathbf{11.} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}' &= \begin{pmatrix} -\frac{1}{10} & 0 \\ \frac{1}{10} & -\frac{1}{5} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}, \, \begin{pmatrix} x_{1}(0) \\ x_{2}(0) \end{pmatrix} = \begin{pmatrix} 50 \\ 75 \end{pmatrix} \\ \text{Solution : } \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} &= 50e^{-\frac{t}{10}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 25e^{-\frac{t}{5}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ \mathbf{12.} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}' &= \begin{pmatrix} -\frac{1}{10} & \frac{1}{5} \\ \frac{1}{10} & -\frac{1}{5} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}, \, \begin{pmatrix} x_{1}(0) \\ x_{2}(0) \end{pmatrix} &= \begin{pmatrix} 50 \\ 75 \end{pmatrix} \\ \text{Solution : } \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} &= \frac{125}{3} \begin{pmatrix} 2 \\ 1 \end{pmatrix} - \frac{100}{3} e^{-\frac{3t}{10}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\ \mathbf{13.} \, \vec{\mathbf{x}}(t) &= C_{1}e^{-t} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + C_{2}e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + e^{t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \mathbf{14.} \, \vec{\mathbf{x}}_{p}(t) &= \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ \mathbf{15.} \, \vec{\mathbf{x}}(t) &= C_{1}e^{t} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + C_{2}e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{-t} \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \mathbf{16.} \quad (i) \ \mathbf{C} \quad (ii) \ \mathbf{A} \quad (iii) \ \mathbf{B} \quad (iv) \ \mathbf{D} \end{aligned}$$

<u>Remark:</u> There is an analogy between spring-mass systems and RLC circuits given by :

Spring-Mass System	RLC CIRCUIT
$mx^{\prime\prime}+cx^{\prime}+kx=F(t)$	$LQ^{\prime\prime}+RQ^{\prime}+rac{1}{C}Q=E(t)$
x = Displacement	Q = Charge
x' = Velocity	Q' = I = Current
m = Mass	L = Inductance
c = Damping constant	R = Resistance
k = Spring constant	$\frac{1}{C} = (\text{Capacitance})^{-1}$
F(t) = External force	E(t) = Voltage