$$ay'' + by' + cy = g(t)$$
 AND $g(t)$ is:

g(t)	Form of $y_p(t)$
$P_m(t) = a_0 t^m + a_1 t^{m-1} + \dots + a_m$	$t^{s} \left[A_{0}t^{m} + A_{1}t^{m-1} + \dots + A_{m} \right]$ $s = \# \text{ times } \boxed{r = 0} \text{ is a char. root}$
$e^{\alpha t} P_m(t)$	$t^{s} \left[e^{\alpha t} \left(A_{0} t^{m} + A_{1} t^{m-1} + \dots + A_{m} \right) \right]$ $s = \# \text{ times } \mathbf{r} = \boldsymbol{\alpha} \text{ is a char. root}$
$e^{\alpha t} P_m(t) \cos \beta t$ or $e^{\alpha t} P_m(t) \sin \beta t$	$t^{s} \left[e^{\alpha t} \left\{ F_{m}(t) \cos \beta t + G_{m}(t) \sin \beta t \right\} \right]$ $(F_{m}(t), G_{m}(t) \text{ are polynomials of degree } m)$ $s = \# \text{ times } \boxed{r = \alpha + i\beta} \text{ is a char. root}$

Characteristic Equation: $ar^2 + br + c = 0$

Alternatively, $s = \text{the } \underline{\text{smallest}}$ integer (s = 0, 1 or 2) such that no term of $y_p(t)$ is a solution of the homogeneous equation. In other words, no term of $y_p(t)$ is a term of $y_c(t)$.