$g(t)$	Form of $\boldsymbol{y}_{\boldsymbol{p}}(\boldsymbol{t})$
$P_{m}(t)=a_{0} t^{m}+a_{1} t^{m-1}+\cdots+a_{m}$	$\begin{aligned} & t^{s}\left[A_{0} t^{m}+A_{1} t^{m-1}+\cdots+A_{m}\right] \\ & s=\# \text { times } \boldsymbol{r}=\mathbf{0} \text { is a char. root } \end{aligned}$
$e^{\alpha t} P_{m}(t)$	$\begin{aligned} & t^{s}\left[e^{\alpha t}\left(A_{0} t^{m}+A_{1} t^{m-1}+\cdots+A_{m}\right)\right] \\ & s=\# \text { times } \boldsymbol{r}=\boldsymbol{\alpha} \text { is a char. root } \end{aligned}$
$e^{\alpha t} P_{m}(t) \cos \beta t \quad \underline{\text { or }} e^{\alpha t} P_{m}(t) \sin \beta t$	$t^{s}\left[e^{\alpha t}\left\{F_{m}(t) \cos \beta t+G_{m}(t) \sin \beta t\right\}\right]$ $\left(F_{m}(t), G_{m}(t)\right.$ are polynomials of degree $\left.m\right)$ $s=\#$ times $\boldsymbol{r}=\boldsymbol{\alpha}+\boldsymbol{i} \boldsymbol{\beta}$ is a char. root

$$
\text { Characteristic Equation: } a r^{2}+b r+c=0
$$

Alternatively, $s=$ the smallest integer ($s=0,1$ or 2) such that no term of $y_{p}(t)$ is a solution of the homogeneous equation. In other words, no term of $y_{p}(t)$ is a term of $y_{c}(t)$.

