Exam \# 3 Topics (Lessons 25-38)

1. Limits of functions of several variables: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$, etc.
2. Partial derivatives, mixed partials: $f_{x x y}, \frac{\partial^{2} f}{\partial y \partial x}, f_{y x y}$, etc.
3. The Chain Rule; Tree diagrams; Implicit Differentiation for functions defined implicitly by $f(x, y)=0$ or $f(x, y, z)=0$, etc .
4. Gradients ∇f, properties of gradients ($\nabla f \perp$ level curves/surfaces, etc); Rate of change of f along a curve $C: \mathbf{r}(t)$; directional derivative $D_{\mathbf{u}} f$.
5. Equation of tangent plane to surfaces defined as level surfaces $f(x, y, z)=C$ or surfaces which are graphs of $z=f(x, y)$; equation of normal line to surfaces; linearization $L(x, y)$ of f at a point say $\left(x_{0}, y_{0}\right)$; estimating changes in f using total differential of f.
6. Local/Relative max and min and saddle points of $f(x, y)$; Hessian; $2^{n d}$ Derivative Test.
7. Absolute max and min over closed and bounded (compact) regions.
8. Max and min of functions with a constraint; Method of Lagrange Multipliers.
9. Taylor's Formula for functions of several variables (recall Basic Five Maclaurin Series); Quadratic and Cubic Approximations.
10. Partial derivatives with a constraint: $\left(\frac{\partial x}{\partial z}\right)_{t, y},\left(\frac{\partial w}{\partial t}\right)_{x}$, etc.
11. Double integrals over regions $D \subset \mathbb{R}^{2}$; Iterated integrals; Fubini's Thm; V-type and H-type regions; Change Order of Integration; areas and volumes using double integrals; the average of $f(x, y)$ over a region D (i.e., $f_{a v}$); Change of Variables Formula in Polar Coordinates.
12. Triple integrals over solid regions $D \subset \mathbb{R}^{3}$; Iterated integrals; Projections of solid region D onto $x y, y z, x z-$ planes; change order of integration; volumes using triple integrals; the average of $f(x, y, z)$ over a solid D (i.e., $\left.f_{a v}\right)$.
13.
14.
15.
