(1) Approximate the actual solution of \(\begin{cases} y' = x + 2y \\ y(0) = 1 \end{cases} \) at \(x = 0.6 \) using the Euler Method with \(h = 0.2 \). Do this by hand and show all computations.

(2) Find the actual solution \(\phi(x) \) of the initial value problem above and use the Euler Method (eul) with \(h = 0.2 \) to complete this table:

<table>
<thead>
<tr>
<th>(x_n)</th>
<th>Euler Approximation</th>
<th>Actual Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(3) Consider the initial value problem \(y' = -2y + e^{-x}, \quad y(0) = 1. \)

(a) Solve this initial value problem and find \(y(1). \)

\[
y = \quad [\text{box for answer}]
\]

\[
y(1) = \quad [\text{box for answer}]
\]

(b) What is the smallest value of \(n \) for which the Euler Method (eul) with \(n \) steps \((h = \frac{1}{n}) \) will give a value \(y_n \) that approximates the actual solution at \(x = 1 \) within 0.05?

\[
n = \quad [\text{box for answer}]
\]

(c) Use dfield5 to plot (on the same graph) the solutions of \(y' = -2y + e^{-x} \) satisfying \(y(0) = 0.95, y(0) = 1 \) and \(y(0) = 1.05. \)

(Attach the graph at the end of this worksheet)
Consider the initial value problem \(y' = 2y - 3e^{-x}, \quad y(0) = 1 \).

(a) Solve this initial value problem and find \(y(1) \).

(b) What is the smallest value of \(n \) for which the Euler Method (\texttt{eul}) with \(n \) steps (\(h = \frac{1}{n} \)) will give a value \(y_n \) that approximates the actual solution at \(x = 1 \) within 0.05?

(c) Use \texttt{dfield5} to plot (on the same graph) the solutions of \(y' = 2y - 3e^{-x} \) satisfying \(y(0) = 0.95, \ y(0) = 1 \) and \(y(0) = 1.05 \).

(Attach the graph at the end of this worksheet)

(5) Using the plots in (3)(c) and (4)(c) above, briefly explain why \(n \) is larger in one case rather than the other to obtain the same degree of accuracy.
(6) Give reasons why the Euler Method with $h = 0.1$ does not give a good approximation of the actual solution at $x = 1$ of these initial value problems:

(a) $y' = (y + \frac{5}{4})^2, \quad y(0) = 0 \quad \text{Actual solution: } y = \frac{25x}{4(4 - 5x)}$

(b) $y' = \frac{25x}{32(1 - 2y)}, \quad y(0) = 0 \quad \text{Actual solution: } y = \frac{1}{8}(4 - \sqrt{16 - 25x^2})$