Chapter 1 - Complex Numbers

1. Complex arithmetic; complex conjugates, modulus, argument.
2. Triangle Inequality and Reverse Triangle Inequality.
3. Euler’s Formula; forms of complex numbers: rectangular, polar, exponential.
5. Sketching regions in the complex plane.

Chapter 2 - Analytic Functions

1. Definition of \(f \) differentiable at \(z_0 \); definition of \(f \) analytic at \(z_0 \).
2. Cauchy-Riemann equations.
3. Necessary Condition for \(f \) differentiable at \(z_0 \).
4. Sufficient Condition for \(f \) differentiable at \(z_0 \).
5. Harmonic functions; harmonic conjugates.

Chapter 3 - Elementary Functions

1. Definitions of \(e^z \), \(\cos z \), \(\sin z \), \(\cosh z \), \(\sinh z \), \(\log z \) and their basic properties.
2. Branches of \(\log z \): \(\mathcal{L}_r(z) \); principal branch of logarithm \(\text{Log} z \).
3. Determining where \(\mathcal{L}_r(g(z)) \) is analytic.
4. Definitions of \(z^\alpha \) and \(c^z \).
5. Solving equations.