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This paper is dedicated to Peter L. Duren on the occasion of his 70th birthday.

Abstract. In this paper we determine the extreme points for the families of pos-
itive and positive real functions. We prove a number of new sharp inequalities in
addition to quantifying and generalizing some well-known results. We also investi-
gate sharp bounds on |p′(z)| and |p′′(z)| for positive real functions, unknown since
1932.

1. Introduction

Let H+ denote the open right half-plane. The collection of all functions p(z)
analytic in H+ and satisfying <e p(z) > 0 for z ∈ H+ is called the class of pos-
itive functions and is denoted by P . The class of positive functions which satisfy
p(z) = p(z) is called the class of positive real functions, denoted by PR. Apart from
their mathematical interest, positive real functions arise as the complex impedance
of passive two-terminal networks where z is the complex frequency (see [4] or [1]). In
particular, it was shown by O. Brune [4] in 1931 that each such system gives rise to
a positive real function and conversely.

The complex impedance in an alternating current may be written in the form
R + iX, where R ≥ 0 is the resistance and X is the reactance. Materials with
low, medium and high resistances are conductors, semiconductors and dielectrics,
respectively. Reactance appears when there is opposition to the flow of current. When
an alternating current passes through a circuit containing reactance, two possibilities
may occur: energy may be stored and released as a magnetic field and hence X > 0
(inductive), or energy may be stored and released in the form of an electric field and
hence X < 0 (capacitive).

The purpose of the present paper is to give a new and unified approach to estimates
and properties of positive and positive real functions. We present alternate proofs of
some known results and also give some new quantitative estimates for these results.
All the estimates obtained are sharp. The problem of determining the sharp upper
bounds for |p(n)(z)| for positive real functions has been open since 1932 (see [16] and
[7]). We show how to determine this for all n ≥ 1. The particular cases n = 1 and
n = 2 are considered. Sharp growth estimates on the absolute value of the reactance
term, =mp(z), for positive real functions are also given for the first time.
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For comparison purposes we summarize some of the principal known results for P
and PR, all proved by a variety of methods:

(A) If p ∈ P , then lim
|z|→∞

p′(z) = lim
|z|→∞

p(z)

z
= lim
|z|→∞

<e p(z)
<e z = A ≥ 0, uniformly in

the wedge | arg z| ≤ µ < π
2
. ([6], [9], [15], [16])

(B) If p ∈ P is analytic at z = iβ (β ∈ R) and it is a zero of p, then it must be a
simple zero and p′(iβ) > 0. (Brune [4])

(C) If p ∈ P has a pole at z = iβ (β ∈ R), then it must be a simple pole with
positive residue. (Brune [4])

(D) If p ∈ P , then
∣∣∣p(n)(z)

∣∣∣ ≤ n! <e p(z)
(<e z)n , n = 1, 2, 3, . . . . This is sharp for

z = x0 + iy0 for the function p(z) = x0/(z − iy0)
−1. (Wolff and DeKoK [16],

Goldberg [7]; and for n = 1, Reza[11])

(E) If p ∈ P and C is a Jordan arc in | arg z| ≤ µ < π
2
, which ends at z = 0,

and <e p(z) is bounded on C, then <e p(z) is uniformly bounded in the sector
| arg z| ≤ φ, |z| ≤ 1 for any 0 ≤ φ < π

2
. (Tsuji [14])

(F) If p ∈ PR, then

(a)
<e z
|z|2 + 1

<
<e p(z)
p(1)

≤ |p(z)|
p(1)

<
|z|2 + 1

<e z . (Richards [12])

(b)
1

|z|(1 +B(z))
≤ |p(z)|

p(1)
≤ |z|(1 +B(z)), where

B(z) =


(1 + (<e z)2)/(<e z)2 , =m {z} = 0

(1 + |z|2)| arg(z2)|/|=m {z2}| , =m {z} 6= 0
. (Seshu and Seshu [13])

(G) If p ∈ PR, then |Arg p(z)| ≤ |Arg z|, where Arg denotes the principal value
of the argument. (Brune [4])

2. Positive Functions

For each fixed ω0 = u0 + iv0, u0 > 0, we define P (ω0) as the subclass of functions
p ∈ P for which p(1) = ω0. Thus each p ∈ P belongs to precisely one class P (ω0).
We can now state our main results on positive functions.

Theorem 2.1. Let ω0 = u0 + iv0 ∈ H+.

(a) Each p ∈ P (ω0) has a representation

p(z) = u0

∫
T

(z + 1) + x(z − 1)

(z + 1)− x(z − 1)
dµ(x) + i v0,

where µ(x) is a probability measure on the unit circle T .

(b) P (ω0) is a compact convex family of functions.
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(c) The set of extreme points of P (ω0) is given by

E(P (ω0)) =

{
u0

[
(z + 1) + x(z − 1)

(z + 1)− x(z − 1)

]
+ iv0 : |x| = 1

}
.

Proof: Define the linear fractional transformations ψ and φ as follows

z = ψ(ζ) =
1 + ζ

1− ζ (2.1)

ζ = φ(z) =
z − 1

z + 1
. (2.2)

If p ∈ P (ω0), then the function

q(ζ) =
p(ψ(ζ))− iv0

u0
(2.3)

is analytic in |ζ | < 1, <e q(ζ) > 0 and q(0) = 1. Hence q ∈ P, the well-known
Carathéodory class, and so we obtain

p(ψ(ζ))− iv0

u0
=
∫
T

1 + xζ

1− xζ dµ(x)

where µ(x) is a probability measure on the unit circle T (see [8], page 30). If we now
let ζ = φ(z) as in (2), then we obtain the representation (a).

From (a) we see that each p ∈ P (ω0) is uniformly bounded on compact subsets of
H+ and hence P (ω0) forms a normal family. Compactness follows from the normal-
ization p(1) = ω0. Additionally the class is convex since for any pair p, q ∈ P (ω0),
then tp(z) + (1− t)q(z) clearly belongs to P (ω0) for all 0 ≤ t ≤ 1.

Finally, to prove (c), it suffices to show that the mapping µ → p given in (a) is
one-to-one (see [2], Theorem 1). For the Carathéodory class P it is known that the
mapping µ→ q is one-to-one where

q(ζ) =
∫
T

1 + xζ

1− xζ dµ(x) .

Because the function ζ = φ(z) given in (2.2) is univalent, the mapping µ → p given
in (a) is one-to-one.

The importance of identifying the extreme points is the key to our method because
of the following results.

Lemma 2.2. [8] Let F be a compact, convex family of analytic functions and E(F)
its set of extreme points. If Φ and L are continuous real-valued convex and linear
functionals, respectively, on F , then

(a) max
f∈F

Φ(f) = max
f∈E(F)

Φ(f)

(b) max
f∈F

L(f) = max
f∈E(F)

L(f) and min
f∈F

L(f) = min
f∈E(F)

L(f)
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Another useful result for quotients of functionals is given by the following.

Lemma 2.3. [3] Let F be a compact, convex family of analytic functions. If Φ and
L are continuous real-valued convex and linear functionals, respectively, on F with

L(f) > 0 on F , then max
f∈F

Φ(f)

L(f)
= max

f∈E(F)

Φ(f)

L(f)
.

We first prove a useful growth result for positive functions.

Theorem 2.4. If p ∈ P (ω0), then

u0

(
|z + 1| − |z − 1|
|z + 1|+ |z − 1|

)
≤ <e p(z) ≤ |p(z)− iv0| ≤ u0

(
|z + 1|+ |z − 1|
|z + 1| − |z − 1|

)
,

for <e z > 0. This result is sharp.

Proof: It is well known that if q ∈ P then

1− |ζ |
1 + |ζ | ≤ <e q(ζ) ≤ |q(ζ)| ≤

1 + |ζ |
1− |ζ | , |ζ | < 1 .

If p ∈ P (ω0), then this inequality applied to (2.3) gives

1− |ζ |
1 + |ζ | ≤ <e

{
p(ψ(ζ))

u0

}
≤
∣∣∣∣∣p(ψ(ζ))− iv0

u0

∣∣∣∣∣ ≤ 1 + |ζ |
1− |ζ | .

Now let ζ = φ(z) =
z − 1

z + 1
and the result follows.

To prove sharpness, fix z0 ∈ H+ and let
z0 − 1

z0 + 1
= ρ0e

iθ0 . The functions

p1(z) = u0

(
(z + 1) + e−iθ0(z − 1)

(z + 1)− e−iθ0(z − 1)

)
+ iv0

and

p2(z) = u0

(
(z + 1)− e−iθ0(z − 1)

(z + 1) + e−iθ0(z − 1)

)
+ iv0

give equality for the right and left-hand inequalities, respectively, at z0.

We can now give an upper estimate for the constant A in the limits given in (A).
If we let z = s > 1, then from Theorem 2.4 we obtain

Corollary 2.5. If p ∈ P (ω0), then

0 <
<e p(s)

s
≤ u0 = <e ω0

for all 0 < s <∞. Equality holds for p(z) = u0z + iv0.



SHARP INEQUALITIES FOR POSITIVE FUNCTIONS 5

From (A) we thus have the sharp estimate that

A ≤ u0 = <e p(1) .

We should also point out that the constant A can assume all values in [0, u0]. Indeed,
for any fixed 0 ≤ ε ≤ 1, the function p(z) = (εz + 1 − ε)u0 + iv0 ∈ P (ω0) and
lim
|z|→∞

p′(z) = εu0.

The above estimate on A appears to be new. There are many proofs of the limits
in (A), but no estimates of the constant A. It is defined for example by Tsuji ([15],
page 150) as

A =
1

π
lim
m→∞

lim
n→∞

∫ π
2
− Lk

2Rn

−π
2

+
Lk

2Rn

<e p(Rn +Rne
iφ)

2Rn cos2 φ
dφ

where 0 < R1 < R2 < · · · → ∞ and 0 < L1 < L2 < · · · → ∞. He also proved that

lim
r→∞

1

r

∫ π
2

−π
2

<e {p(reiθ)} cos θ dθ =
π

2
A . (2.4)

However, it is difficult from these representations to see that A ≤ <e p(1).

The next result gives quantitative sharp estimates for the results (B) and (C).

Theorem 2.6. Let p ∈ P (ω0) with ω0 = u0 + iv0 ∈ H+ and β ∈ R.

(a) If z = iβ is a zero of p, then it is simple and satisfies <e p′(iβ) ≥ u0

β2 + 1
.

This is sharp for all real ω0.

(b) If z = iβ is a pole of p, then it is simple with residue |Res {p, iβ}| ≤ u0(β
2+1).

This is sharp for all ω0 ∈ H+.

Proof: If z = iβ is a zero of p ∈ P (ω0), then for some ε0 > 0, we have

p(z) =
∞∑
k=1

ck(z − iβ)k ,

valid for |z − iβ| < ε0. Letting z = ε+ iβ, 0 < ε < ε0 and using Theorem 2.4 we get

<e {c1}+ <e
∞∑
k=2

ckε
(k−1) =

<e p(z)
ε

≥ u0

ε

(
|z + 1| − |z − 1|
|z + 1|+ |z − 1|

)

=
u0

ε

(
|z + 1|2 − |z − 1|2
(|z + 1|+ |z − 1|)2

)

=
4u0

(
√
β2 + (1 + ε)2 +

√
β2 + (1− ε)2)2
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Now let ε→ 0+ to conclude that <e {c1} ≥
u0

β2 + 1
. (Note that by (B) we know p′(iβ)

is real so in fact we have c1 = p′(iβ) ≥ u0(β
2 + 1)−1.) For ω0 = u0 > 0, sharpness is

achieved for p(z) = u0

(
z − iβ
1− iβz

)
. This proves (a).

Now let us suppose z = iβ is a pole of p ∈ P (ω0). Hence we have

p(z) =
N∑
k=1

bk
(z − iβ)k

+ g(z) ,

where g(z) is analytic in |z − iβ| < ε0 for some ε0 > 0. Proceeding as above we let
z = ε+ iβ, 0 < ε < ε0, and use Theorem 2.4 to obtain

∣∣∣∣∣b1 +
N∑
k=2

bk

εk−1
+ εg(z)

∣∣∣∣∣ = |εp(z)| ≤ εu0
(|z + 1|+ |z − 1|)2

|z + 1|2 − |z − 1|2 +ε|v0| ≤ u0[β
2+(1+ε)2]+ε|v0| .

If we let ε→ 0+, then we must have bk = 0 for k = 2, 3, · · · , N and |b1| ≤ u0(β
2+1).

Sharpness occurs for all ω0 ∈ H+ for p(z) = u0

(
1− iβz
z − iβ

)
+ iv0. (Since Brune [4]

proved that Res {p, iβ} > 0, we have 0 < Res {p, iβ} ≤ u0(β
2 + 1).)

It is interesting to note that the same conclusion (a) holds in the more general
setting where <e p(iβ) = 0. In this case we have

p(z) = iγ +
∞∑
k=1

ck(z − iβ)k

where γ ∈ R and the proof proceeds exactly as above.

The next result shows that <e p(z) and <e p(|z|) are comparable in sectors.

Theorem 2.7. If p ∈ P (ω0), then(
1− | tan θ

2
|

1 + | tan θ
2
|

)
≤ <e p(re

iθ)

<e p(r) ≤
(

1 + | tan θ
2
|

1− | tan θ
2
|

)
(2.5)

for |θ| < π
2

and r > 0. This result is sharp.

Proof: Observe first that if q ∈ P (1) and z = eiθ, then Theorem 2.4 gives(
1− | tan θ

2
|

1 + | tan θ
2
|

)
≤ <e q(eiθ) ≤

(
1 + | tan θ

2
|

1− | tan θ
2
|

)
. (2.6)

Now fix r > 0, let p ∈ P (ω0) be arbitrary and then apply (2.6) to

q(z) =
p(rz)− i=mp(r)

<e p(r)
to obtain the result.
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To demonstrate sharpness, assume without loss of generality 0 ≤ θ < π/2 and let

q1(z) =

(
(z + 1)− i(z − 1)

(z + 1) + i(z − 1)

)
and q2(z) =

(
(z + 1) + i(z − 1)

(z + 1)− i(z − 1)

)
.

For fixed r > 0, the functions p1 and p2 give sharp upper and lower bounds for
z = reiθ, respectively, where

pk(z) = u0

qk
(
z
r

)
<e qk

(
1
r

) + iv0 .

The above theorem allows us to quantify and generalize Tsuji’s theorem (E) as well
as give a different and more direct proof.

Corollary 2.8. Let p ∈ P (ω0). If m ≤ <e p(z) ≤ M on a Jordan arc C lying in
the sector | arg z| ≤ µ < π

2
, |z| ≤ 1, ending at z = 0 and intersecting |z| = 1, then

<e p(z) is uniformly bounded above and below in the sector | arg z| ≤ φ, |z| ≤ 1, for
any 0 ≤ φ < π

2
. Moreover, for z in that sector we have

m

(
1− tan µ

2

1 + tan µ
2

)(
1− tan φ

2

1 + tan φ
2

)
≤ <e p(z) ≤M

(
1 + tan µ

2

1− tan µ
2

)(
1 + tan φ

2

1− tan φ
2

)
.

Proof: For any fixed z0 = r0e
iθ0 on C, |θ0| ≤ µ < π

2
and r0 ≤ 1, from the inequality

(2.5) we may deduce that

<e p(r0)

(
1− tan µ

2

1 + tan µ
2

)
≤ <e p(r0e

iθ0) ≤M .

Thus we see that <e p(r) ≤ M

(
1 + tan µ

2

1− tan µ
2

)
, for all r ≤ 1. If |θ| ≤ φ and r ≤ 1, we

apply inequality (2.5) again to obtain

<e p(reiθ) ≤
(

1 + tan φ
2

1− tan φ
2

)
<e p(r) ≤M

(
1 + tan φ

2

1− tan φ
2

)(
1 + tan µ

2

1− tan µ
2

)
.

A similar argument gives the lower bound.

It is of interest to note that Tsuji’s Theorem [14] also contains the statement that
if <e p(z)→ 0 (or +∞) as z → 0 along C, then <e p(z)→ 0 (or +∞) uniformly when
z → 0 inside the sector | arg z| ≤ φ < π

2
, |z| ≤ 1. This follows immediately from our

corollary.
Theorem 2.7 also gives a rather curious inequality related to Tsuji’s result (2.4).

For example it follows that if p ∈ P (ω0), then

<e p(r)
r

(π − 2) ≤ 1

r

∫ π
2

−π
2

<e {p(reiθ)} cos θ dθ ≤ <e p(r)
r

(π + 2)
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for all 0 < r <∞. While this does not prove (2.4), it gives bounds on these integrals
which appear to be new. Note that if p ∈ P (ω0), then f(θ) = <e p(reiθ) cos θ ∈
L1[−π

2
, π

2
] for each fixed r > 0. It is not true that <e p(reiθ) belongs to L1[−π

2
, π

2
],

as can be seen by considering the functions pr(z) = (z− ir)−1. These functions show
that the term cos θ is necessary to cancel any possible (simple) poles on the imaginary
axis.

The next result gives an interesting mapping property for positive functions P
which generalizes the result (G) first proved by Brune [4] for positive real functions
PR:

Theorem 2.9. If p ∈ P and p(z0) > 0, where z0 = x0 + iy0 ∈ H+, then

|Arg {p(x0e
iθ + iy0)}| ≤ |θ|

for |θ| < π
2
. This result is sharp.

Note that (G) follows immediately from this theorem. Let p ∈ PR, fix z = reiθ ∈
H+ and choose z0 = r. Hence we have p(z0) > 0 and so

|Arg p(z)| = |Arg p(reiθ)| ≤ |θ| = |Arg z| .
Proof: Suppose |θ| < π

2
is fixed. Consider the following extremal problem over

P (1):

max
q∈P (1)

|q(eiθ)|
<e q(eiθ) .

Using Lemma 2.3 and Theorem 2.1(c) we may conclude that

1

cos{Arg q(eiθ)} =
|q(eiθ)|
<e q(eiθ) ≤ max

q∈P (1)

|q(eiθ)|
<e q(eiθ) = max

q∈E(P (1))

|q(eiθ)|
<e q(eiθ) =

1

cos θ

and hence
cos{Arg q(eiθ)} ≥ cos θ

for all q ∈ P (1). If 0 ≤ θ < π
2
, then the above inequality implies that |Arg q(eiθ)| ≤ θ

(since |Arg q(eiθ)| < π
2
). If on the other hand −π

2
< θ ≤ 0, then for any q ∈ P (1) the

function f(z) = q(1
z
) ∈ P (1) and hence

|Arg q(eiθ)| = |Arg f(e−iθ)| ≤ −θ .
In other words, for any q ∈ P (1), we must have

|Arg q(eiθ)| ≤ |θ| . (2.7)

Finally, apply (2.7) to the function q(z) = p(x0z + iy0)/p(z0) to obtain the result.
Equality occurs for p(z) = z − iy0.

Observe that Brune’s result [4] implies that if C is the circular arc z = reiθ, |θ| ≤
µ < π/2, then the curve p(C) lies in the sector |θ| ≤ µ for all positive real functions.



SHARP INEQUALITIES FOR POSITIVE FUNCTIONS 9

The above theorem gives a similar result for the larger class of positive functions as
follows. Let z0 = x0 + iy0 ∈ H+ and let C0 be the circular arc (centered at iy0) given
by z = iy0 + x0e

iθ, |θ| ≤ µ < π/2. If p is any positive function satisfying p(z0) > 0,
then p(C0) lies in the sector |θ| ≤ µ.

3. Positive Real Functions

In the special case of positive real functions PR we can improve the results of the
previous section. For fixed 0 < α <∞, define PR(α) as the class of functions p ∈ PR
such that p(1) = α. We first identify the extreme points for these classes.

Theorem 3.1. Let 0 < α <∞ be fixed.

(a) Each p ∈ PR(α) has a representation given by

p(z) =
∫ 1

−1

2αz

(1 + z2) + t(1− z2)
dµ(t) ,

where µ(t) is a probability measure on [−1, 1].

(b) PR(α) is a compact convex family of functions.

(c) E(PR(α)) =

{
2αz

(1 + z2) + t(1− z2)
: −1 ≤ t ≤ 1

}
.

Proof: Let PR denote the subclass of functions q ∈ P which satisfies q(z) = q(z)
for |z| < 1. Then it is known (see [5] or [8] for example) that each q ∈ PR has a
representation

q(z) =
∫ 1

−1

1− z2

1− 2tz + z2
dµ(t) , (3.1)

where µ(t) is a probability measure on [−1, 1]. Moreover, the map µ → q given by
(3.1) is one-to-one and hence by [2, Theorem 1] the extreme points of the compact,
convex family PR are given by

E(PR) =

{
1− z2

1− 2tz + z2
: −1 ≤ t ≤ 1

}
.

Now let p ∈ PR(α) and observe that

q(ζ) =
p
(

1+ζ
1−ζ

)
α

=
∫ 1

−1

1− ζ2

1− 2tζ + ζ2
dµ(t) .

If we let ζ = (z − 1)/(z + 1), we obtain (a).
The statement (b) is now evident. The extreme points of PR(α) follow from (a)

because the map µ→ q given in (3.1) is one-to-one and the mapping ζ = (z−1)/(z+1)
is univalent.
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Clearly the bounds (F) on |p(z)| given by Richards [12] and Seshu and Seshu [13]
are not sharp. We are able to determine the precise sharp bounds.

Theorem 3.2. Let p ∈ PR(α) with |θ| < π
2

and r > 0.

(a) If cos 2θ ≥ min
{
r2,

1

r2

}
, then

αmin
{
r,

1

r

}
≤ |p(reiθ)| ≤ αmax

{
r,

1

r

}
.

(b) If cos 2θ ≤ min
{
r2,

1

r2

}
, then

αr

∣∣∣∣∣ sin 2θ

1− r2e2iθ

∣∣∣∣∣ ≤ |p(reiθ)| ≤ α

r

∣∣∣∣∣1− r2e2iθ

sin 2θ

∣∣∣∣∣ .
These results are all sharp.

Proof: For fixed z = reiθ ∈ H+, the functional |p(z)(1 + z2)/(2αz)| is convex and
hence by Lemma 2.2 and Theorem 3.1(c), we may conclude that for all p ∈ PR(α):∣∣∣∣∣p(z)(1 + z2)

2αz

∣∣∣∣∣
2

≤ max
p∈E(PR(α))

∣∣∣∣∣p(z)(1 + z2)

2αz

∣∣∣∣∣
2

= max
−1≤t≤1

1

h(t)
(3.2)

where h(t) = |1 + tw|2 = t2|w|2 + 2t(<ew) + 1 and w = (1− r2e2iθ)/(1 + r2e2iθ).
Clearly the minimum of h(t) occurs at t0 = −<ew/|w|2, if |t0| ≤ 1. A check shows

that |t0| ≤ 1 if and only if cos 2θ ≤ r2(for 0 < r ≤ 1) or cos 2θ ≤ r−2 (for 1 ≤ r <∞).
In other words, |t0| ≤ 1 if and only if cos 2θ ≤ min{r2, r−2}.
(a): Assume that cos 2θ ≥ min{r2, r−2}. It is evident that for all −1 ≤ t ≤ 1, if
0 < r ≤ 1 then h(t) ≥ h(−1); while if r ≥ 1, then h(t) ≥ h(1). Using this and (3.2)
we conclude that if cos 2θ ≥ r2 (i.e., r ≤ 1), then |p(reiθ)| ≤ α/r and if cos 2θ ≥ r−2

(i.e., r ≥ 1), then |p(reiθ)| ≤ αr. These results then give

|p(reiθ)| ≤ αmax
{
r,

1

r

}
.

To obtain the lower bound, apply this inequality to q(z) = α2/p(z). Equality is
obtained only for the functions p(z) = αz and p(z) = α/z.

(b): Assume that cos 2θ ≤ min{r2, r−2}. By the observation made above, we see that
the minimum of h(t) occurs at t0 and so

h(t) ≥ h(t0) =
|w|2 − (<ew)2

|w|2 =
2r4(1− cos 4θ)

|1− r4e4iθ|2 .

Using this and (3.2) we now deduce that

|p(reiθ)| ≤ 2α

r

|1− r2e2iθ|√
2− 2 cos 4θ

=
α

r

∣∣∣∣∣1− r2e2iθ

sin 2θ

∣∣∣∣∣ .
The lower bound obtains from applying this inequality to q(z) = α2/p(z).
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To see that these bounds are sharp, let z0 = reiθ be an arbitrary but fixed point in
H+ and set t = t0 in p0(z) = 2αz/{1 + z2 + t(1 − z2)}, where t0 = −<ew/|w|2 and
w = (1− r2e2iθ)/(1 + r2e2iθ). Thus the functions p0(z) and α2/p0(z) give equality in
(b). This completes the proof of the theorem.

Our theorem improves the result (F) for all z ∈ H+. Note that when z = s > 0 is
real, the bounds on p(s) take a particularly simple form:

αmin
{

1

s
, s

}
≤ p(s) ≤ αmax

{
1

s
, s

}
.

We can use these results to improve Theorem 2.6 for the class PR(α) for β 6= 0.

Theorem 3.3. Let z = iβ, where β ∈ R\{0}, be an isolated singularity of p ∈ PR(α).

(a) If z = iβ is a zero of p, then |p′(iβ)| ≥ 2α

β2 + 1
. This is sharp.

(b) If z = iβ is a pole of p, then |Res {p, iβ}| ≤ α

2
(β2 + 1). This is sharp.

Proof: We may assume without loss of generality that β > 0.
Suppose first that z = iβ is a zero of p ∈ PR(α). Thus for some ε0 > 0 we have

p(z) =
∞∑
k=1

ck(z − iβ)k

valid for |z−iβ| < ε0. Choose a fixed θ0 satisfying 0 < θ0 <
π
2

such that |βeiθ0−iβ| < ε0
and cos 2θ0 ≤ min{β2, β−2}. Then for all z = βeiθ with θ0 < θ < π

2
, we may apply

Theorem 3.2 to conclude that∣∣∣∣∣c1 +
∞∑
k=2

ck(βe
iθ − iβ)k−1

∣∣∣∣∣
2

=

∣∣∣∣∣ p(βeiθ)βeiθ − iβ

∣∣∣∣∣
2

=
|p(βeiθ)|2

2β2(1− sin θ)

≥ α2

2|1− β2e2iθ|2

(
sin2 2θ

1− sin θ

)
.

This holds for all θ0 < θ < π
2
. The conclusion (a) follows by letting θ → π

2
−. Equality

holds for the function p(z) =
α

z

(
z2 + β2

β2 + 1

)
.

If z = iβ is a pole then we have

p(z) =
N∑
k=1

bk

(z − iβ)k
+ g(z) ,
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where g(z) is analytic in |z− iβ| < ε0 for some ε0 > 0. As above we choose θ0 so that
|βeiθ0 − iβ| < ε0 and cos 2θ0 ≤ min{β2, β−2}. For all z = βeiθ and θ0 < θ < π

2
, use

Theorem 3.2 to obtain

∣∣∣∣∣b1 +
N∑
k=2

bk

(βeiθ − iβ)k−1
+ (βeiθ − iβ)g(βeiθ)

∣∣∣∣∣ = β
√

2− 2 sin θ |p(βeiθ)|

≤ α|1− β2e2iθ|
√

2− 2 sin θ

sin 2θ
.

If we let θ→ π
2
−, then it follows that bk = 0 for k = 2, 3, · · · , N and |b1| ≤ α

2
(β2+1).

Equality occurs for p(z) =
αz(β2 + 1)

z2 + β2
. This completes the proof of the theorem.

If β = 0, then Theorem 2.6 already yields sharp estimates on <e p′(0) and |Res {p, 0}|
for p ∈ PR(α), with equality for p(z) = αz and p(z) = α/z, respectively.

The next two results essentially state that the resistance and reactance terms of
the complex impedance are comparable to p(r) in a sector:

Theorem 3.4. If p ∈ PR(α), then

p(r) cos θ ≤ <e p(reiθ) ≤ |p(reiθ)| ≤ p(r)

cos θ

for |θ| < π
2

and r > 0. This result is sharp.

Proof: Let us suppose first that z = eiθ is fixed. Then by Theorem 3.1(c) and Lemma
2.2 we can conclude that for each q ∈ PR(α)

min
−1≤t≤1

<eQ(eiθ) ≤ <e
{
q(eiθ)

2α

}
≤ max
−1≤t≤1

<eQ(eiθ) ,

where Q(z) =
z

(1 + z2) + t(1− z2)
. A calculation shows that

<eQ(eiθ) =
cos θ

2 cos2 θ + 2t2 sin2 θ

which gives
cos θ

2
≤ <eQ(eiθ) ≤ 1

2 cos θ
and so

α cos θ ≤ <e q(eiθ) ≤ α

cos θ
. (3.3)

Now for fixed r > 0, let q(z) = αp(rz)/p(r) and apply inequality (3.3) with z = eiθ

to obtain

p(r) cos θ ≤ <e p(reiθ) ≤ p(r)

cos θ
.
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This also gives p(r) cos θ ≤ |p(reiθ)|. Apply this inequality to q(z) = αp(r)/p(rz) to
obtain the upper bound for |p(reiθ)|.

For fixed r > 0, the lower bound is achieved for p(z) = αz or p(z) = α/z, while

the upper bound is achieved for p(z) = αz

(
1 + r2

z2 + r2

)
.

There seems to be no information in the literature concerning the reactance part
of positive real functions, i.e., =mp(z). The following result appears to be the first
of its kind.

Theorem 3.5. If p ∈ PR(α), then

|=mp(reiθ)| ≤


p(r) | sin θ| , 0 ≤ |θ| ≤ π

4

p(r)

2 cos θ
, π

4
≤ |θ| < π

2

.

This result is sharp.

Proof: Suppose first that z = eiθ is fixed. For q ∈ PR(1), the functional |=mq(eiθ)|
is convex and so by Lemma 2.2 and Theorem 3.1(c) we conclude that

|=mq(eiθ)| ≤ max
−1≤t≤1

Ψ(t) .

where Ψ(t) =
|t sin θ|

cos2 θ + t2 sin2 θ
. A brief calculation shows that if 0 ≤ |θ| ≤ π

4
, then

Ψ(t) ≤ Ψ(1); while if π
4
≤ |θ| < π

2
, then Ψ(t) ≤ Ψ(| cot θ|). To complete the proof, we

apply these inequalities to the function q(z) = p(rz)/p(r).
To demonstrate sharpness, without loss of generality, we may assume 0 ≤ θ < π

2

and is fixed. We define q1(z) = αz and q2(z) = 2αz/(1+ z2 +cot θ(1− z2)). For fixed

r > 0, we then see that the functions pk(z) = α
qk
(
z
r

)
qk
(

1
r

) for k = 1, 2 give equality for

0 ≤ θ ≤ π
4

and π
4
≤ θ < π

2
, respectively.

We point out that the result (G) of Brune [4] says for example, the image of the
sector | arg z| ≤ φ < π

2
under a positive real function w = p(z) lies in the sector

| argw| ≤ φ. If p(r) is bounded our result says that the image actually lies in a
horizontal strip which depends only on the bound for p(r) and φ.

Note also that we obtain a Tsuji-type result (E) for =mp(z) for p ∈ PR(α) whose
proof follows immediately from the above theorem:

Corollary 3.6. If p ∈ PR(α) and p(r) ≤ M , for 0 < r ≤ 1, then |=mp(z)| is
uniformly bounded in the sector | arg z| ≤ φ, |z| ≤ 1 for any 0 ≤ φ < π

2
.
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Since the extremal functions for the upper bounds on |p(n)(z)| given in (D) are not
real the question of determining these sharp upper bounds for functions in PR has
been open since 1932. Suppose we fix |θ| < π/2 and let α = 1. Then we may apply
Lemma 2.3 and Theorem 2.1(c) to the quotient |q′(eiθ)|/<e {q(eiθ)} over the class
PR(1) to obtain

|q′(eiθ)|
<e {q(eiθ)} ≤ max

q∈E(P (1))

|q′(eiθ)|
<e {q(eiθ)} = max

−1≤t≤1

| − i sin θ + t cos θ|
cos θ

≤ 1

cos θ
,

with equality only if t = ±1, i.e., only if q(z) = z and q(z) = 1/z. Now let r > 0
be fixed and let p be an arbitrary function in PR(α). Apply the above result to
q(z) = p(rz)/p(r) to obtain |p′(reiθ)| ≤ <e {p(reiθ)}/<e {reiθ}, with equality only for
p(rz)/p(r) = z or 1/z. These give p(z) = αz or p(z) = α/z. Hence we have proved:

Theorem 3.7. If p ∈ PR(α) and z ∈ H+, then

|p′(z)| ≤ <e {p(z)}<e {z} .

Equality is attained only for p(z) = αz and p(z) =
α

z
.

This gives an alternate proof of (D) for PR and n = 1 and, in addition, shows that
one can do no better than (D) for n = 1 when restricting to positive real functions.

Early attempts at estimating |p′(z)| in terms of p(1) had been made. Richards [12]
using his estimates in (F) showed that |p′(z)| < p(1)(|z|2 + 1)/<e {z}. Also it should
be pointed out that for the special case z = s > 0, Seshu and Seshu [13] proved that

|p′(s)| < p(1)(4s2 + 2)/s2 . (3.4)

By combining our above theorem with Theorem 3.2(a), we obtain the sharp estimate

|p′(s)| ≤ p(1) max
{
1,

1

s2

}
which vastly improves (3.4) for all s > 0.

The case of |p′′(z)| is quite different and much more involved. Here the estimate
for (D) when n = 2 can be improved for the class PR. For convenience, we define
the functions φ(t, x) and Φ(x) as follows:

φ(t, x) =
(1− x)(1− t)2 [(2t+ 1)2 + 3x(1− t2)]

1− x+ xt2
(3.5)

and

Φ(x) = max
−1≤t≤1

√
(1− x)

4
φ(t, x) . (3.6)

We can now state the result.
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Theorem 3.8. If p ∈ PR(α) and z = reiθ ∈ H+, then

|p′′(z)| ≤ 2 !<e {p(z)}
(<e {z})2 Φ(sin2 θ) .

This result is sharp for each fixed z = reiθ ∈ H+.

Remark: It is not difficult to show that (1 − x)φ(t, x) ≤ 4 with equality only for
t = −1 and x = 0. Hence Φ(x) ≤ 1 and p(z) = α/z is thus extremal only when z is
real. This also gives another proof of (D) for n = 2.

Proof: Fix |θ| < π/2 and let α = 1. As above, we consider this time the functional

|q′′(eiθ)|
<e {q(eiθ)} .

Apply Lemma 2.3 and Theorem 2.1(c) and let x = sin2 θ to conclude, after a long
but straightforward calculation, that if q ∈ PR(1) then

|q′′(eiθ)|
<e {q(eiθ)} ≤ max

q∈E(P (1))

|q′′(eiθ)|
<e {q(eiθ)} = max

−1≤t≤1

√
φ(t, x)

1− x =
2 Φ(x)

1− x .

The last equality follows from (3.6). Thus we conclude that if q ∈ PR(1), then

|q′′(eiθ)|
<e {q(eiθ)} ≤

2 Φ(sin2 θ)

cos2 θ
(3.7)

For fixed |θ|π
2
, equality occurs only for qk(z) =

2z

(1 + z2) + tk(1− z2)
, where tk ∈

[−1, 1] with φ(tk, sin2 θ) = max
−1≤t≤1

φ(t, sin2 θ). Fix r > 0 and apply inequality (3.7) to

q(z) = p(rz)/p(r) to obtain the desired inequality.
To demonstrate sharpness, fix r > 0 and |θ| < π/2. By the above, equality is

attained for
p(rz)

p(r)
= qk(z) =

2z

(1 + z2) + tk(1− z2)
. A calculation then gives

p(z) = αz

[
(r2 + 1) + tk(r

2 − 1)

(r2 + z2) + tk(r2 − z2)

]
.

Estimates on |p′′(z)| were given by Pearson [10]. In fact, he rediscovered the result
(D) of Wolff and DeKoK [16] in the special case n = 2. We remark that we can
also use the same techniques as above to determine sharp bounds on |p(n)(z)| for any
n > 1, but the calculations are tedious.
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4. Remarks

(1) Brune [4] proved that to every positive real function with a finite number
of zeros and poles in C\H+, there corresponds a finite physically realizable
electric network. It is important to note that all our extremal functions are
precisely of this form.

(2) Linear fractional transformations are an important tool in the study of positive
functions. For example, a simple observation gives this result of Brune [4]: if
p ∈ PR then the equation p(λ) = Lλ, where L > 0, cannot have more than
one solution in the right half-plane. This follows immediately by using suitable
linear fractional transformations. Indeed, if p ∈ PR (and p(z) 6= αz or αz−1),

then it follows that for any µ > 0 the function q(z) =
µp(z)− zp(µ)

µp(µ)− zp(z) , the

Richards’ transformation, is also in PR (see [12] or [6]). From this we can
conclude that

µp(z)− zp(µ) 6= 0 for <e z > 0 and z 6= µ . (4.1)

Assume say p(λ) = Lλ for some λ > 0, then for µ = λ, the expression (4.1)
implies that p(z) 6= Lz, for all z 6= λ. Another interesting fact to point out is

that since q(µ) = (p(µ)− µp′(µ))/(p(µ) + µp′(µ)), it follows that p′(s) 6= p(s)

s
(or −p(s)/s) for all s > 0 and all p ∈ PR unless p(z) = αz (or αz−1). This is
a rather curious fact in view of the result (A).

(3) Finally, there is a connection between P and the classical family S (those
functions f analytic and univalent in |z| < 1 and normalized so that f(z) =

z+a2z
2 + · · · ). For any p ∈ P (ω0), the function g(ζ) =

∫ ζ

1
p(ω) dω is analytic

in the convex region <e ζ > 0. By the Noshiro-Warshawski Theorem (see
Duren [5], page 47), the function g(ζ) is univalent. After a suitable linear
fractional transformation and a normalization we see that f(z) = g((1 +
z)/(1− z))/(2ω0) ∈ S. From this we obtain

p

(
1 + z

1− z

)
= ω0(1− z)2f ′(z), |z| < 1 , (4.2)

where f ∈ S. Using (4.2) and for example the well-known result that |a2| ≤ 2,
the inequality ∣∣∣∣∣p′(1)

ω0
+ 1

∣∣∣∣∣ ≤ 2

obtains. Other results follow from (4.2) and properties of functions in S.
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