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Abstract. The well-known Sendov Conjecture asserts that if all the zeros of a
polynomial p lie in the closed unit disk then there must be a critical point of p within
unit distance of each zero. A method is presented which proves this conjecture for
polynomials of degree n ≤ 8 or for arbitrary degree n if there are at most eight
distinct zeros.

1. Introduction

If p is a polynomial then the Gauss-Lucas Theorem states that all the critical
points of p lie in the closed convex hull of its zeros. The Sendov Conjecture involves
the location of critical points relative to each individual zero. More precisely:

Sendov Conjecture. If p(z) =
n∏
k=1

(z − zk) is a polynomial with all its zeros

inside the closed unit disk, then each of the disks |z− zk| ≤ 1, k = 1, 2, . . . , n, must
contain a zero of p′.

The constant “1” is best possible upon considering p(z) = zn − 1 (this and
its rotations are suspected extremal polynomials). This conjecture (also known as
Illief’s Conjecture) has been open since appearing in Hayman’s Research Problems
in Function Theory [8, Problem 4.5] in 1967. It has been verified for n = 3 ([4];
1968), n = 4 ([13]; 1968), n = 5 ([12]; 1969) and, after a quarter century, for n = 6
([9], [2]; 1994) and n = 7 ([3] 1996 ;[7] 1997). It has also been verified for some
special classes of polynomials (see Schmeisser [15]). The proofs for n = 5, 6, and 7
were obtained through slightly different estimates with some involved computations.
We present here a unified method for investigating the Sendov Conjecture. As an
application, we prove the conjecture for polynomials of degree n ≤ 8 and identify
all extremal polynomials:

Theorem 1.1. If p(z) =
n∏
k=1

(z − zk), |zk| ≤ 1, k = 1, 2, . . . , n and n = 2, 3, . . .8,

then each disk |z − zk| ≤ 1 (k = 1, 2, . . . , n) contains a zero of p′.
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Corollary 1.1. The only extremal polynomials for the Sendov Conjecture for n =
2, 3, . . . , 8 have the form p(z) = zn − eiγ , where γ ∈ R.

The technique used here to prove these results is based on obtaining good upper
and lower estimates on the product of the moduli of the critical points of p.

2. Known Results

Let Pn denote the set of all monic polynomials of degree n of the form

p(z) =
n∏
k=1

(z − zk), |zk| ≤ 1 (k = 1, 2, . . . , n)

with

p′(z) = n

n−1∏
j=1

(z − ζj).

If we define I(zk) = min
1≤j≤n−1

|zk − ζj|, I(p) = max
1≤k≤n

I(zk), and I(Pn) = sup
p∈Pn

I(p),

then the Sendov Conjecture asserts that I(Pn) = 1. (Since zn − 1 ∈ Pn, we know
I(Pn) ≥ 1). The Gauss-Lucas Theorem gives I(Pn) ≤ 2. The best upper bound was
given by Bojanov, Rahman and Szynal [1] who showed that I(Pn) ≤ 1.0833 · · · and
that I(Pn) → 1 as n → ∞. It was proved in [13] that there exists an extremal
polynomial p∗n for each n ≥ 2, i.e., I(Pn) = I(p∗n) = I(zj0) and that p∗n has a zero
on each closed subarc of |z| = 1 of length π. It will suffice to prove the Sendov
Conjecture assuming p is an extremal polynomial. By a rotation, if necessary, we
may thus suppose that p ∈ Pn and has the form

(2.1) p(z) = (z − a)
n−1∏
k=1

(z − zk),

with 0 ≤ a ≤ 1 and I(Pn) = I(p) = I(a). If a = 0 then I(a) < 1, hence p cannot
be extremal. The case a = 1 is covered in the result of Rubinstein:

Lemma A [14]. If p ∈ Pn and |zk0 | = 1, then I(zk0) ≤ 1 and equality occurs only
for p(z) = zn − eiγ , where γ ∈ R.

Since p′(a) = q(a) and
p′′(a)

p′(a)
=

2q′(a)

q(a)
, where q(z) =

p(z)

z − a , we have

(2.2) n

n−1∏
j=1

(a− ζj) =
n−1∏
k=1

(a− zk)

and

(2.3)
n−1∑
j=1

1

a− ζj
=
n−1∑
k=1

2

a− zk
.
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Let rk = |a− zk| and ρj = |a− ζj |, for j, k = 1, 2, . . . n− 1. By relabeling we will
suppose that

ρ1 ≤ ρj, j = 1, 2, . . . , n− 1

It is known (see for example [11]) that

(2.4) 2ρ1 sin
π

n
≤ rk ≤ 1 + a, k = 1, 2, . . . , n− 1.

If a 6= 0 is real and w a complex number with w 6= a, then a useful identity is

(2.5) Re

{
1

a−w

}
=

1

2a
− |w|

2 − a2

2a|a− w|2 .

In view of this identity and (2.3), we will need estimates on

n−1∑
k=1

1

r2
k

which will be

important later. To this end we will use:

Lemma B [12]. If r1, r2, . . . , rN ,m,M and C are positive constants with m ≤ rk ≤

M ,
N∏
k=1

rk ≥ C and mN ≤ C ≤MN , then

N∑
k=1

1

r2
k

≤ N − ν
m2

+
ν − 1

M2
+

{
mN−νMν−1

C

}2

where ν = min{j ∈ Z : M jmN−j ≥ C}.

( Note that ν =

[[
log
(
C
mN

)
log
(
M
m

) ]], where [[x]]= smallest integer ≥ x. )

Define an(ν) and Sn(a, ν) for ν = 1, 2, . . . , n− 1 as

(2.6) an(ν) ≡
[

n

(2 sin π
n
)n−1−ν

] 1
ν

− 1

and

(2.7) Sn(a, ν) ≡ (n− 1− ν)
(2 sin π

n
)2

+
(ν − 1)

(1 + a)2
+

[
(2 sin π

n
)n−1−ν(1 + a)ν−1

n

]2

.

Note that for n ≥ 4 and ν = 2, 3, . . . , n− 1, we have an(ν) < an(ν − 1). If ρ1 ≥ 1,

then 2 sin π
n
≤ rk ≤ 1 + a and (2.2) implies that

n−1∏
k=1

rk ≥ n. Apply Lemma B to

get the estimate

(2.8) µn(a) ≡
n−1∑
k=1

1

r2
k

≤ Sn(a, ν), an(ν) ≤ a < min {1, an(ν − 1)} .

Observe that an(n−3) < 1 and an(n−4) > 1 for n = 5, 6, 7, 8. Hence for n = 5, 6, 7
or 8 and ρ1 ≥ 1 we have the estimates:
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(2.9) µn(a) ≤
{
Sn(a, n− 2), an(n− 2) ≤ a < an(n− 3)

Sn(a, n− 3), an(n− 3) ≤ a < 1

}
≡ Un(a).

It follows from (2.3) and (2.5) that

1

a

[
(n− 1)− (1− a2)µn(a)

]
≤ Re

n−1∑
k=1

2

a− zk
= Re

n−1∑
j=1

1

a− ζj
≤ n− 1

ρ1
.

It follows that if ρ1 ≥ 1, then µn(a) ≥
n− 1

1 + a
. For n = 2, 3 or 4, if we were to assume

that ρ1 ≥ 1, then by (2.4) we have µn(a) <
n− 1

1 + a
for 0 < a < 1, a contradiction.

This proves the theorem in these cases. Henceforth we may assume n = 5, 6, 7 or 8.

Remark 2.1. For the special case n = 5, if we were to assume that ρi ≥ 1 and if
we knew that a5(3) ≤ a < 1, then (2.9) gives µ5(a) < 2.003. However, since

4

1 + a
≤ µ5(a) < 2.003,

we see that a in fact lies in the smaller interval A′5 < a < 1, where

A′5 =
4

2.003
− 1 = 0.997004 · · · .

Throughout we let

γj =
ζj − a
aζj − 1

and wk =
zk − a
azk − 1

.

It is known [5] that if p has the form (2.1), then

(2.10)
n−1∏
j=1

|γj| ≤

n−1∏
k=1

|wk|

n− a
n−1∑
k=1

Re wk

.

If in addition p is extremal, then since there is a zero on each closed subarc of
|z| = 1 of length π, it is known [5] that there exists zeros, say zn−1 and zn−2, on

|z| = 1 such that Re {wn−1 + wn−2} ≤
4a

1 + a2
. Hence we also get the estimate

(2.11)
n−1∏
j=1

|γj| ≤

n−1∏
k=1

|wk|

n− 4a2

1 + a2
− a

n−3∑
k=1

Re wk

.
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Finally, it was also shown in [5] that for any p ∈ Pn of the form (2.1)

(2.12) If |γj0 | <
1

1 + a− a2
, then ρj0 < 1,

and hence

(2.13) If

M∏
j=1

|γj| <
1

(1 + a− a2)M
, then ρj0 < 1, for some j0.

3. Proof of Main Results

Throughout this section we tacitly assume that n = 5, 6, 7 or 8 and

(3.1) p(z) = (z − a)
n−1∏
k=1

(z − zk), 0 < a < 1

is extremal : I(Pn) = I(p) = I(a) = ρ1 ≤ ρj , for j = 1, 2, . . . , n− 1. We will make
use of the following results whose proofs are deferred to Section 4:

Lemma 3.1. If [1 − (1 − |p(0)|) 1
n ] ≤ λ ≤ sin π

n
, a(a−λ)

2λ > 1 and ρj ≥ 1 for

j = 1, 2, . . . , n − 1, then there exists a critical point ζ0 = a + ρ0e
iθ0 such that

cos θ0 > −a, i.e., Re ζ0 > 0.

Lemma 3.2. If |zk0 | < Rn ≡ 1 − (0.91)n, for some zero zk0 6= a or if a < An ,

where An is the smallest positive root of n− 4x2

1+x2 − (n− 3)x− (1+x−x2)n−1 = 0,
then ρ1 < 1.

n An Rn
8 0.4912... 0.5297...
7 0.5732... 0.4832...
6 0.6929... 0.4321...
5 0.8811... 0.3759...

Remark 3.1. It is important to point out that these bounds for An satisfy An >
an(n− 2) for n = 5, 6, 7 and 8 and hence µn(a) can be estimated using (2.9).

Lemma 3.3. If |zk| ≥ Rn, for k = 1, 2, . . . , n− 1, and µn(a) =
n−1∑
k=1

1

r2
k

, then

n−1∏
j=1

|ζj| ≥
(1− a2)|p(0)|
a(n− 1)

[
(n− 1)2

n
− µn(a)

]
.

Lemma 3.4. If ρj ≥ 1, for j = 1, 2, . . . , n− 1 then

n−1∏
j=1

|ζj| ≤

n−1∏
j=1

ρj

[( 2

n− 1

){n−1∑
k=1

|zk|2 − a2

r2
k

}
− (1− a2)

]n−1
2
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Lemma 3.5. If |zk| ≥ Rn , ρj ≥ 1 (k, j = 1, 2, . . . , n− 1) and

µn(a) ≤ Un(a) <
(n− 1)2

n
,

then

(3.2) Qn(a) ≤ µ∗n(a)

where

Qn(a) ≡
[

(n− 1)Un(a)

2Un(a)− (n− 1)

] [
(n− 1)2

n
− Un(a)

] 2
n−1

(
n
n−1

) 2
n−1

(1− a2)
n−3
n−1

and

(3.3) µ∗n(a) ≡
(n− 1− νn)

R2(n−2
n−1 )

+
(νn − 1)

R−2(n−2
n−1 )

+R
2(n−2)(n−2νn)

n−1

with R =
2 sin π

n

1 + a
and νn =

[[
n−1

2

]]
= smallest integer ≥ n−1

2 .

Proof of Theorem 1.1 . We have already shown that I(a) < 1 when n = 2, 3
or 4 and 0 < a < 1. Also we have I(0) < 1 and, by Lemma A, I(1) ≤ 1. Let us
suppose that n = 5, 6, 7, or 8. Without loss of generality we suppose p is extremal
and has the form (3.1) with 0 < a < 1. Assume ρ1 ≥ 1. By Lemma 3.2 we must
then have Rn ≤ |zk| ≤ 1, for all k = 1, 2, . . . , n− 1, and An ≤ a < 1, where An is
as given in the table for n = 5, 6, 7 and 8. We point out that for the special case
n = 5, since A5 > a5(3), Remark 2.1 allows us to restrict a even further, namely
A′5 < a < 1. Hence in what follows, we let A5 = A′5 = 0.997 · · · . Now using the
estimates for µn(a) given by (2.9) we check that for n = 5, 6, 7 or 8,

µn(a) ≤ Un(a) <
(n− 1)2

n

and also that

(3.4) Qn(a)− µ∗n(a) > 0, An ≤ a < 1.

We apply Lemma 3.5 , but then (3.2) contradicts (3.4). Hence ρ1 < 1. �
Proof of Corollary 1.1. Since I(0) < 1 and the proof of the theorem shows that
I(a) < 1 when 0 < a < 1, we see that p cannot be extremal for any 0 ≤ a < 1 and
n = 2, 3, . . . , 8. Thus since p is extremal , we must have a = 1. Hence by Lemma
A, the extremal polynomial has the form p(z) = zn − 1. The other extremal
polynomials are just rotations of p. �

4. Proofs of Lemmas

Recall that p has the form (3.1), I(Pn) = I(p) = I(a) = ρ1 ≤ ρj , for j =
1, 2, . . . , n− 1 and n = 5, 6, 7 or 8.

Proof of Lemma 3.1. This proof uses essentially the same idea as in Brown [6].
However, here we make use of a result due to Borcea [3] which generalizes a result
of Bojanov, Rahman and Szynal [1]:
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Lemma C. If p ∈ Pn, 0 < a < 1 and ρj ≥ 1 for j = 1, 2, . . . , n − 1, then
|p(z)| > 1− (1− λ)n for |z − a| = λ ≤ sin π

n
.

Using our hypothesis, we apply Lemma C to conclude that

|p(z)| > 1− (1− λ)n ≥ |p(0)|, |z − a| = λ.

Since p is univalent in |z−a| ≤ λ, it follows that there exists a unique point z0 with
|z0 − a| < λ such that p(0) = p(z0). Without loss of generality Im z0 ≥ 0 (else

consider p(z) ). By a variant of the Grace-Heawood Theorem (see [1] for example),
there exists a critical point in each of the half-planes bounded by the perpendicular
bisector Γ0 of the segment from 0 to z0. Let ζ0 = a + ρ0e

iθ0 be the critical point
in the half-plane containing z0. We claim that Γ0 intersects the imaginary axis at
a point ω0 outside |z| = 1 (hence Re ζ0 > 0 and so cos θ0 > −a). To verify this
claim let

z∗ ≡
(
a− λ
a

)[√
a2 − λ2 + iλ

]
.

This is the point on the line which is tangent to the circle |z − λ| = a and which
passes through the origin with Im z∗ > 0 and |z∗| = a − λ. Let Γ∗ be the per-
pendicular bisector of the segment from 0 to z∗. Since |z∗| = a − λ, it is evident
that Γ∗ meets the imaginary axis at a point ω∗ with 0 < Im ω∗ ≤ Im ω0. Since

Im ω∗ =
a(a− λ)

2λ
> 1 the claim is proved. �

Remark 4.1. One can easily improve the estimate given in Lemma 3.1 as follows.
It is simple to check that the perpendicular bisector Γ∗ meets the real axis at the

point r∗ =
a(a− λ)

2
√
a2 − λ2

. A brief sketch shows that since ρ0 ≥ 1, then cos θ0 > µ0−a,

where µ0 satisfies
µ0

|ω∗| − 1
=

r∗

|ω∗| . Thus, we obtain

cos θ0 > µ0 − a, where µ0 =
a(a− λ)− 2λ

2
√
a2 − λ2

.

It then follows that

|γ0| =
∣∣∣∣ ζ0 − aaζ0 − 1

∣∣∣∣ > 1√
(1− a2)2 + a2 − 2a(1− a2)(µ0 − a)

.

Proof of Lemma 3.2. From (2.11) it follows that

n−1∏
j=1

|γj | ≤
1

n− 4a2

1+a2 − (n− 3)a
≡ φn(a).

Now since φn(0) = 1
n
, we see that φn(a) <

1

(1 + a− a2)n−1
for a < An for some

An > 0. By (2.13), we then have ρj0 < 1 for some j0. Clearly An is the smallest

positive root of the equation n− (n− 3)x− 4x2

1+x2 − (1 + x− x2)n−1 = 0.
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Suppose now that |zk0 | < Rn = 1 − (0.91)n. Assume ρj ≥ 1 for all j =
1, 2, . . . , n− 1. Thus An ≤ a < 1 by the above. For n = 5, 6 or 7, we apply Lemma
3.1 with λ = 0.09 to conclude that there exists a critical point ζ0 = a+ ρ0e

iθ0 such
that cos θ0 > −a. It follows that

|γ0| =
∣∣∣∣ ζ0 − aaζ0 − 1

∣∣∣∣ > 1√
1 + a2 − a4

and since |zk0 | < Rn we have |wk0 | <
∣∣∣∣ a+Rn
1 + aRn

∣∣∣∣ ≡ Bn. From (2.10), we conclude

that for some γj0 ,

|γj0 |n−2

√
1 + a2 − a4

<

n−1∏
j=1

|γj| <
Bn

n− a(n− 1)
≡ ψn(a).

An easy check shows that

|γj0 |n−2 <
√

1 + a2 − a4 ψn(a) <
1

(1 + a− a2)n−2
, An ≤ a < 1

for n = 5, 6 or 7. Hence by (2.12), ρj0 < 1, a contradiction.
Similarly for n = 8 and λ = 0.09, we use Remark 4.1 which yields

|γj0 |6
∆

<

7∏
j=1

|γj | ≤
Bn

8− 7a
,

where ∆ =
√

(1− a2)2 + a2 − 2a(1− a2)(µ0 − a).However,
Bn ∆

8− 7a
<

1

(1 + a− a2)6

for A8 ≤ a < 1, which again gives ρj0 < 1, a contradiction. �

Proof of Lemma 3.3. If zk = xeiθ and Rn ≤ x ≤ 1, then we first assert that

(4.1)
n

(n− 1)a

(
|zk|2 − a2

r2
k

)
+

(
1− |zk|2
|zk|

cos θ

)
≤ n

(n− 1)a

(
1− a2

r2
k

)
.

If cos θ ≤ 0 or x = 1, then (4.1) is true. Suppose cos θ > 0 and Rn ≤ x < 1. Let

g(x) ≡ (x2 − a2) +
(n− 1)a

n

(
1− x2

x

)
r2
k cos θ.

It suffices to show g(x) ≤ 1− a2.
Observe that since r2

k = a2 + x2 − 2ax cos θ, we have

g(x) ≤ (x2 − a2) +

(
n− 1

8n

)
(1− x2)(a2 + x2)2

x2
≡ G(x).

Now G(x) ≤ 1− a2 holds if and only if

φ(x) ≡ x4 + x2

(
2a2 − 8n

n− 1

)
+ a4 ≤ 0.
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An easy check shows that φ(1) < 0 and φ(Rn) < 0 and hence φ(x) < 0 for Rn ≤
x < 1 when n = 5, 6, 7 or 8. Now since g(x) ≤ G(x) ≤ 1 − a2 , the result (4.1) is
proved.

Secondly we assert that if ρ1 ≥ 1 then

(4.2) Re
n−1∑
j=1

ζj ≤
1

a

[
σn(a)− (n− 1)(1− a2)

]
,

where σn(a) =
n−1∑
j=1

|zk|2 − a2

r2
k

.

To see this, observe by (2.5) we have

|w|2 − a2

r2
= 1− a Re

{
2

a−w

}
for r = |a−w|

and since ζj = a+ ρje
itj , we get from (2.3)

σn(a) = (n− 1)− a Re
n−1∑
j=1

1

a− ζj

≥ (n− 1) + a

n−1∑
j=1

cos tj .

Using this we obtain (4.2):

Re
n−1∑
j=1

ζj ≤
n−1∑
j=1

(a+ cos tj)

≤ (n− 1)a+

{
σn(a)− (n− 1)

a

}
=

1

a

[
σn(a)− (n− 1)(1− a2)

]
.

Let zk = |zk|eiθk and suppose that Re zk > 0 for k = 1, . . . ,m and all other
zeros except a lie in Re z ≤ 0. Now we know that

n−1∏
j=1

|ζj | =
|p(0)|
n

∣∣∣∣1a +
n−1∑
k=1

1

zk

∣∣∣∣(4.3)

≥ −|p(0)|
n

{
Re

[
1

a
+
n−1∑
k=1

1

zk

]}
.

Making use of (4.1), (4.2) and the fact that the centers of mass of the zeros and
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critical points of p are identical, we obtain

Re

[
1

a
+
n−1∑
k=1

1

zk

]
=

1− a2

a
+ Re

[
a+

n−1∑
k=1

zk

]
+ Re

[
n−1∑
k=1

(
1

zk
− zk

)]

≤ 1− a2

a
+

(
n

n− 1

)
Re

n−1∑
k=1

ζj +
m∑
k=1

1− |zk|2
|zk|

cos θk

≤ 1− a2

a
+

(
n

(n− 1)a

)[n−1∑
k=1

|zk|2 − a2

r2
k

− (n− 1)(1− a2)

]
+

m∑
k=1

1− |zk|2
|zk|

cos θk

= −(n− 1)

(
1− a2

a

)
+

m∑
k=1

{
n

(n− 1)a

|zk|2 − a2

r2
k

+
1− |zk|2
|zk|

cos θk

}

+
n

(n− 1)a

n−1∑
k=m+1

|zk|2 − a2

r2
k

≤ −(n− 1)

(
1− a2

a

)
+

m∑
k=1

{
n

(n− 1)a

(1− a2)

r2
k

}
+

n

(n− 1)a
(1− a2)

n−1∑
k=m+1

1

r2
k

=

(
1− a2

a

)[(
n

n− 1

)
µn(a)− (n− 1)

]
.

This inequality and (4.3) give the desired estimate:

n−1∏
j=1

|ζj| ≥
(1− a2)|p(0)|
a(n− 1)

[
(n− 1)2

n
− µn(a)

]
.

(If there are no zeros in Re z > 0 other than a, then the estimate still holds.) �

Proof of Lemma 3.4. Apply the identity (2.5) to (2.3) to get

n−1∑
j=1

a2 − |ζj|2
ρ2
j

= (n− 1) + 2
n−1∑
k=1

a2 − |zk|2
r2
k

,

and since ρj ≥ 1, for j = 1, 2, . . . , n− 1,

n−1∑
j=1

|ζj |2
ρ2
j

≤ 2
n−1∑
k=1

|zk|2 − a2

r2
k

− (n− 1)(1− a2).

Apply the arithmetic-geometric means inequality:

n−1∏
j=1

|ζj|
ρj

=

n−1∏
j=1

|ζj |2
ρ2
j

 1
2

≤


 1

n− 1

n−1∑
j=1

|ζj|2
ρ2
j

n−1


1/2

≤
[

2

n− 1

n−1∑
k=1

|zk|2 − a2

r2
k

− (1− a2)

]n−1
2

.

�

Before embarking on the proof of the last lemma, we first prove:
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Proposition 4.1. If σ′0 =
n−1∑
k=1
k 6=k0

t2k − a2

r2
k

, Rn ≤ |zk| ≤ tk ≤ 1 and m = 2
n−1 , then

(4.4)

m

(
x2 − a2

r2
k0

+ σ′0

)
− (1− a2)

xm
≤ m

(
1− a2

r2
k0

+ σ′0

)
− (1− a2),

where Rn ≤ |zk0 | ≤ x ≤ 1.

Proof. Without loss of generality x < 1. Note that (4.4) holds if and only if

(x2 − a2) + r2
k0
σ′0 −

1

m
(1− a2)r2

k0
≤ xm

{[
1− a2 + r2

k0
σ′0
]
−
r2
k0

m
(1− a2)

}

and this holds if and only if

(x2 − xm) + (1− xm)

[
−a2 + r2

k0

{
σ′0 −

1

m
(1− a2)

}]
≤ 0,

if and only if

(*)
(x2 − xm)

(1− xm)
− a2 + r2

k0

{
σ′0 −

1

m
(1− a2)

}
≤ 0

Observe first that

r2
k0

{
σ′0 −

1

m
(1− a2)

}
≤ r2

k0

[
(1− a2)

n−1∑
k=1

1

r2
k

− (1− a2)

r2
k0

− 1

m
(1− a2)

]

< (1− a2)r2
k0

{
µn(a)−

1

m

}
+ a2 − x2

It follows that (*) holds if

(**) ψn(x) ≡
xm(x2 − 1)

1− xm + r2
k0

(1− a2)

{
µn(a)−

1

m

}
≤ 0

Let H(x) =
xm(x2 − 1)

1− xm and observe that H decreases with x and is negative.

Using the estimates for µn(a) given in (2.9) for n = 5, 6, 7 or 8, we check that

ψn(x) ≤ H(Rn) + (1 + a)2(1− a2)

(
Un(a)−

1

m

)
< 0, An ≤ a < 1.

Thus inequality (**) and hence the proposition are true. �
11



Proof of Lemma 3.5. We apply Lemmas 3.3 and 3.4 with m = 2
n−1 to get:

(1− a2)|p(0)|
a(n− 1)

[
(n− 1)2

n
− µn(a)

]
≤

n−1∏
j=1

ρj

[m n−1∑
k=1

|zk|2 − a2

r2
k

− (1− a2)

]n−1
2

or,

(4.5)
(1− a2)

(n− 1)

[
(n− 1)2

n
− µn(a)

]
≤

n−1∏
j=1

ρj

Φn(a)
n−1

2

where

Φn(a) ≡


m

n−1∑
k=1

|zk|2 − a2

r2
k

− (1− a2)

|z1|m|z2|m · · · |zn−1|m

 .
Using Proposition 4.1 first with x = |z1| and tk = |zk| for k = 2, 3, . . . , n− 1, we

obtain

m

 |z1|2 − a2

r2
1

+
n−1∑
k=1
k 6=1

|zk|2 − a2

r2
k

− (1− a2)

|z1|m|z2|m · · · |zn−1|m
≤

m

1− a2

r2
1

+
n−1∑
k=1
k 6=1

t2k − a2

r2
k

− (1− a2)

tm2 t
m
3 · · · tmn−1

Now let x = t2 = |z2|, t1 = 1 and tk = |zk| for k = 3, 4, . . . , n − 1 and apply
Proposition 4.1 to the right-hand side to get

Φn(a) ≤

m

1− a2

r2
2

+
n−1∑
k=1
k 6=2

t2k − a2

r2
k

− (1− a2)

tm3 t
m
4 · · · tmn−1

Next, we let x = t3 = |z3|, t1 = t2 = 1 and tk = |zk| for k = 4, . . . , n − 1. After
applying Proposition 4.1 n− 1 times we conclude that

Φn(a) ≤ (1− a2) [mµn(a)− 1] .

(Since ρ1 ≥ 1, we already pointed out that µn(a) ≥
n− 1

1 + a
>

1

m
.) Hence (4.5) then

yields

(4.6)

(
n

n− 1

)[
(n− 1)2

n
− µn(a)

]
(1− a2)

n−3
2

≤

n n−1∏
j=1

ρj

[ 2

n− 1

n−1∑
k=1

1

r2
k

− 1

]n−1
2

.

The next step is to estimate the right-hand side of (4.6). To do this we note that
12



(4.7)

n n−1∏
j=1

ρj

 2
n−1 n−1∑

k=1

1

r2
k

=
n−1∑
k=1

1

R2
k

,

where
Rk =

rk(
n−1∏
k=1

rk

) 1
n−1

for k = 1, 2, . . . , n− 1.

Note also that since ρ1 ≥ 1, the estimate (2.4) gives 2 sin π
n
≤ rk ≤ 1 + a and

hence
R
n−2
n−1 ≤ Rk ≤ R−(n−2

n−1 ),

where R =
2 sin π

n

1 + a
. Clearly

n−1∏
k=1

Rk = 1. Using Lemma B, we choose the smallest

integer ν so that

(4.8)
(
R
n−2
n−1

)n−1−ν (
R−(n−2

n−1 )
)ν

= R
(n−2)(n−1−2ν)

(n−1) ≥ 1.

If n ≥ 5 and a > 2 sin π
5 − 1 = 0.1755..., we see that R < 1 and hence (4.8) holds

when ν ≥ n−1
2 . Let νn= the smallest integer ≥ n−1

2 . From Lemma B we then
conclude that

(4.9)
n−1∑
k=1

1

R2
k

≤ µ∗n(a),

where µ∗n(a) is defined by (3.3).
Using (4.9) and (4.7) in (4.6) we see that

(4.10)

(
n
n−1

) [
(n−1)2

n
− µn(a)

]
(1− a2)

n−3
2

≤

 2

n− 1
µ∗n(a)−

n n−1∏
j=1

ρj

 2
n−1


n−1

2

.

On the other hand (4.6) also yields

(4.11)

(
n

n− 1

) 2
n−1

[
(n− 1)2

n
− µn(a)

] 2
n−1

(1− a2)
n−3
n−1

[
2

n− 1
µn(a)− 1

] ≤

n n−1∏
j=1

ρj

 2
n−1

.

Using this inequality in (4.10) we have(
n

n− 1

) 2
n−1

[
(n− 1)2

n
− µn(a)

] 2
n−1

(1− a2)
n−3
n−1

[
(n− 1)µn(a)

2µn(a)− (n− 1)

]
≤ µ∗n(a).

13



The result now follows by observing that µn/(2µn−n+ 1) is a decreasing function
of µn. �

5. Remarks

This technique is useful in studying the Sendov Conjecture but cannot as yet
provide a proof for arbitrary n. The principal drawback to this technique is the

requirement that

n−1∑
k=1

1

r2
k

<
(n− 1)2

n
. We can however use the technique to prove

the conjecture for polynomials of arbitrary degree n, but with at most eight distinct
zeros:

Theorem 5.1. If p(z) =
8∏

k=1

(z − zk)mk ∈ Pn,
8∑

k=1

mk = n, then each of the disks

|z − zk| ≤ 1 for k = 1, 2, . . . , n contains a critical point of p.

Proof. Let Pn(8) ⊂ Pn denote the class of all polynomials in Pn with at most eight
distinct zeros. It was shown in [5] that there still exists an extremal polynomial
p ∈ Pn(8) with I(Pn(8)) = I(p) = I(a). (By a rotation, we assume that 0 ≤ a ≤ 1.)
If a = 0, a = 1 or a is not a simple zero then I(a) ≤ 1 and we are done. Hence we
assume p is extremal and has the form

(5.1) p(z) = (z − a)
7∏
k=1

(z − zk)mk , 0 < a < 1 with
7∑
k=1

mk = n− 1.

Note also that

(5.2) p′(z) =

n 7∏
j=1

(z − ζj)

( 7∏
k=1

(z − zk)mk−1

)
.

Because of (5.2), we see that (2.10) and (2.11) give

 7∏
j=1

|γj|

( 7∏
k=1

|wk|mk−1

)
≤

7∏
k=1

|wk|mk

n− a
7∑
k=1

mk Re wk

≤

7∏
k=1

|wk|mk

n− 4a2

1+a2 − (n− 3)a
.(5.3)

It follows that

(5.4)
7∏

k=1

|γj| ≤
1

n− (n− 1)a
≤ 1

n− 4a2

1+a2 − (n− 3)a
.

14



If n ≥ 11, then by (5.4)

7∏
j=1

|γj| ≤
1

n− (n− 1)a
≤ 1

(1 + a− a2)7

for all 0 < a < 1, and by (2.13) we get ρj0 ≤ 1, so we are done. In view of Theorem
1.1, there are only two cases remaining: n = 9 and n = 10. Note that

7∏
j=1

|γj| ≤
1

n− 4a2

1+a2 − (n− 3)a
≤ 1

(1 + a− a2)7

for n = 9 if a > 0.918 or a < 0.562; and for n = 10 if a > 0.8 or a < 0.68. For
the remainder of this proof we assume by way of contradiction that ρj ≥ 1 for
j = 1, 2, . . . , n− 1. Hence by (2.13) when n = 9, we must have 0.562 ≤ a ≤ 0.918;
while for n = 10, we have 0.68 ≤ a ≤ 0.8.
n = 10 : In this case we first assert that the extremal polynomial can only have
two possible forms :

(5.5) p(z) = (z−a)(z−z0)
3(z−z6)Q(z) or p(z) = (z−a)(z−z0)

2(z−z6)
2Q(z),

where Q(z) =
5∏
k=1

(z − zk) and all the zk are distinct. To see this, suppose p has

neither of these forms, then since n = 10 and there are at most eight distinct zeros,
p′ would have three of its nine zeros in common with p and from (5.3) we can now
cancel three common terms to obtain

6∏
j=1

|γj| ≤
1

10− 9a
.

Now since
1

10− 9a
<

1

(1 + a− a2)6
for 0.68 ≤ a ≤ 0.8, it follows that ρj0 < 1 for

some j0. Contradiction. Hence p has one of the forms (5.5).
Next, there are at most two zeros zk 6= a in Re z ≥ 0. If there are three or

more, then for each such zk, we know that Re wk ≤
2a

1 + a2
. Hence (5.3) yields

(5.6)
7∏
j=1

|γj| ≤
1

10− a
(

6a

1 + a2
+ 6

) .

Now note that since ρj ≥ 1, we have |γj| ≥
ρj

1− a2 + aρj
≥ 1

1 + a− a2
and so

1

(1 + a− a2)6

ρj1
(1− a2 + aρj1)

≤
7∏
j=1

|γj| ≤
1

10− a
(

6a

1 + a2
+ 6

) .
15



Hence

ρj1 ≤
(1− a2)

(h(a)− a) < 1, for 0.68 ≤ a ≤ 0.8,

where h(a) =

10− a
(

6a

1 + a2
+ 6

)
(1 + a− a2)6

. Contradiction. Thus Re z ≥ 0 contains at

most two zeros zk 6= a.

Case 1 : There is a repeated zero in Re z ≥ 0. If zk0 is repeated and Re zk0 ≥ 0,
then by the above and (5.5) this is the only zero in this region other that a. By
the extremality of p, we must have |zk0 | = 1 and we pointed out earlier that there

must exist another zero , say z1, such that |z1| = 1 and Re (wk0 + w1) ≤
4a2

1 + a2
.

However, wk0 is repeated and so we obtain inequality (5.6) again and by the above,
ρj1 < 1, a contradiction.

Case 2 : No repeated zeros in Re z ≥ 0. In this case, we let λ = 1− (1− a) 1
10

and observe that
a(a− λ)

2λ
> 1 for 0.68 ≤ a ≤ 0.8 and hence Lemma 3.1 gives the

existence of a critical point ζ0 with Re ζ0 > 0 and hence |γ0| >
1√

1 + a2 − a4
.

Now since there are no repeated zeros in Re z ≥ 0, we obtain from (5.4) that for
some γj0 ,

|γj0 |6√
1 + a2 − a4

<

7∏
j=1

|γj| ≤
1

10− 9a
.

Since

√
1 + a2 − a4

10− 9a
<

1

(1 + a− a2)6
, for 0.68 ≤ a ≤ 0.8, we get by (2.12) that

ρj0 < 1, a contradiction.

n = 9 : Here we want to be able to apply Lemma 3.5 and get a contradiction
to (3.2) as in the proof of Theorem 1.1. . Tracing back, we must verify several
preliminary results.

We set R9 = 1
2 and A9 = 0.562. Since p is extremal and ρj ≥ 1, we assert that

it must have the form

(5.7) p(z) = (z − a)(z − z0)
2

6∏
k=1

(z − zk), zk distinct.

If not, then p and p′ have two zeros in common and (5.3) gives

6∏
j=1

|γj| ≤
1

9− 8a
<

1

(1 + a− a2)6
, 0.562 ≤ a ≤ 0.918

and so ρj0 < 1, for some j0, a contradiction. Thus p has only one repeated zero.

If we let λ = 1 − (1 − a) 1
9 , then

a(a− λ)

2λ
> 1 for 0.562 ≤ a ≤ 0.918 and so by

Lemma 3.1 and Remark 4.1, there exists a critical point ζ0 = a+ ρ0e
iθ0 such that

16



cos θ0 > µ0−a, where µ0 =
a(a− λ)

2
√
a2 − λ2

. If the repeated zero z0 satisfies Re z0 < 0,

then z0 6= ζ0 and so from (5.4), for some j0

|γj0 |6
∆

<

7∏
j=1

|γj | ≤
1

9− a
(

4a

1 + a2
+ 6

) ,
where ∆ =

√
(1− a2)2 + a2 − 2a(1− a2)(µ0 − a). It is easy to check that

∆

9− a
(

4a

1 + a2
+ 6

) ≤ 1

(1 + a− a2)6

for 0.562 ≤ a ≤ 0.918. Hence ρj0 < 1, a contradiction. Thus we must have
Re z0 ≥ 0.

We also need the estimate

(5.8) µ9(a) =
8∑

k=1

1

r2
k

≤ 5.95 (r7 = r8 = |a− z0|).

To verify this we set r = |a− z0| and note that since z0 is repeated (r = r7 = r8 =
ρ8), Re z0 ≥ 0 and ρj ≥ 1, we must have

1 ≤ r ≤
√

1 + a2

R ≡ 2 sin
π

9
≤ rk ≤ 1 + a for k = 1, 2, . . . , 6

and by (2.2)
6∏
k=1

rk ≥
9√

1 + a2
≡ C.

Let

ν =

[[
log
(
C
R6

)
log
(

1+a
R

)]]
and observe that ν ≥ 5. From Lemma B we conclude that

µ9(a) =
8∑
k=1

1

r2
k

≤ 2 +

{
(6− ν)
R2

+
(ν − 1)

(1 + a)2
+

[
R6−ν(1 + a)ν−1

C

]2
}
≡ B(a, ν).

Clearly if a < 0.7, then B(a, 6) < B(a, 5); while if a ≥ 0.7, then ν = 5. It follows
that µ9(a) ≤ B(a, 5) ≤ B(0.562, 5) ≤ 5.95 for 0.562 ≤ a ≤ 0.918, and this verifies
(5.8).

Lemma 3.3 will hold if inequality (4.1) holds and thus it suffices to show that
x4 + x2(2a2 − 9) + a4 ≤ 0 for A9 ≤ a < 1 and R9 ≤ x < 1. This is clearly true.
Lemma 3.4 holds in any case. Lemma 3.5 can be applied if

ψ9(x) ≤ H(0.5) + (1 + a)2(1− a2)(U9(a)− 4) < 0, A9 ≤ a ≤ 0.918.
17



If we let U9(a) ≡ 5.95, then this holds. Thus we are now in a position to apply
Lemma 3.5. Using U9(a) = 5.95, we compute as in the proof of Theorem 1.1 that
Q9(a) − µ∗9(a) > 0 for A9 ≤ a ≤ 0.918, contradicting (3.2). This completes the
proof of the theorem. �
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