Basic facts about continuity

- The inverse function of a strictly increasing function is continuous.
- The composition of two continuous functions is continuous.
- The i-th projection $\mathbf{R}^{n} \rightarrow \mathbf{R}$, sending $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to x_{i}, is continuous.
- A map $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ sending $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to

$$
f(\mathbf{x})=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)
$$

is continuous if (and, by the preceding two facts, only if) every one of the coordinate functions $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is continuous.

- Any function given by a power series is continuous, as are its derivatives of any order.
- If f is a continuous function of one variable, defined on an interval $[a, b]$, then the function

$$
F(x)=\int_{a}^{x} f(t) d t \quad(a \leq x \leq b)
$$

is continuous.

Continuity of algebraic operations:

- Constant functions are continuous.
- The one-variable function taking x to $1 / x$ is continuous except at $x=0$.
- The addition function $\mathbf{R}^{2} \rightarrow \mathbf{R}$ taking (x, y) to $x+y$ is continuous.
- The multiplication function $\mathbf{R}^{2} \rightarrow \mathbf{R}$ taking (x, y) to $x y$ is continuous.

Exercise. Use the above facts to prove Theorem 1 in $\S 14.2$.
For example, if a is a fixed real number then the function $x^{a}=e^{a \cdot \ln (x)} \quad(0<x<\infty)$ is continuous. For, $\ln (y)$, being defined by an integral, is continuous, and therefore so is its inverse e^{z}; and the function x^{a} is constructed by a succession of steps (i.e., composition)

$$
x \mapsto \ln (x) \mapsto(\ln (x), a) \mapsto a \cdot \ln (x) \mapsto e^{a \cdot \ln (x)}
$$

each of which, by one of the above statements, is obtained by applying a continuous function.

