April 29, 2008

NAME:

There should be twelve pages.

Per question scoring: correct, 4; incorrect, -1; blank, 0. No partials.

1. A particle starts at the origin, with initial velocity (1, 1, -1). Its acceleration is (6t, 2, 6t). What is its position at time t = 1?

A. $(\frac{1}{6}, \frac{1}{2}, \frac{1}{3})$ B. $(\frac{7}{6}, \frac{1}{2}, \frac{-5}{6})$ C. (1, 2, -1) D. (3, 3, -5) E. (2, 2, 0)

2. Pick out a parametric representation of the tangent line at (1, -2, 3) to the intersection of the surfaces $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 3$ and 2x + 3y + z = -1.

A. (1+9t, -2-2t, 3+24t)B. (1+2t, -2+3t, 3+t)C. (1+27t, -2+6t, 3+72t)E. (28+9t, 4+2t, -69-24t)B. (1+2t, -2+3t, 3+t)D. (2+t, 3-2t, 1+3t)

3. Suppose that the function z = f(x, y) is such that $xe^y + ye^z = 0$. The equation of the tangent plane to the graph of f(x, y) at the point (-2, 2, 2) is:

A. 2X - 2Y + Z = -6 B. 2X + 2Y - Z = -2 C. X + Y - 2Z = -4D. X - Y + 2Z = 0 E. None of the preceding.

4. Find all the local maxima, local minima, and saddle points of the function $f(x, y) = 4xy - x^4 - y^4$.

- A. (1,1), (-1,1) saddle points, (0,0) minimum.
- B. (1, 1), (-1, 1) maxima, (0, 0) minimum.
- C. (1, 1) maximum, (0, 0) saddle point, (1, -1) minimum
- D. (1, 1), (-1, -1) maxima, (0, 0) saddle point
- E. None of the preceding.

5. Find the minimum distance from the origin of a point on the intersection of the surfaces $x^2 + 2y^2 + z^2 = 1$ and x + y = 1 (an ellipse).

A. 1 B.
$$5/\sqrt{3}$$
 C. 2 D. $2/3$ E. $\sqrt{5}/3$

6. Find the work done by the force $\mathbf{F} = (y \sin xy, x \sin xy)$ along the curve $x = \tan y/2$ $(0 \le y \le \pi)$ from the origin to $(1, \pi/2)$.

A.
$$\pi/6$$
 B. $\pi/2$ C. 0 D. 1 E. 2π

7. Use the substitution u = x+y, $v = x^2-y^2$ to evaluate $\iint_R (x+y)^2 dx dy$ where R is the region bounded by the curves x + y = 2, x + y = 4, x = y and $x^2 - y^2 = 4$.

A. 1 B. $2\sqrt{2}$ C. 6 D. $4\sqrt{2}$ E. 12

8. Find the centroid of the bowl-shaped region bounded by the surfaces z = 2, z = 3 and $x^2 + y^2 = 9z^2 - 36$.

A.
$$(0, 0, \frac{225}{84})$$
 B. $(0, 0, \frac{8}{3})$ C. $(0, 0, \frac{56}{21})$ D. $(2.5, 2.5, \frac{56}{21})$ E. $(0, 0, \frac{6\pi}{7})$

9. Compute $\int_C (xy + e^{x^2})dx + (x^2 - \ln(1+y))dy$ where C consists of the line segment from (0,0) to $(\pi,0)$ plus the curve $y = \sin x$, $0 \le x \le \pi$, oriented counterclockwise.

A. 1 B.
$$-\ln(2)$$
 C. e^2 D. $\pi/2$ E. π

10. Let S be the part of the paraboloid $z = 1/4 + x^2 + y^2$ lying between z = 1/4 and z = 5/4. Compute the surface integral $\iint_S z d\sigma$.

A. $(25\sqrt{5}-1)\pi/40$ B. $4\pi/3$ C. $5\sqrt{5}\pi/8$ D. $8\sqrt{17}$ E. None of the preceding.

11. Find the outward flux of the vector field $(x^3, y^3, 12z)$ across the cylinder (including top and bottom) bounded by $x^2 + y^2 = 4$, z = 0, and z = 1. A. 8π B. 24π C. 72π D. 108 E. 36π

12. Compute
$$\int_{0}^{1/16} \int_{y^{1/4}}^{1/2} \cos(16\pi x^5) dx dy$$
.
A. $1/(80\pi)$ B. $1/80$ C. $1/(16\pi)$ D. $\pi/80$ E. 80π

 $\mathbf{2}$