Math 182 Final Exam

April 29, 2008
NAME:

There should be twelve pages.

Per question scoring: correct, 4; incorrect, -1 ; blank, 0 . No partials.

1. A particle starts at the origin, with initial velocity $(1,1,-1)$. Its acceleration is $(6 t, 2,6 t)$. What is its position at time $t=1$?
A. $\left(\frac{1}{6}, \frac{1}{2}, \frac{1}{3}\right)$
B. $\left(\frac{7}{6}, \frac{1}{2}, \frac{-5}{6}\right)$
C. $(1,2,-1)$
D. $(3,3,-5)$
E. $(2,2,0)$
2. Pick out a parametric representation of the tangent line at $(1,-2,3)$ to the intersection of the surfaces $x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=3$ and $2 x+3 y+z=-1$.
A. $(1+9 t,-2-2 t, 3+24 t)$
B. $(1+2 t,-2+3 t, 3+t)$
C. $(1+27 t,-2+6 t, 3+72 t)$
D. $(2+t, 3-2 t, 1+3 t)$
E. $(28+9 t, 4+2 t,-69-24 t)$
3. Suppose that the function $z=f(x, y)$ is such that $x e^{y}+y e^{z}=0$. The equation of the tangent plane to the graph of $f(x, y)$ at the point $(-2,2,2)$ is:
A. $2 X-2 Y+Z=-6$
B. $2 X+2 Y-Z=-2$
C. $X+Y-2 Z=-4$
D. $X-Y+2 Z=0$
E. None of the preceding.
4. Find all the local maxima, local minima, and saddle points of the function $f(x, y)=4 x y-x^{4}-y^{4}$.
A. $(1,1),(-1,1)$ saddle points, $(0,0)$ minimum.
B. $(1,1),(-1,1)$ maxima, $(0,0)$ minimum.
C. $(1,1)$ maximum, $(0,0)$ saddle point, $(1,-1)$ minimum
D. $(1,1),(-1,-1)$ maxima, $(0,0)$ saddle point
E. None of the preceding.
5. Find the minimum distance from the origin of a point on the intersection of the surfaces $x^{2}+2 y^{2}+z^{2}=1$ and $x+y=1$ (an ellipse).
A. 1
B. $5 / \sqrt{3}$
C. 2
D. $2 / 3$
E. $\sqrt{5} / 3$
6. Find the work done by the force $\mathbf{F}=(y \sin x y, x \sin x y)$ along the curve $x=\tan y / 2(0 \leq y \leq \pi)$ from the origin to ($1, \pi / 2$).
A. $\pi / 6$
B. $\pi / 2$
C. 0
D. 1
E. 2π
7. Use the substitution $u=x+y, v=x^{2}-y^{2}$ to evaluate $\iint_{R}(x+y)^{2} d x d y$ where R is the region bounded by the curves $x+y=2, x+y=4, x=y$ and $x^{2}-y^{2}=4$.
A. 1
B. $2 \sqrt{2}$
C. 6
D. $4 \sqrt{2}$
E. 12
8. Find the centroid of the bowl-shaped region bounded by the surfaces $z=2, z=3$ and $x^{2}+y^{2}=9 z^{2}-36$.
A. $\left(0,0, \frac{225}{84}\right)$
B. $\left(0,0, \frac{8}{3}\right)$
C. $\left(0,0, \frac{56}{21}\right)$
D. $\left(2.5,2.5, \frac{56}{21}\right)$
E. $\left(0,0, \frac{6 \pi}{7}\right)$
9. Compute $\int_{C}\left(x y+e^{x^{2}}\right) d x+\left(x^{2}-\ln (1+y)\right) d y$ where C consists of the line segment from $(0,0)$ to $(\pi, 0)$ plus the curve $y=\sin x, 0 \leq x \leq \pi$, oriented counterclockwise.
A. 1
B. $-\ln (2)$
C. e^{2}
D. $\pi / 2$
E. π
10. Let S be the part of the paraboloid $z=1 / 4+x^{2}+y^{2}$ lying between $z=1 / 4$ and $z=5 / 4$. Compute the surface integral $\iint_{S} z d \sigma$.
A. $(25 \sqrt{5}-1) \pi / 40$
B. $4 \pi / 3$
C. $5 \sqrt{5} \pi / 8$
D. $8 \sqrt{17}$
E. None of the preceding.
11. Find the outward flux of the vector field $\left(x^{3}, y^{3}, 12 z\right)$ across the cylinder (including top and bottom) bounded by $x^{2}+y^{2}=4, z=0$, and $z=1$.
A. 8π
B. 24π
C. 72π
D. 108
E. 36π
12. Compute $\int_{0}^{1 / 16} \int_{y^{1 / 4}}^{1 / 2} \cos \left(16 \pi x^{5}\right) d x d y$.
A. $1 /(80 \pi)$
B. $1 / 80$
C. $1 /(16 \pi)$
D. $\pi / 80$
E. 80π
