March 25, 2008

NAME:

[Bold numbers] indicate points (45 total).

For visibility, please put a box around your final anwer to each question.

I. [4] Find the mass of a thin plate with density function 1/r, covering the region outside the circle r = 3 and inside the circle $r = 6 \sin \theta$.

Solution. $r = 6 \sin \theta$, or $x^2 + y^2 = r^2 = 6r \sin \theta = 6y$, is the circle $x^2 + (y-3)^2 = 9$ of radius 3, centered at (0,3). Sketch the two circles. Where they intersect, $3 = 6 \sin \theta$, i.e., $\sin \theta = 1/2$, i.e., $\theta = \pi/6$ or $5\pi/6$. The mass is then

$$\int_{\pi/6}^{5\pi/6} \int_{3}^{6\sin\theta} (1/r) r dr d\theta = \int_{\pi/6}^{5\pi/6} (6\sin\theta - 3) d\theta = -6\cos\theta - 3\theta \Big|_{\pi/6}^{5\pi/6}$$
$$= 12(\sqrt{3}/2) - 12\pi/6 = \boxed{6\sqrt{3} - 2\pi}$$

II. Let **F** be the vector-field $(y \sin z, x \sin z, 1 + xy \cos z)$ on \mathbb{R}^3 .

(a) [3] Find all potential functions for **F**.

(b) [3] Calculate the work done by **F** along the curve

$$(x, y, z) = \left(\arccos(t/\pi), \operatorname{arcsin}(t/\pi), \sqrt[7]{\sin t}\right) \qquad (0 \le t \le \pi).$$

Solution. (a) If f(x, y, z) is a potential, then $f_x = y \sin z$, so

$$f(x, y, z) = xy \sin z + g(y, z).$$

Then $f_y = x \sin z$ gives $g_y = 0$, i.e.,

$$g(y,z) = h(z).$$

Then $f_z = 1 + xy \cos z$ gives $h_z = 1$, i.e., h(z) = z + C (C constant), and so $f(x, y, z) = xy \sin z + z + C$.

(b) The work done is the difference between the values of any potential at the terminal and initial points, that is,

$$(xy\sin z + z)\Big|_{(\pi/2,0,0)}^{(0,\pi/2,0)} = \boxed{0}.$$

III. [20] Set up but do not evaluate integrals for the following:

- (a) The average value of the function xyz over the region bounded by the coordinate planes and the plane x + y + z = 2.
- (b) The volume of the region bounded underneath by the hemisphere $\rho = 1, z \ge 0$, and above by the cardioid of revolution $\rho = 1 + \cos \phi$.
- (c) The centroid of the region outside the cylinder $x^2 + y^2 = 1$ and bounded above by the paraboloid $z = 9 - x^2 - y^2$ and bounded below by the plane z = 0.
- (d) The moment of inertia around its axis of a right circular cone of uniform density δ , with base radius *a* and height *h*.

<u>Hint</u>. Put the cone's vertex at the origin and its axis along the z-axis.

Solution.

 $\mathbf{2}$

(a)
$$\int_{0}^{2} \int_{0}^{2-z} \int_{0}^{2-y-z} xyz \, dx \, dy \, dz \, \bigg/ \int_{0}^{2} \int_{0}^{2-z} \int_{0}^{2-y-z} dx \, dy \, dz$$

(b) Using spherical coordinates, sketch (neatly) what happens on any plane $\theta = \text{constant}$, as ϕ goes from 0 to $\pi/2$. That will lead to

$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{1}^{1+\cos\phi} \rho^{2}\sin\phi \, dr d\phi d\theta \; .$$

(c) The cylinder meets the paraboloid in the circle $x^2 + y^2 = 1$, z = 8. Sketch as in (b), to get the limits of integration. By symmetry, the centroid is on the z-axis, at height $M_{xy}/M =$ (in cylindrical coordinates)

$$\int_{0}^{2\pi} \int_{0}^{8} \int_{1}^{\sqrt{9-z}} zr \, dr dz d\theta \Big/ \int_{0}^{2\pi} \int_{0}^{8} \int_{1}^{\sqrt{9-z}} r \, dr dz d\theta \Big|$$

(d) In cylindrical coordinates,

$$\iiint r^2 \delta dV = \delta \int_0^{2\pi} \int_0^h \int_0^{az/h} r^3 dr dz d\theta$$

IV. [7] Find the circulation around, and the total flux across, the ellipse $(\cos t, 4\sin t), 0 \le t \le 2\pi$, for the vector field (x, y).

Solution. <u>Circulation</u>. You can calculate the appropriate integral, but it's easier to notice that the field is conservative $((x^2 + y^2)/2)$ is a potential), so the circulation is 0.

<u>Flux</u>. At the point $(\cos t, 4\sin t)$, $\mathbf{F} = (\cos t, 4\sin t)$, the velocity vector is $\mathbf{v} = (-\sin t, 4\cos t)$, the unit tangent vector is $\mathbf{T} = (-\sin t, 4\cos t)/|\mathbf{v}|$, and the "right side" unit normal vector is $\mathbf{n} = \mathbf{T} \times \mathbf{k} = (4\cos t, \sin t)|\mathbf{v}|$.

The flux is

$$\int_{0}^{2\pi} (\mathbf{F} \cdot \mathbf{n}) ds = \int_{0}^{2\pi} (\mathbf{F} \cdot \mathbf{n}) |\mathbf{v}| dt = \int_{0}^{2\pi} (4\cos^2 + 4\sin^2 t) dt = 4 \int_{0}^{2\pi} dt = \boxed{8\pi}.$$

<u>Note</u>. You can use M dy - N dx instead of $(\mathbf{F} \cdot \mathbf{n}) |\mathbf{v}| dt$.

V. [8] Let R be the region bounded by the four lines y = x/2, y = 2x, y = 2x - 2, and x + y + 2 = 0. Let u = x - 2y, v = 2x - y.

Fill in the boxes to make the following equality true:

$$\iint_{R} xy dx dy = \int_{\Box}^{\Box} \int_{\Box}^{\Box} \boxed{\qquad} du dv$$

Solution. First solve the equations to get

x = (2v - u)/3, y = (v - 2u)/3.

So $xy = (2v^2 - 5vu + 2u^2)/9$, and in the (v, u)-plane, R becomes the parallelogram R' bounded by the lines u = 0, v = 0, v = 2, u = v + 2. Also, the Jacobian $\partial(x, y)/\partial(v, u) = 1/3$ (easy calculation).

Sketching R' to help get a handle on the limits of integration, you find:

$$\iint_R xy \, dx \, dy = \boxed{\int_0^2 \int_0^{v+2} \frac{1}{27} (2u^2 - 5uv + 2v^2) \, du \, dv}.$$