Math 182 Midterm Exam 2

March 25, 2008
NAME:
[Bold numbers] indicate points (45 total).
For visibility, please put a box around your final anwer to each question.
I. [4] Find the mass of a thin plate with density function $1 / r$, covering the region outside the circle $r=3$ and inside the circle $r=6 \sin \theta$.
Solution. $r=6 \sin \theta$, or $x^{2}+y^{2}=r^{2}=6 r \sin \theta=6 y$, is the circle $x^{2}+(y-3)^{2}=9$ of radius 3, centered at $(0,3)$. Sketch the two circles. Where they intersect, $3=6 \sin \theta$, i.e., $\sin \theta=1 / 2$, i.e., $\theta=\pi / 6$ or $5 \pi / 6$. The mass is then

$$
\begin{aligned}
\int_{\pi / 6}^{5 \pi / 6} \int_{3}^{6 \sin \theta}(1 / r) r d r d \theta=\int_{\pi / 6}^{5 \pi / 6}(6 \sin \theta-3) & d \theta=-6 \cos \theta-\left.3 \theta\right|_{\pi / 6} ^{5 \pi / 6} \\
= & 12(\sqrt{3} / 2)-12 \pi / 6=6 \sqrt{3}-2 \pi .
\end{aligned}
$$

II. Let \mathbf{F} be the vector-field $(y \sin z, x \sin z, 1+x y \cos z)$ on \mathbf{R}^{3}.
(a) [3] Find all potential functions for \mathbf{F}.
(b) [3] Calculate the work done by \mathbf{F} along the curve

$$
(x, y, z)=(\arccos (t / \pi), \arcsin (t / \pi), \sqrt[7]{\sin t}) \quad(0 \leq t \leq \pi)
$$

Solution. (a) If $f(x, y, z)$ is a potential, then $f_{x}=y \sin z$, so

$$
f(x, y, z)=x y \sin z+g(y, z)
$$

Then $f_{y}=x \sin z$ gives $g_{y}=0$, i.e.,

$$
g(y, z)=h(z) .
$$

Then $f_{z}=1+x y \cos z$ gives $h_{z}=1$, i.e., $h(z)=z+C(C$ constant $)$, and so

$$
f(x, y, z)=x y \sin z+z+C \text {. }
$$

(b) The work done is the difference between the values of any potential at the terminal and initial points, that is,

$$
\left.(x y \sin z+z)\right|_{(\pi / 2,0,0)} ^{(0, \pi / 2,0)}=0 .
$$

III. [20] Set up but do not evaluate integrals for the following:
(a) The average value of the function $x y z$ over the region bounded by the coordinate planes and the plane $x+y+z=2$.
(b) The volume of the region bounded underneath by the hemisphere $\rho=1, z \geq 0$, and above by the cardioid of revolution $\rho=1+\cos \phi$.
(c) The centroid of the region outside the cylinder $x^{2}+y^{2}=1$ and bounded above by the paraboloid $z=9-x^{2}-y^{2}$ and bounded below by the plane $z=0$.
(d) The moment of inertia around its axis of a right circular cone of uniform density δ, with base radius a and height h.
Hint. Put the cone's vertex at the origin and its axis along the z-axis.

Solution.

(a) $\int_{0}^{2} \int_{0}^{2-z} \int_{0}^{2-y-z} x y z d x d y d z / \int_{0}^{2} \int_{0}^{2-z} \int_{0}^{2-y-z} d x d y d z$.
(b) Using spherical coordinates, sketch (neatly) what happens on any plane $\theta=$ constant, as ϕ goes from 0 to $\pi / 2$. That will lead to

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{1}^{1+\cos \phi} \rho^{2} \sin \phi d r d \phi d \theta \text {. }
$$

(c) The cylinder meets the paraboloid in the circle $x^{2}+y^{2}=1, z=8$. Sketch as in (b), to get the limits of integration. By symmetry, the centroid is on the z-axis, at height $M_{x y} / M=$ (in cylindrical coordinates)

$$
\int_{0}^{2 \pi} \int_{0}^{8} \int_{1}^{\sqrt{9-z}} z r d r d z d \theta / \int_{0}^{2 \pi} \int_{0}^{8} \int_{1}^{\sqrt{9-z}} r d r d z d \theta
$$

(d) In cylindrical coordinates,

$$
\iiint r^{2} \delta d V=\delta \int_{0}^{2 \pi} \int_{0}^{h} \int_{0}^{a z / h} r^{3} d r d z d \theta
$$

IV. [7] Find the circulation around, and the total flux across, the ellipse ($\cos t, 4 \sin t$), $0 \leq t \leq 2 \pi$, for the vector field (x, y).

Solution. Circulation. You can calculate the appropriate integral, but it's easier to notice that the field is conservative $\left(\left(x^{2}+y^{2}\right) / 2\right.$ is a potential), so the circulation is 0 .

Flux. At the point $(\cos t, 4 \sin t), \mathbf{F}=(\cos t, 4 \sin t)$, the velocity vector is $\mathbf{v}=(-\sin t, 4 \cos t)$, the unit tangent vector is $\mathbf{T}=(-\sin t, 4 \cos t) /|\mathbf{v}|$, and the "right side" unit normal vector is $\mathbf{n}=\mathbf{T} \times \mathbf{k}=(4 \cos t, \sin t)|\mathbf{v}|$.

The flux is
$\int_{0}^{2 \pi}(\mathbf{F} \cdot \mathbf{n}) d s=\int_{0}^{2 \pi}(\mathbf{F} \cdot \mathbf{n})|\mathbf{v}| d t=\int_{0}^{2 \pi}\left(4 \cos ^{2}+4 \sin ^{2} t\right) d t=4 \int_{0}^{2 \pi} d t=8 \pi$.
Note. You can use $M d y-N d x$ instead of $(\mathbf{F} \cdot \mathbf{n})|\mathbf{v}| d t$.
V. [8] Let R be the region bounded by the four lines $y=x / 2, y=2 x$, $y=2 x-2$, and $x+y+2=0$. Let $u=x-2 y, v=2 x-y$.

Fill in the boxes to make the following equality true:

$$
\iint_{R} x y d x d y=\int_{\square}^{\square} \int_{\square}^{\square} \square d u d v .
$$

Solution. First solve the equations to get

$$
x=(2 v-u) / 3, y=(v-2 u) / 3 .
$$

So $x y=\left(2 v^{2}-5 v u+2 u^{2}\right) / 9$, and in the (v, u)-plane, R becomes the parallelogram R^{\prime} bounded by the lines $u=0, v=0, v=2, u=v+2$. Also, the Jacobian $\partial(x, y) / \partial(v, u)=1 / 3$ (easy calculation).

Sketching R^{\prime} to help get a handle on the limits of integration, you find:

$$
\iint_{R} x y d x d y=\int_{0}^{2} \int_{0}^{v+2} \frac{1}{27}\left(2 u^{2}-5 u v+2 v^{2}\right) d u d v
$$

