Due at recitation, Thurs. Jan. 10, 2008

1. Let L be a line in \mathbf{R}^{3} (three-space), and let $a_{1} x+b_{1} y+c_{1} z=d_{1}, a_{2} x+b_{2} y+c_{2} z=d_{2}$ be two distinct planes containing L.

Show that for any real numbers u and v, not both 0 ,

$$
u\left(a_{1} x+b_{1} y+c_{1} z-d_{1}\right)+v\left(a_{2} x+b_{2} y+c_{2} z-d_{2}\right)=0
$$

is the equation of a plane containing L.
It is in fact true that other than these there are no further planes containing L. You might try convincing yourself of that-but it needn't be handed in.
2. Find the equation of the cylinder in \mathbf{R}^{3} consisting of all lines that are parallel to the vector $(3,2,1)$ and that pass through a point on the curve $y=e^{x}, z=x+e^{x}$.

In what follows, page numbers refer to the text.
You can also be view these problems online at coursecompass.com by clicking through to Chapter Contents/Chapter12/Section 12.6/Multimedia textbook exercise set.
3. p. 882 , \#78.
4. p. 883, \#80.

Recall that the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$.
5. p. 883 , \#81.

