Math 182 Recitation1-31

Due at recitation, Thurs. Jan. 31, 2008

1. p. 980 , \#66.
2. p. 980 , \#75.
3. p. 988 , \#32.
4. p. 988 , \#42.
5. (a) Let $f(x)$ be a one-to-one continuous function defined on a closed interval $[a, b]$. Assume $f(b)>f(a)$. Prove that f is strictly increasing (that is, $f(c)>f(d)$ for any $c>d$ in $[a, b])$.

Hint. Show that the continuous function $g(t)=f(t b+(1-t) c)-f(t a+(1-t) d)(0 \leq t \leq 1)$ never takes the value 0 ; and then use the intermediate-value theorem to deduce that $f(c)-f(d)$ has the same sign as $f(b)-f(a)$.
(b) Prove that for any strictly increasing function f-continuous or not-the inverse function f^{-1} (see $\S 7.1$) is continuous.

Hint. To show continuity at a point $x=f(y)$ in the domain of f^{-1}, for any $\epsilon>0$ take

$$
\delta=\min (f(y+\epsilon)-f(y), f(y)-f(y-\epsilon)) .
$$

