Math 182 Recitation3-20

Due at recitation, Thurs. Mar. 20, 2008

1. (a) Let $C=\mathbf{r}(t)=(g(t), h(t)), a \leq t \leq b$, be a plane curve. Let $\tau=\psi(t)$, where ψ is a strictly increasing function, with inverse $\phi=\psi^{-1}$.

Then the plane curve $\tilde{C}=\tilde{\mathbf{r}}(\tau)=(g(\phi(\tau)), h(\phi(\tau))), \psi(a) \leq \tau \leq \psi(b)$, has the same underlying path as C, with the same initial and terminal points. Use the change of variable (substitution) formula for one-variable integrals to show that for any vector field F,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{\tilde{C}} \mathbf{F} \cdot d \tilde{\mathbf{r}} .
$$

(b) In (a), suppose that ψ is strictly decreasing, so that while \tilde{C} still has the same underlying path as C, the initial and terminal points get reversed. In other words, now $\psi(b) \leq \tau \leq \psi(a)$, and the path is traversed in the opposite direction. Show that in this case,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=-\int_{\tilde{C}} \mathbf{F} \cdot d \tilde{\mathbf{r}} .
$$

Note. The simplest case of what happens in (b) is the formula $\int_{a}^{b} f(t) d t=-\int_{b}^{a} f(\tau) d \tau$ that you get by the substitution $t=-\tau$.
2. In this problem you will fill in the omitted part of the proof of Theorem 1 in $\S 16.3$, by showing that if path independence holds for a vector field

$$
\mathbf{F}=(M(x, y, z), N(x, y, z), P(x, y, z))
$$

in a connected open region R, then $\mathbf{F}=\nabla f$ for some function f defined on R.
Fix a point (a, b, c) in R. For (x, y, z) in R, define $f(x, y, z)$ to be $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along any curve $C=\mathbf{r}(t)$ in R from (a, b, c) to (x, y, z). (By assumption, such curves exist-since R is connected, and they all produce the same value for $f(x, y, z)$.)
(a) Explain why $f\left(x^{\prime}, y^{\prime}, z^{\prime}\right)-f(x, y, z)$ is $\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}^{\prime}$ along any curve $C^{\prime}=\mathbf{r}^{\prime}(t)$ in R from (x, y, z) to $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$.
(b) Show that the partial derivative f_{x} is M by using part (a) to express the difference $f(x+u, y, z)-f(x, y, z)$ for small u as an integral along the straight line segment joining (x, y, z) to $(x+u, y, z)$, and then differentiating that expression with respect to u. (Note that R is assumed open, and so there is a ball centered at (x, y, z) and contained entirely within R; and therefore the said segment will lie entirely within R if u is sufficiently small.)

A similar argument, which you needn't repeat, shows that $f_{y}=N$ and $f_{z}=P$.

