
Continuity

1. Continuous functions. We say that a function f taking real numbers to real numbers is contin-
uous at s when either of the following equivalent conditions holds:

(1) For any sequence sn → s, we have f(sn) → f(s).
(2) For any ε > 0, there is δ > 0 such that |x− s| < δ implies |f(x)− f(s)| < ε.

The first condition says that f behaves nicely with respect to limits, so we can write

lim
n→∞

f(sn) = f
(

lim
n→∞

sn

)
.

The second condition states that a small variation in the input leads to a small variation in the output.
For instance suppose a toy train is on a track like the one in the picture:

The blue dot represents the starting position of the train, and the track goes in a straight line over
a small hill. Suppose there is friction on the flat part but not on the hill. We launch the train to the
right with some starting initial velocity, let it roll freely, and measure where it comes to a rest. Let f
be the function taking the initial velocity to the final position. For small values of initial velocity the
train comes to a rest on the left side of the hill, and for large values on the right side of the hill. For
most values the function is continuous, because if we want to achieve a final position f(x) to within a
given tolerance ε > 0 of a given final position f(s), then we need only get the initial velocity x right
to within a suitable corresponding tolerance δ. But, at the critical velocity vc at which the train has
just enough energy to make it up the hill, there is a discontinuity: if v < vc, then f(v) is to the left of
the hill, and if v > vc, then f(v) is to the right of the hill.

See Figure 1 for an illustration of ε and δ.

Figure 1. An illustration of definition (2) for a continuous function, and of its failure
for a jump discontinuity.

Let us check that these two definitions are equivalent.

Kiril Datchev, February 5, 2026.
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Proof. Suppose first that (2) holds. Let sn → s be given and ε > 0 be given. By condition (2), there
is δ > 0 such that |x− s| < δ implies

|f(x)− f(s)| < ε. (1.1)

Since sn → s, there is N such that n > N implies |sn−s| < δ. Hence n > N implies |f(sn)−f(s)| < ε
by substituting sn = x into (1.1).

Now let us show that if (2) does not hold, then (1) does not hold either. If (2) does not hold, then
there is ε > 0 such that, for any δ, we can find x such that |x − s| < δ and |f(x) − f(s)| ≥ ε. This
means that, for any n, we can find sn such that |sn − s| < 1/n and |f(sn)− f(s)| ≥ ε. The inequality
|sn − s| < 1/n shows that sn converges to s, while the inequality |f(sn)− f(s)| ≥ ε shows that f(sn)
does not converge to f(s). □

Example 1.2.

(1) The simplest examples of continuous functions are linear functions f(x) = mx+ b. We check
definition (1) using the limit laws of sequences: sn → s implies that msn + b → ms+ b.

(2) Similarly, all rational functions are continuous wherever they are defined: if P and Q are
polynomials, then the limit laws for sequences show that if sn → s then P (sn)/Q(sn) →
P (s)/Q(s), as long as the denominators are nonzero.

(3) Let us use definition (2) to check that the square root function is continuous at all nonnegative
numbers. Let ε > 0 and s > 0 be given. If |x− s| < δ, then, as long as δ < s, we have

|
√
x−

√
s| = |x− s|√

x+
√
s
<

δ√
s− δ +

√
s
<

δ√
s
.

Thus we may take δ to be any number less than both s and ε
√
s. If s = 0, then the proof is

easier because 0 ≤
√
x < ε as long as 0 ≤ x < ε2.

Exercise 1.3.

(1) Find δ > 0 such that |x− 4| < δ implies |
√
x− 2| < 0.01.

(2) Find δ > 0 such that |x− 1
2 | < δ implies | 1x − 2| < 0.01.

(3) Show that the cube root function is continuous at all real numbers.1

We analogously have two equivalent definitions for the limit of a function of a real variable. We
say that f(x) → L as x → a, or that limx→a f(x) = L, when either

(1) For any sequence sn → s such that sn ̸= s, we have f(sn) → L.
(2) For any ε > 0, there is δ > 0 such that 0 < |x− s| < δ implies |f(x)− f(s)| < ε.

Note the stricter requirement that sn ̸= s, or that 0 < |x − s|; this corresponds to the fact that the
limit is not affected by the value of the function at s (and indeed, the function need not be defined at
s.) One can similarly formulate versions where one or both of a and L is infinite. We will do just one
of these. We say that f(x) → ∞ as x → −∞, when either

(1) For any sequence sn → −∞, we have f(sn) → ∞.
(2) For any real number K, there is a real number M such that x < M implies f(x) > K.

Exercise 1.4.

1Hint: Mimic the proof for the square root function, replacing the step
√
x−

√
s = x−s√

x+
√
s
by a similar step based on

a3 − b3 = (a− b)(a2 + ab+ b2).
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(1) Formulate the corresponding equivalent definitions for f(x) → −∞ as x → s, and prove that
they are equivalent.

(2) Use one of the definitions to prove that x/(x2 − 1)2 → −∞ as x → 1.

2. Intermediate value theorem. Continuity makes it possible to solve equations by bisection, gen-
eralizing the approach we already used for

√
2.

Theorem 2.1 (Intermediate value theorem). Let I be a closed interval and let f : I → R be continu-
ous.2 If f has opposite signs at the endpoints of I, then there is c in I such that f(c) = 0.

Proof. Let I1 = I, and m1 be the midpoint of I. If f(m1) = 0 then we are done. If not, either the left
half or the right half of I is an interval such that f has opposite signs at the enpoints. Let that half
be I2, and let m2 be the midpoint of I2. Continue this process to obtain a sequence of nested intervals
I1 ⊃ I2 ⊃ · · · , each half as long as the previous. Here is a picture for f(x) = x2 − 2, building on the
corresponding picture from the Introduction.
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I1

I2

I3

I4

I5

y = f(x)

Then

a1 ≤ a2 ≤ · · · ≤ an ≤ · · · ≤ · · · bn ≤ · · · ≤ b2 ≤ b1.

We now put c = lim an = lim bn, where an and bn are the left and right endpoints of In. The
limits exist because both sequences are monotone and bounded, and we prove that the limits agree
by taking the limit of both sides of the equation bn − an = (21−n)(b1 − a1). Moreover, by continuity,
lim f(an) = lim f(bn) = f(c).

It remains to check that f(c) = 0. This follows from the fact that either f(an) < 0 < f(bn) for all
n, or else f(an) > 0 > f(bn) for all n. Combining the inequalities with lim f(an) = lim f(bn) = f(c)
yields 0 ≤ f(c) ≤ 0 and hence f(c) = 0. □

It follows that nth roots of positive numbers exist: apply Theorem 2.1 to f(x) = xn − q.

2The notation f : I → R means that f is a function which takes I to real numbers.
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The intermediate value theorem has many fun applications to puzzles.3 We start with a road trip.
Let’s say we drive from our home to our vacation on day 1, and then at the end of the vacation drive
back home on day N . Suppose we take the same route there and back, but do not necessarily leave
at the same time, make the same stops, or go at the same speeds. Is there a time at which we are at
the same place on both days?

By the intermediate value theorem, the answer is yes. To see this, measure time in units of days,
and let d1(t) be our distance from home at time t on day 1, and dN (t) our distance from home at time
t on day N . Then d1(0) = dN (1) = 0, while d1(1) = dN (0) = D, where D is the distance between
home and the vacation. Let f(t) = d1(t)− dN (t). Then f(0) = −D, while f(1) = D, so there is c in
(0, 1) such that f(c) = 0, i.e. d1(c) = dN (c), and at this time c we are in the same place on both days.

Another application is to wobbly tables. Suppose we have a symmetric square table, resting on the
ground in such a way that two legs are stable but two are wobbling due to unevenness in the floor.
We will show that the table can be stabilized, provided we can slide it around the floor in such a way
that the wobble varies continuously.

To see this, observe that the table can only wobble with respect to opposite corners, and only at
most one pair of opposite corners can wobble for any positioning of the table. In other words, either
the pair AC wobbles and BD is stable, or vice versa, or both are stable. Suppose to begin with AC
is wobbling and BD is stable. If we rotate the table by a right angle, then BD will be wobbling and
AC will be stable.

A

B C

D B

C D

A

Figure 2. The table in its original and rotated positions. The bolded points are the
wobbly ones.

Since wobbling varies continuously, and both pairs cannot wobble simultaneously, as we slide the
table gradually from the original position to the rotated position, we must pass through a position
where neither pair is wobbling.

More precisely, suppose the sliding takes place over a time interval [0, 1], so that at t = 0 the table
is in its original position and at t = 1 it is in its rotated position. Let hAC(t) and hBD(t) be the
amplitudes of wobbling at each t, so that hAC(0) > 0, hBD(0) = 0, hAC(1) = 0, hBD(1) = hAC(0).
Let f(t) = hAC(t) − hBD(t). Then f(0) = −f(1). Hence, by Theorem 2.1, there is c in the interval
(0, 1) such that f(c) = 0. That makes hAC(c) = hBD(c) = 0.

Exercise 2.2. Prove that cos(x) = x has a unique solution, using the fact that cosine is even, takes
values in [−1, 1], and is strictly decreasing in [0, π].4

3See Section 4.5 of Loya’s Amazing and Aesthetic Aspects of Analysis for all these and more.
4Incidentally, the iteration sn+1 = cos(sn) converges to this solution for any initial value, but this will be easier to

prove later with more technique.
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3. Extreme value theorem. Physical processes settle to equilibrium states of minimal energy. Light
rays take the path of least time. All motion follows principles of least action and their generalizations.
Euler explains: the structure of the universe being most perfect, nothing happens anywhere without
some rule of maximum or minimum shining forth.5

The extreme value theorem guarantees the existence of a maximizer and a minimizer of a continous
function f over a compact interval [a, b].

Example 3.1. Given ℓ > 0, what are the maximum and minimum area of a rectangle with perimeter
4ℓ, and what rectangles achieve these values? Let f(x) = x(2ℓ − x), the area of an x by 2ℓ − x
rectangle. Then f(x) is maximized when x = ℓ and the rectangle is a square. But if x ranges over
the open interval (0, 2ℓ), covering all possible rectangles of perimeter 4ℓ, then f can be an arbitrarily
small positive number, but never zero. To get a minimum we extend f to the compact interval [0, 2ℓ],
including the endpoints, and thus allowing generalized rectangles whose breadth may vanish. Then a
minimal area f(x) = 0 occurs at x = 0 and x = 2ℓ.

We now state and prove the general result.

Theorem 3.2. Let f : [a, b] → R be continuous. Then there exists x∗ in [a, b] such that f(x∗) ≥ f(x)
for all x ∈ [a, b].

This statement establishes the existence of a maximum. The existence of a minimum follows directly
by applying the statement with −f in place of f .

Proof. As in the proof of the intermediate value theorem, we use bisection: the interval [a, b] is split
in half, an appropriate one of the two halves is chosen, the chosen half is split in half, one of the two
new halves is chosen, and so on, until in the limit only one point is left and this is the one we

More precisely, we say that the left half [a, a+b
2 ] is good if, for any y in [a+b

2 , b], there is x in [a, a+b
2 ]

such that f(x) ≥ f(y). (Note that x is allowed to depend on y here.) If the left half is good, then
let I1 = [a, a+b

2 ] and J1 = [a+b
2 , b]. If the left half is not good, then the right half is good, and we let

I1 = [a+b
2 , b] and J1 = [a, a+b

2 ]. We call I1 the first good interval, and J1 the first rejected interval.

Now repeat the process with I1 in place of [a, b], to obtain a second good interval I2 and a second
rejected interval J2, and iterate. Denoting the endpoints of Ik by [ak, bk], we obtain the sequences

a1 ≤ a2 ≤ · · · ≤ ak ≤ · · · ≤ bk ≤ · · · ≤ b2 ≤ b1, bk − ak = (b− a)/2k.

Hence there is a unique point x∗ in each Ik, and x∗ = lim ak = lim bk.

To be continued....

□

5A method for discovering curves with the properties of maxima and minima, or solution of isoperimetric problems in
the broadest accepted sense, 1744.


	1. Continuous functions
	2. Intermediate value theorem
	3. Extreme value theorem

