Introduction

1. The square root of two. The first analysis problem ever solved is finding the diagonal of a square
in terms of the sides. By the Pythagorean theorem, this means solving 22 = 12 + 12 = 2, or in other
words computing z = v/2. This is where we begin, in the footsteps of the four thousand year old clay
tablet YBC 72809.

The writing across the horizontal diagonal is 1 24 51 10, which stands for 1 + g—é + % + %. This

sum computes z = v/2 to within one part in two million. More precisely,
24 | 51 10
1+ 50 + 502 + 605 \/§
V2
For a square with side length one kilometer (greater than the height of any building), this computes

the diagonal to accuracy better than half a millimeter (the diameter of a grain of sand). We will see
that, with the right technique, it is not hard to recover and even improve this result.

= —0.000042%. (1.1)

Here analysis means analysis of the infinite, and the analysis on the tablet is only implicit. As
Newton explains a few millenia later, after presenting his general method for solving equations with
infinitely many terms [New, Section 52], the analysis of the infinite subsumes the analysis of the finite,
and this is why it has become standard to just say analysis:

Whatever common analysis performs by means of a finite number of terms (provided
that can be done) this method can always perform the same by means of infinite
equations, so that I have not made any question of giving it the name of analysis
likewise.

For a more complete discussion of the development of analysis, see [Dat], especially cxviii and ccex
for the tablet and clxviii for Newton’s Analysis by equations of an infinite number of terms.

Kiril Datchev, January 13, 2026.
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2. Computing /2 by bisection. The most straightforward approach to /2 is the crude but fun-
damental method of bisection, or binary search.

Let I; be the interval (1,2), and for each n = 1,2,3,..., let I, .1 be the interval containing v/2
which is half as long as I,, and shares an endpoint with I,,. Here is a number line with the sequence

of intervals:

x
1 5 o3 3 2
1 8 16 2
I
I
I3
1y
I

Explicitly, we obtain these intervals as follows. Since 12 < 2 < 22, we know that v/2 is in I;. The
midpoint of I; is 3/2, which we denote m;. Since m? = 9/4 > 2, we know that /2 is in (1,3/2), and

so we take Iy = (1,3/2). Similarly, ms = 5/4, m3 = 25/16, and I3 = (5/4,3/2). Continuing in this
way, we obtain the following table.

n 1 2 3 4
n e | 6) | GY | Y
My, ; =1.1 Z =1.01 lgl = 1.011 % = 1.0111

In this table, m,, is expanded in binary, with Os in the expansion corresponding to left subintervals,
and 1s to right subintervals.

Since v/2 is in I,,, the distance from /2 to the midpoint of I,,, is less than half the length of I,,,
which equals 1/2™. This implies the following bound on the accuracy of the approximations m,,:

V2 —my| < 1/2™. (2.1)

Thus for example the distance from /2 to 5/4 is less than 1/4, and the distance from /2 to 23/16 is
less than 1/16. Sometimes we do get lucky: as we see from the last row of the table, the accuracy of
mq is actually better than that of mg. Nevertheless, comparing (1.1) and (2.1) shows that, to obtain

the result of YBC 7289, unless we are very lucky, we must either go up to a rather large value of n, or
find a better method.
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EXERCISE 2.2. Add a column to the table above for n = 5, and a row with a,, = 1/2" for the accuracy
bound.! For which value of n does 1/2" reproduce the accuracy of YBC 72897

3. What kind of number is v/2? Of course the method of bisection does sometimes get lucky, and
my, produces much better accuracy than the bound a, = 1/2" from (2.1) suggests. For example, at
the stage n = 1 it might seem that m; = 3/2 is only accurate to within a; = 1/2, but from the result
of stage n = 4 we can see that v/2 is in Iy = (11/8,3/2), and hence v/2 ~ 3/2 is accurate to within
as =1/8.

Might we get completely lucky by this method, and find n such that m, = v/2 exactly? The answer
is no, because m,, is rational and V/2 is not.

To explain this, we begin by recalling the fact that any rational number can be written in lowest
terms: this means writing it so that the denominator is as small as possible. For example, 8/12 in
lowest terms is 2/3, and the solution to 4t + 7 =9 in lowest terms is t = 1/2.

We now proceed with the classic Pythagoarean proof by contradiction that 22 = 2 has no rational
solutions. Suppose for contradiction that (m/n)? = 2, and that m/n is in lowest terms. Then

2
— = 2, which implies m? = 2n2.
n
Hence m is even? and we can write m = 2m’, where m’ is an integer. Then

(2m")? = 2n?, which implies 2m’* = n?.

Hence n is even and we can write n = 2n/, where n’ is an integer. Thus

m  2m’  m’

n 2n/ n’

Since n’ = n/2 < n this is in contradiction with the fact that m/n is in lowest terms. Consequently,
there is no rational number z such that z? = 2.

This proof has far-reaching variants and generalizations: see [HaWr, Chapter IV]. An interesting
one, which avoids factoring, is the following, from [Ded, Section IV].

EXERCISE 3.1. Suppose ¢ is a positive integer which is not the square of an integer (in other words
q#1,q# 4, q #9, etc.). Let us show that 22 = ¢ has no rational solutions. Suppose for
contradiction that (m/n)? = ¢, and that m/n is in lowest terms. Let k& be the positive integer such
that k2 < ¢ < (k+1)2. Let n’ = m — nk and let m’ = nqg — mk. Prove that® 0 < n’ < n, and that
m'? — qn? = 0. Conclude that (m’/n’)? = ¢, contradicting the minimality of n.

4. Computing /2 by recursive averages. We wish to define a sequence z1, xs, ... of approxima-
tions to v/2 in such a way that the remainder terms

S = Tn — V2

LHint: ms = 45/32.

2An integer k is even if k/2 is an integer, and odd otherwise. We are using here the fact that the square of an even
integer is even and the square of an odd integer is odd.

3Hint: Write n = n(Z —k).
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diminish rapidly. Squaring both sides yields s2 = x2 — 2v/2x,, + 2, and solving for v/2 yields

1 2 2
Va= H(ms 2) - S

n 2z '
We accordingly define
Tn+1 = 1(xn + i)a (41)
2 n
because 41 is a better approximation than z, as long as |s,| < 2x,. Note that the summands x,,
and % are equal if 2 = 2, and in that case the next term x,,1 equals the previous z,. Otherwise
the summands are different and x4 is obtained by averaging them.

A simple choice of starting value is 1 = 2, yielding 20 = (2 + 2) = 3, 23 = 3(3 + %) = 1T and

so on. We obtain a number line and table, analogous to but better than the ones of Section 2.

n 1 2 3
3 17
2 —
o 2 12
9 1 289 1
21 4=2+42 | - =2+ | — =24 —
T L I R PV R VY
xs X2 €1
5 noww 3 2
1 8 16 2
It is clear that the values x1, zo, ... approach z much more rapidly than the m, mo, ... of Section 2.

EXERCISE 4.2. (1) Add a column to the table above for n = 4, and a row with M,, defined by the
equation l‘% =2+ ﬁn Thus My = %, My = 4, and so on. These values of M,, measure the
accuracy of the successive terms in the sequence. Admire how quickly they grow.*

(2) Suppose 2 > 2, and let M, = 1/(x2 — 2). Find positive integers a and b such that if

n

Tni1 = 5(2n + ), then® M, 41 = aM? + bM,,.

Tn

The best way to measure the accuracy of the approximation is in terms of the relative remainders
Ty — V2
V2 o

Putting together (4.3) and (4.1), combining terms, and factoring the numerator, yields

(4.3)

Tp =

1 ( N 2 ) 1 2 — 221, +2 (1, —V2)? r2 r2
T = ——\| X _— —_ = = = = .
T\ g, 22,1/2 200V2 a2 2rp 2
Using 2o = 3/2 and 1.4 < v/2 < 1.5 in (4.3) gives
0<r<.1/V2.

4 Hint: My = 166464.
SHint: Substitute z, 1 = (xn + %ﬂ) into Mpt1 = 1/(22,1 — 2) and simplify to get 4z2/(x2 — 2)?. Then plug in

2 1



Next, since since 0 < rp41 < 72/2, we get 0 < r3 < 2/800, 0 < 74 < 2/8002, and more generally
0 < Tpy3 < 2/800%" forn=0,1,2,... (4.4)

EXERCISE 4.5. (1) For a square the size of North America, find n such that z, computes the
diagonal to accuracy better than the width of a hair.%

(2) Use the above method to derive a sequence of approximations to v/3. Start with z; = 2, find
formulas for x,41 in terms of z, and 7,11 in terms of r,, and use 1.73 < V3 < 1.75 to show
that 0 < r2 < .02/4/3 and deduce an even more spectacular analogue of (4.4). This solves the
problem of finding the diagonal of a cube in terms of its sides.

5. Coming attractions. Later we will see that the method of recursive averages above is a special
case of Newton’s method of solving equations. Specifically, given an approximate solution z, to
f(z) = 22 — 2 =0, we find an improved solution x,,41 as follows: let £(x) be the tangent line at x,, to
f(z), and let 41 be the solution to the linear equation ¢(x,,) = 0:

(@n, f(zn))

z* Tn

Tn+1

This works especially well for extracting kth roots, yielding the recursion

Tpy1 = %((k —Dap, + d )

xﬁ_l
for computing {/q.

For more difficult problems we will develop the theory of integration. The classic in this genre is
the computation of 7, the area of the unit disk. Archimedes’ method of exhaustion handles this by
computing areas of inscribed and circumscribed polygons, and only with great effort and ingenuity
was he able to find in this way that 3% << 3%.

We can do better by paralleling our approach to v/2, using a trigonometric function such as f(z) =
sin(x), which obeys f(7w/6) = 1/2. The difficulty is evaluating f accurately. This can be handled by

6 Hint: If the diagonal of the square is 107 meters, then the square is bigger than North America. But 5 < 2/8004 =

2711078, so the accuracy attained by x5 = ggggg; is better than 27'1107! < 5.107° meters, which is less than the

width of a hair. For a square the size of the Solar System, x6 is more than accurate enough.
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writing
saresin (5) =6(5+5(3) + 55(5) ++)
=6arcsin (=) =6(=+=(= —I=
T ARG 2 6\2) Ta0\2
(or better yet, a strategic variant of this equation), where the series expansion of arccos is obtained
by integration.

We will see that integration solves many problems. For example, n! = 1-2---n becomes difficult
to compute directly as n grows. But by taking the logarithm we can relate it to an easy integral. We
write

In(n!) =Inl+1In2+---lnn,

and observe that this is a sum of rectangles sitting above the curve In z, pictured below with n = 5:

L~

0 1 2 3 4 5 6 7

Hence, if n > 2 then
n
/ Inzdx < Inn!
1

On the other hand, we will see that these rectangles exceed the area under the curve by an amount
(the area of the green curved triangles above) less than %ln n, which yields

/lna:d:v<lnn!</ lna:da:—i—%lnn.
1 1

Evaluating the integrals gives

1
nlnn—n—|—1<lnn!<n1nn—n+§lnn+1,

and exponentiating gives
n\n" n\”
e(—) <nl< e\/ﬁ<—) ,
e e
The right inequality is much closer than the left one, and with more work one can prove the more
precise Stirling’s approximation, which states that
n\n" n\n
27Tn<—) <nl <V Omne T (—) .
e e
A more complicated problem we will solve using integration and iteration is the differential equation
d
%x(t) :f(x(t)7t)7 a:(O) = X0,
where xg is a given initial condition and f is a given function for the law obeyed by y. This is solved
by the iteration

ZTn+1(t) = yo —i—/o f(zn(s),s)ds.



For this problem we iterate over functions x,(t), where previously we iterated over numbers x,.

REFERENCES

[Dat] Radoslav Datchev, An investigation of knowledge.

[Ded] Richard Dedekind, Continuity and irrational numbers, 1872.

[HaWr| G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 1938.
[New] Sir Isaac Newton, Analysis by equations of an infinite number of terms, 1669.


https://www.aninvestigationofknowledge.com/

	1. The square root of two
	2. Computing 2 by bisection
	3. What kind of number is 2?
	4. Computing 2 by recursive averages
	5. Coming attractions
	References

