
Introduction

1. The square root of two. The first analysis problem ever solved is finding the diagonal of a square
in terms of the sides. By the Pythagorean theorem, this means solving x2 = 12 + 12 = 2, or in other
words computing x =

√
2. This is where we begin, in the footsteps of the four thousand year old clay

tablet YBC 7289.

1 1

x

The writing across the horizontal diagonal is 1 24 51 10, which stands for 1 + 24
60 +

51
602

+ 10
603

. This

sum computes x =
√
2 to within one part in two million. More precisely,

1 + 24
60 + 51

602
+ 10

603
−
√
2

√
2

= −0.000042%. (1.1)

For a square with side length one kilometer (greater than the height of any building), this computes
the diagonal to accuracy better than half a millimeter (the diameter of a grain of sand). We will see
that, with the right technique, it is not hard to recover and even improve this result.

Here analysis means analysis of the infinite, and the analysis on the tablet is only implicit. As
Newton explains a few millenia later, after presenting his general method for solving equations with
infinitely many terms [New, Section 52], the analysis of the infinite subsumes the analysis of the finite,
and this is why it has become standard to just say analysis:

Whatever common analysis performs by means of a finite number of terms (provided
that can be done) this method can always perform the same by means of infinite
equations, so that I have not made any question of giving it the name of analysis
likewise.

For a more complete discussion of the development of analysis, see [Dat], especially cxviii and cccx
for the tablet and clxviii for Newton’s Analysis by equations of an infinite number of terms.

Kiril Datchev, January 13, 2026.
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2. Computing
√
2 by bisection. The most straightforward approach to

√
2 is the crude but fun-

damental method of bisection, or binary search.

Let I1 be the interval (1, 2), and for each n = 1, 2, 3, . . . , let In+1 be the interval containing
√
2

which is half as long as In and shares an endpoint with In. Here is a number line with the sequence
of intervals:

1 3
2

25
4

11
8

23
16

x

I1

I2

I3

I4

I5

Explicitly, we obtain these intervals as follows. Since 12 < 2 < 22, we know that
√
2 is in I1. The

midpoint of I1 is 3/2, which we denote m1. Since m2
1 = 9/4 > 2, we know that

√
2 is in (1, 3/2), and

so we take I2 = (1, 3/2). Similarly, m2 = 5/4, m2
2 = 25/16, and I3 = (5/4, 3/2). Continuing in this

way, we obtain the following table.

n 1 2 3 4

In (1, 2)
(
1,

3

2

) (5
4
,
3

2

) (11
8
,
3

2

)
mn

3

2
= 1.1

5

4
= 1.01

11

8
= 1.011

23

16
= 1.0111

m2
n

9

4
= 2 +

1

4

25

16
= 2− 7

16

121

64
= 2− 7

64

529

256
= 2 +

17

256

In this table, mn is expanded in binary, with 0s in the expansion corresponding to left subintervals,
and 1s to right subintervals.

Since
√
2 is in In, the distance from

√
2 to the midpoint of In, is less than half the length of In,

which equals 1/2n. This implies the following bound on the accuracy of the approximations mn:

|
√
2−mn| < 1/2n. (2.1)

Thus for example the distance from
√
2 to 5/4 is less than 1/4, and the distance from

√
2 to 23/16 is

less than 1/16. Sometimes we do get lucky: as we see from the last row of the table, the accuracy of
m1 is actually better than that of m2. Nevertheless, comparing (1.1) and (2.1) shows that, to obtain
the result of YBC 7289, unless we are very lucky, we must either go up to a rather large value of n, or
find a better method.
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Exercise 2.2. Add a column to the table above for n = 5, and a row with an = 1/2n for the accuracy
bound.1 For which value of n does 1/2n reproduce the accuracy of YBC 7289?

3. What kind of number is
√
2? Of course the method of bisection does sometimes get lucky, and

mn produces much better accuracy than the bound an = 1/2n from (2.1) suggests. For example, at
the stage n = 1 it might seem that m1 = 3/2 is only accurate to within a1 = 1/2, but from the result
of stage n = 4 we can see that

√
2 is in I4 = (11/8, 3/2), and hence

√
2 ≈ 3/2 is accurate to within

a3 = 1/8.

Might we get completely lucky by this method, and find n such that mn =
√
2 exactly? The answer

is no, because mn is rational and
√
2 is not.

To explain this, we begin by recalling the fact that any rational number can be written in lowest
terms: this means writing it so that the denominator is as small as possible. For example, 8/12 in
lowest terms is 2/3, and the solution to 4t+ 7 = 9 in lowest terms is t = 1/2.

We now proceed with the classic Pythagoarean proof by contradiction that x2 = 2 has no rational
solutions. Suppose for contradiction that (m/n)2 = 2, and that m/n is in lowest terms. Then

m2

n2
= 2, which implies m2 = 2n2.

Hence m is even2 and we can write m = 2m′, where m′ is an integer. Then

(2m′)2 = 2n2, which implies 2m′2 = n2.

Hence n is even and we can write n = 2n′, where n′ is an integer. Thus

m

n
=

2m′

2n′ =
m′

n′ .

Since n′ = n/2 < n this is in contradiction with the fact that m/n is in lowest terms. Consequently,
there is no rational number x such that x2 = 2.

This proof has far-reaching variants and generalizations: see [HaWr, Chapter IV]. An interesting
one, which avoids factoring, is the following, from [Ded, Section IV].

Exercise 3.1. Suppose q is a positive integer which is not the square of an integer (in other words
q ̸= 1, q ̸= 4, q ̸= 9, etc.). Let us show that x2 = q has no rational solutions. Suppose for
contradiction that (m/n)2 = q, and that m/n is in lowest terms. Let k be the positive integer such
that k2 < q < (k + 1)2. Let n′ = m − nk and let m′ = nq −mk. Prove that3 0 < n′ < n, and that
m′2 − qn′2 = 0. Conclude that (m′/n′)2 = q, contradicting the minimality of n.

4. Computing
√
2 by recursive averages. We wish to define a sequence x1, x2, . . . of approxima-

tions to
√
2 in such a way that the remainder terms

sn = xn −
√
2

1Hint: m5 = 45/32.
2An integer k is even if k/2 is an integer, and odd otherwise. We are using here the fact that the square of an even

integer is even and the square of an odd integer is odd.
3Hint: Write n′ = n(m

n
− k).
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diminish rapidly. Squaring both sides yields s2n = x2n − 2
√
2xn + 2, and solving for

√
2 yields

√
2 =

1

2

(
xn +

2

xn

)
− s2n

2xn
.

We accordingly define

xn+1 =
1

2

(
xn +

2

xn

)
, (4.1)

because xn+1 is a better approximation than xn as long as |sn| < 2xn. Note that the summands xn
and 2

xn
are equal if x2n = 2, and in that case the next term xn+1 equals the previous xn. Otherwise

the summands are different and xn+1 is obtained by averaging them.

A simple choice of starting value is x1 = 2, yielding x2 =
1
2(2 +

2
2) =

3
2 , x3 =

1
2(

3
2 + 2

3/2) =
17
12 , and

so on. We obtain a number line and table, analogous to but better than the ones of Section 2.

n 1 2 3

xn 2
3

2

17

12

x2n 4 = 2 + 2
9

4
= 2 +

1

4

289

144
= 2 +

1

144

211
8

23
16

3
2

5
4

x

x1x2x3

It is clear that the values x1, x2, . . . approach xmuch more rapidly than them1,m2, . . . of Section 2.

Exercise 4.2. (1) Add a column to the table above for n = 4, and a row with Mn defined by the
equation x2n = 2 + 1

Mn
. Thus M1 = 1

2 , M2 = 4, and so on. These values of Mn measure the

accuracy of the successive terms in the sequence. Admire how quickly they grow.4

(2) Suppose x2n > 2, and let Mn = 1/(x2n − 2). Find positive integers a and b such that if
xn+1 =

1
2(xn + 2

xn
), then5 Mn+1 = aM2

n + bMn.

The best way to measure the accuracy of the approximation is in terms of the relative remainders

rn =
xn −

√
2√

2
. (4.3)

Putting together (4.3) and (4.1), combining terms, and factoring the numerator, yields

rn+1 =
1

2
√
2

(
xn +

2

xn

)
− 1 =

x2n − 2
√
2xn + 2

2xn
√
2

=
(xn −

√
2)2

2xn
√
2

=
r2n

xn
√
2
=

r2n
2rn + 2

.

Using x2 = 3/2 and 1.4 <
√
2 < 1.5 in (4.3) gives

0 < r2 < .1/
√
2.

4Hint: M4 = 166464.
5Hint: Substitute xn+1 = 1

2
(xn + 2

xn
) into Mn+1 = 1/(x2

n+1 − 2) and simplify to get 4x2
n/(x

2
n − 2)2. Then plug in

x2
n = 2 + 1

Mn
.
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Next, since since 0 < rn+1 < r2n/2, we get 0 < r3 < 2/800, 0 < r4 < 2/8002, and more generally

0 < rn+3 < 2/8002
n
, for n = 0, 1, 2, . . . (4.4)

Exercise 4.5. (1) For a square the size of North America, find n such that xn computes the
diagonal to accuracy better than the width of a hair.6

(2) Use the above method to derive a sequence of approximations to
√
3. Start with x1 = 2, find

formulas for xn+1 in terms of xn and rn+1 in terms of rn, and use 1.73 <
√
3 < 1.75 to show

that 0 < r2 < .02/
√
3 and deduce an even more spectacular analogue of (4.4). This solves the

problem of finding the diagonal of a cube in terms of its sides.

5. Coming attractions. Later we will see that the method of recursive averages above is a special
case of Newton’s method of solving equations. Specifically, given an approximate solution xn to
f(x) = x2 − 2 = 0, we find an improved solution xn+1 as follows: let ℓ(x) be the tangent line at xn to
f(x), and let xn+1 be the solution to the linear equation ℓ(xn1) = 0:

f(x)

ℓ(x)

x∗

xn+1

xn

(xn, f(xn))

This works especially well for extracting kth roots, yielding the recursion

xn+1 =
1

k

(
(k − 1)xn +

q

xk−1
n

)
for computing k

√
q.

For more difficult problems we will develop the theory of integration. The classic in this genre is
the computation of π, the area of the unit disk. Archimedes’ method of exhaustion handles this by
computing areas of inscribed and circumscribed polygons, and only with great effort and ingenuity
was he able to find in this way that 31

7 < π < 310
71 .

We can do better by paralleling our approach to
√
2, using a trigonometric function such as f(x) =

sin(x), which obeys f(π/6) = 1/2. The difficulty is evaluating f accurately. This can be handled by

6Hint: If the diagonal of the square is 107 meters, then the square is bigger than North America. But r5 < 2/8004 =
2−1110−8, so the accuracy attained by x5 = 665857

470832
is better than 2−1110−1 < 5 · 10−5 meters, which is less than the

width of a hair. For a square the size of the Solar System, x6 is more than accurate enough.
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writing

π = 6arcsin
(1
2

)
= 6

(1
2
+

1

6

(1
2

)3
+

3

40

(1
2

)5
+ · · ·

)
(or better yet, a strategic variant of this equation), where the series expansion of arccos is obtained
by integration.

We will see that integration solves many problems. For example, n! = 1 · 2 · · ·n becomes difficult
to compute directly as n grows. But by taking the logarithm we can relate it to an easy integral. We
write

ln(n!) = ln 1 + ln 2 + · · · lnn,
and observe that this is a sum of rectangles sitting above the curve lnx, pictured below with n = 5:

Hence, if n ≥ 2 then ∫ n

1
lnx dx < lnn!

On the other hand, we will see that these rectangles exceed the area under the curve by an amount
(the area of the green curved triangles above) less than 1

2 lnn, which yields∫ n

1
lnx dx < lnn! <

∫ n

1
lnx dx+

1

2
lnn.

Evaluating the integrals gives

n lnn− n+ 1 < lnn! < n lnn− n+
1

2
lnn+ 1,

and exponentiating gives

e
(n
e

)n
< n! < e

√
n
(n
e

)n
,

The right inequality is much closer than the left one, and with more work one can prove the more
precise Stirling’s approximation, which states that

√
2πn

(n
e

)n
< n! <

√
2πne

1
12n

(n
e

)n
.

A more complicated problem we will solve using integration and iteration is the differential equation

d

dt
x(t) = f(x(t), t), x(0) = x0,

where x0 is a given initial condition and f is a given function for the law obeyed by y. This is solved
by the iteration

xn+1(t) = y0 +

∫ t

0
f(xn(s), s) ds.
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For this problem we iterate over functions xn(t), where previously we iterated over numbers xn.
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