
Sequences

We now turn to more general problems regarding sequences s1, s2, . . . .

1. Mathematical induction. In the Introduction we defined a sequence of approximations to
√
2

by

x1 = 2, xn+1 =
1

2

(
xn +

2

xn

)
,

and defined the relative errors

rn =
xn −

√
2√

2
.

We obtained the recursive formula

rn+1 =
r2n

2rn + 2
, n ≥ 1,

which shows that
n ≥ 1 and rn > 0 =⇒ rn+1 > 0. (1.1)

The symbol ‘=⇒’ means ‘implies’. On the other hand, since r1 =
2−

√
2√

2
, we have

r1 > 0. (1.2)

Combining (1.1) and (1.2) yields
rn > 0 for all n ≥ 1.

More generally, combining

n ≥ n0 and the property P is true of sn =⇒ the property P is true of sn+1, (1.3)

and
the property P is true of sn0 , (1.4)

yields
the property P is true of sn for all n ≥ n0.

This is the principle of mathematical induction; (1.3) is the inductive step, and (1.4) is the base step.
We visualize this as a line of dominos falling: the inductive step is having the dominos set up such
that each knocks over the next when it falls, and the base step is knocking over the first domino.

In the example above, we used the principle with n0 = 1, P the property of being > 0, and sn = rn.

Example 1.5. Let us use mathematical induction to show that

rn < 2/8002
n−3

for all n ≥ 3. (1.6)

To establish the base step, we use x2 = 1.5 and 0 < 1.5−
√
2 < 0.1 to deduce that

0 < r2 <
1

10
√
2
,

and hence

r3 =
r22

2r2 + 2
<

r22
2

<
(1/10

√
2)2

2
=

2

800
.
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To establish the inductive step, we observe that if

rn < 2/8002
n−3

,

then

rn+1 <
r2n
2

<
(2/8002

n−3
)2

2
=

2

(8002n−3)2
=

2

8002n−2 .

Exercise 1.7.

(1) Use mathematical induction to prove that if s1 = 1 and sn+1 = sn/2 for all n ≥ 1, then
sn = 1/2n for all n ≥ 1.

(2) Define a sequence recursively by s1 = 1/5 and sn+1 = s3n/9 for all n ≥ 1. Mimic the treatment
of rn above to find a formula for sn in the style of (1.6), and prove it by mathematical induction.

2. Long term behavior. We analyze the long term behavior of a sequence using a key concept which
has several equivalent formulations:

(1) A property P is is true of sn for all but finitely many n.

(2) A property P is is true of sn for n large enough.

(3) There exists a number N such that, if n ≥ N , then P is true of sn.

(4) There exists a number N such that, if n > N , then P is true of sn.

We sometimes express this concept by saying that P is true of sn eventually.

Example 2.1. Let sn = n2− 3n− 108. Then sn > 0 for all but finitely many n, as we can see in three
ways, the first rough and the last two precise.

(1) Sketch the parabola x2 − 3x − 108 as and note that when x is large, this graph must be
above the x axis, regardless of where the x axis is.

(2) To find an explicit N , we pull out the dominant term, and write

sn = n2
(
1− 3

n
− 108

n2

)
.

Now use the fact that the right side is positive as long as both factors are positive, so it is
enough to take N = 20: then, for n ≥ N , we have

1− 3

n
− 108

n2
> 1− 3

20
− 1

3
> 0.

(3) We can also find the best N by factoring n2 − 3n− 108 = (n− 12)(n+ 9) to see that sn ≤ 0
when n ≤ 12 and sn > 0 when n ≥ 13.

Example 2.2. If sn = n2 + 36
√
2(−1)nn + 105 cos( π

20n), then sn > 100 for all but finitely many n.
This statement is more complicated but pulling out the dominant term still works well:

sn − 100 = n2
(
1− 36

√
2(−1)n

n
+

105 cos( π
20n)− 100

n2

)
.

Now we may take N = 1000 and, for n ≥ N , deduce

1− 36
√
2(−1)n

n
+

105 cos( π
20n)− 100

n2
> 0,
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from
36
√
2(−1)n

n
<

48

1000
and

105 cos( π
20n)− 100

n2
> − 1

10
− 1

10000
.

Finding the best N would be a bigger job, but we can quickly see that we are within a factor of 10 by
writing

s100 = 1− 36
√
2(−1)100

100
+

105 cos( π
20100)− 100

1002
= 1− 36

√
2

100
− 10− 1

100
< 0.

Exercise 2.3.

(1) Let sn = n2 + 4n− 100. Find N such that an > 1000 when n ≥ N .

(2) Let sn = −n4 + 37n + (−1)n109. Find N which is within a factor of 10 of the best N such
that sn < 0 when n ≥ N .

3. Limits. We say that a sequence s1, s2, . . . converges to a limit L when, for any ε > 0, we have
|sn − L| < ε for all but finitely many n. We write

lim
n→∞

sn = L, or lim sn = L.

Graphically, the meaning of this definition is the following:

L+ ε

L− ε

1 2 N
x

y

Figure 1. The limit of a sequence. The dots are the graph of the terms of the sequence:
(1, s1), (2, s2), and so on. Given any tolerance ε > 0, there is N such that all terms of
the sequence from sN onward are within that tolerance of the limit: |sn − L| < ε, i.e.
all dots to the right of the line x = N are between the lines y = L+ ε and y = L− ε.

Analogously to the discussion of long term behavior above, it makes difference to the definition if
we replace the condition |sn − L| < ε by |sn − L| ≤ ε.

The most direct way to prove that a sequence s1, s2, . . . converges to a limit is to let ε > 0 be
given, and find a corresponding N such that n ≥ N implies |sn − L| < ε.
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Example 3.1. Let sn = 1/n. Given ε > 0, we have 0 < sn < ε when n > 1/ε. Hence lim sn = 0.

Example 3.2. Consider the sequence 1
2 ,

2
3 ,

3
4 ,

4
5 , . . . . Then sn = n−1

n = 1 − 1
n . As above, −ε <

sn − 1 < 0 when n > 1/ε. Hence lim sn = 1.
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