
Symmetric Matrices and the Spectral Theorem

(I) An n× n square matrix is said to be symmetric if its entries are symmetric across the main
diagonal. For n = 2 and n = 3 these are the matrices of the form[

a b
b c

]
,

a b c
b d e
c e f

 .

(II) If A is symmetric, then

v⃗ · (Aw⃗) = (Av⃗) · w⃗ (1)

for all vectors v⃗ and w⃗. Indeed, being symmetric is equivalent to the condition that A = AT ,
which allows us to write

v⃗ · (Aw⃗) = v⃗TAw⃗ = v⃗TAT w⃗ = (Av⃗)T w⃗ = (Av⃗) · w⃗.

(III) The above equation yields something interesting if v⃗ and w⃗ are both eigenvectors. If

Av⃗ = λv⃗, and Aw⃗ = µw⃗,

then substituting into (1) yields

µv⃗ · w⃗ = λv⃗ · w⃗,

or

(µ− λ)v⃗ · w⃗ = 0.

Hence, if µ ̸= λ, then v⃗ is orthogonal to w⃗.

(IV) The most important deeper property of symmetric matrices is that a symmetric matrix with
real entries is always diagonalizable and all the eigenvalues and eigenvectors are real. This is
in contrast to more complicated cases like[

0 1
0 0

]
, and

[
0 −1
1 0

]
,

the first of which is defective, having only the eigenvectors

[
x1
0

]
, and the second of which has

complex eigenvalues and eigenvectors.

(V) One version of the Spectral Theorem says that given any n×n real symmetric matrix A, there
is an orthonormal basis of Rn consisting of eigenvectors of A. We prove this using multivariable
calculus. The first step is maximizing

(Av⃗) · v⃗,

subject to the constraint

∥v⃗∥2 = 1.
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By the method of Lagrange multipliers, 1 this maximum occurs at a point where the gradient
of the function being maximized is a constant multiple of the gradient of the constraint, i.e.

∇(Av⃗) · v⃗ = λ∇(∥v⃗∥2 − 1). (4)

To compute the gradients, we expand:

∥v⃗ + u⃗∥2 = ∥v⃗∥2 + 2v⃗ · u⃗+ ∥u⃗∥2,

and recall the Taylor expansion formula

F (v⃗ + u⃗) = F (v⃗) +∇F (v⃗) · u⃗+ · · · ,

which yields

∇∥v⃗∥2 = 2v⃗. (5)

Similarly,

(A(v⃗ + u⃗)) · (v⃗ + u⃗) = (Av⃗) · v⃗ + 2(Av⃗) · u⃗+ 2(Au⃗) · u⃗,

where we used (1) to simplify, and hence

∇(Av⃗) · v⃗ = 2Av⃗. (6)

Substituting (5) and (6) into (4) yields

Av⃗ = λv⃗.

Thus the solution to the maximization problem is an eigenvector, and the Lagrange multiplier
is an eigenvalue.

1See Paul’s Notes for an introduction to Lagrange multipliers with pictures and examples. A neat derivation of the
general formula comes from linear algebra. Specifically, if v⃗ is a maximizer of F (v⃗) subject to the constraint that it lies
in the surface M given by the equations G1(v⃗) = · · · = Gk(v⃗) = 0, then the Lagrange multipliers formula says that there
are constants λ1, . . . , λk such that

∇F (v⃗) = λ1∇G1(v⃗) + · · ·+ λk∇Gk(v⃗). (2)

To derive this, we start with the more general formula

∇F (v⃗) = λ1∇G1(v⃗) + · · ·+ λk∇Gk(v⃗) + w⃗, (3)

where w⃗ is tangent to the surface M ; this comes from the fact that any vector is a sum of a term perpendicular to
the surface (denoted here by the general linear combination λ1∇G1(v⃗) + · · ·+ λk∇Gk(v⃗)) a term tangent to the surface
(denoted here by w⃗).

Next, let γ⃗(t) be a curve in the surface M such that γ⃗(0) = v⃗ and γ⃗′(0) = w⃗. Since v⃗ is a maximizer of F , it follows
that 0 is a maximizer of h(t) = F (γ⃗(t)). Consequently

0 = h′(0) = ∇F (γ⃗(0)) · γ⃗(0) = ∇F (v⃗) · w⃗ = ∥w⃗∥2,

where for the last equality we substituted (3) and used the fact that ∇Gj(v⃗) · w⃗ = 0 for every j. Hence w⃗ = 0, which
reduces (3) to (2).

A nice way to encapsulate (2) is to say that constrained maxima occur at critical points of the corresponding Lagrangian
function, defined by

F(v⃗, λ1, . . . , λk) = F (v⃗)− λ1G1(v⃗)− · · · − λkGk(v⃗).

https://tutorial.math.lamar.edu/classes/calciii/lagrangemultipliers.aspx
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We will see that what we have found is the largest eigenvalue of A. 2 To find the next
largest, we do the same maximization subject to an additional constraint: we label the above
eigenvector and eigenvalue as v⃗1 and λ1, and we wish to maximize

(Av⃗2) · v⃗2,
subject to the constraints

∥v⃗2∥2 = 1, v⃗2 · v⃗1 = 0.

This time the method of Lagrange multipliers says that at a maximum we have

∇(Av⃗2) · v⃗2 = λ∇(∥v⃗2∥2 − 1) + µ∇(v⃗2 · v⃗1),
(with gradients taken with respect to v⃗2) or

Av⃗2 = λv⃗2 + µv⃗1. (7)

We compute µ by dotting both sides with v⃗1, to get

(Av⃗) · v⃗1 = λv⃗ · v⃗1 + µv⃗1 · v⃗1 = µv⃗1 · v⃗1, (8)

where for the second equals we used the constraint v⃗ · v⃗1 = 0. But, by (1),

(Av⃗) · v⃗1 = v · (Av1) = λ1v⃗ · v⃗1 = 0,

so (8) implies µ = 0. Plugging µ = 0 into (7) yields

Av⃗2 = λv⃗2,

and thus we have a second eigenvector, orthonormal with the first one. Repeating this process,
i.e. maximizing

(Av⃗k) · v⃗k,
subject to the constraints

∥v⃗k∥2 = 1, v⃗k · v⃗1 = · · · = vk · vk−1 = 0,

yields an orthonormal basis of eigenvectors.

(VI) For example, let

A =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 .

We observe that 0 is an eigenvalue, because the matrix has repeated rows, and the correspond-

ing eigenspace is


−x3
−x4
x3
x4

 which is spanned by


−1
0
1
0

 and


0
−1
0
1

. Similarly, 2 is an eigenvalue,

2We could use the corresponding minimization problem to locate the smallest eigenvalue, and the other solutions to
the Lagrange multiplier problem are the other eigenvalues and eigenvectors. A subtle point arises: how do we know
that these maximizers and minimizers exist within the family of unit vectors? Recall that to solve some optimization
problems, it is necessary to leave the family where the problem is posed in order to avoid the conclusion that there is no
solution. For example, if we set out to minimize F (x) = (x2 − 2)2 over the rational numbers, to get a solution we must
allow irrational numbers. If we set out to minimize the area of a rectangle subject to the constraint that the perimeter
is 1, wo get a solution we must use a kind of degenerate rectangle, or line segment, with area 0. This issue does not arise
for our eigenvalue problem because the real numbers are complete and the set of unit vectors is compact ; see for example
Section 5.1 of Shifrin’s Multivariable Mathematics for more on this.
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with eigenspace spanned by


1
0
1
0

 and


0
1
0
1

. The desired orthonormal basis is

 1√
2


−1
0
1
0

 ,
1√
2


0
−1
0
1

 ,
1√
2


1
0
1
0

 ,
1√
2


0
1
0
1


 .

(VII) Another version of the Spectral Theorem says that given any n× n real symmetric matrix A,
there exist a diagonal matrix D and an invertible matrix V such that V −1 = V T (we say that
V is orthogonal) and such that

A = V DV T , D = V TAV.

To derive this from the above, we let the diagonal entries of D be the eigenvalues λ1, . . . λn,
and the columns of V be corresponding orthonormal eigenvectors.

(VIII) In the example above, we can thus take

D =


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

 , V =
1√
2


−1 0 0 1
0 −1 1 0
1 0 0 1
0 1 1 0

 ,

and check directly that V TV = V V T = I. Note that one of the rewards of having an orthonor-
mal basis of eigenvectors is that computing the inverse of V is almost no work.

(IX) Similarly, if A =

[
1 2
2 4

]
, since the rows are proportional we see that 0 is an eigenvalue, with

corresponding unit eigenvector 1√
5

[
−2
1

]
. Since the the trace of A is 5, the other eigenvalue is

5, and since the matrix is symmetric the eigenvector must be perpendicular, i.e. 1√
5

[
1
2

]
. Thus

A = V DV T , D = V TAV.

with

D =

[
0 0
0 5

]
, V = V T =

1√
5

[
−2 1
1 2

]
.

Hence

A100 =
1

5

[
−2 1
1 2

] [
0 0
0 5100

] [
−2 1
1 2

]
=

[
−2 1
1 2

] [
0 0
599 2 · 599

]
=

[
599 2 · 599

2 · 599 4 · 599
]
.


