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1 Three integral formulas

Below we will use the concept of a differential form to explain the relationship between the
following three integral formulas. Along the way we develop the algebra and calculus of
these differential forms, and highlight the correspondences between properties of these and
more familiar facts from vector algebra and calculus.

We stick to the two dimensional case here. Later we will consider the three dimensional
case in some detail also, and see how the patterns revealed by the language of differential
forms extend into higher dimensions as well.

Throughout we assume for simplicity that all functions are differentiable infinitely many
times.

1.1 Fundamental Theorem of Calculus for line integrals

The line integral version of the Fundamental Theorem of Calculus says that if f = f(x,y)
then

/C O, fd + 0, fdy = F(q) — F(p), (1)

where C' is an oriented curve in R? from p to q.

1.2 Green’s Theorem

Green’s Theorem says that if Fy} = Fi(z,y) and Fy = Fy(x,y) then

// (0xF2 — OyFl)dA = / Flda: + ngy, (2)
D oD

where D is a simple region (or a union of simple regions) and 9D is the boundary of D
oriented such that the interior of D is to the left of 0D.
1.3 Change of variables for double integrals

The change of variables formula for double integrals says that if x = z(u,v) and y = y(u,v)
is a change of variables, (so that we can write v = u(x,y) and v = v(x,y)) and f = f(z,y),

then
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where O(x,y)/0(u,v) = 0,20,y — 0,x0yy is the determinant of the Jacobian matrix. Here
D is a region in the xy plane, and D* is the same region expressed in terms of u and v.

dudv, (3)




1.3.1 Aside on Jacobians and orientation

It is important to note that if (z,y) — (u,v) is an invertible change of variables, mean-
ing that the functions x(u,v), y(u,v), u(z,y), and v(z,y) all exist and are differentiable
throughout the regions of integration, then we cannot have |0(z,y)/0(u,v)| = 0 anywhere,
and so we must have d(x,y)/0(u,v) > 0 or d(x,y)/0(u,v) < 0 everywhere.

In the former case we say the change of variables is orientation preserving and we may

write (3) as
//D fdxdy = / . fgéi: i; dudv, (4)

and in the latter case we say the change of variables is orientation reversing and we may

write (3) as
/ /D Fdedy = — / N fggz :zidudv. (5)

Note that switching v and v makes an orientation preserving change of variables into
an orientation reversing one, and vice versa.

2 Differential forms

Two dimensional differential forms come in three sorts: zero forms, one forms, and two
forms. The number zero, one, or two, is the degree of the form.

2.1 Zero forms

A zero form is an expression f, where f is a function f(x,y); this is just a new name for a
familiar object.

2.2  One forms

A one form is an expression
Fldl' + ngy,

where F; = Fi(z,y) and Fy = Fy(z,y). Considering such a one form is equivalent to
considering the corresponding vector field (Fi, Fy); we can think of this as alternative
notation akin to writing (2,3) = 2i + 3j.

We define an operation d, the total differential or exterior derivative, from zero forms
to one forms, by

df = 0, fdx + 0, fdy. (6)

Then (1) can be rewritten as

/C df = f(a) — F(p),



and we can change variables as follows:

Fidz + Fody = Fi(Oyxdu + 0yxdv) + Fo(0yydu + Oyydv)
= (F’lauaj + FQauy)du + (Flavz + F28vy)dva

where we used some of the same notation as in §1.3.

2.3 Two forms

A two form is an expression

fdx A dy,

where f = f(z,y). The symbol A is pronounced ‘wedge’.
We define the double integral of a two form by just deleting the wedge:

/ /D fdr Ady = / | fdudy (8)

We extend the operation d from (6) to take one forms to two forms by putting
d(Fidx 4+ Fydy) = (0, F> — 0,Fy)dx A\ dy, (9)
so that in particular we have
d(df) = d(0, fdx + 0, fdy) = (0,0, f — 0,0, f)dx N dy = 0. (10)

Then if we let a be a one form, we see that (2) becomes

Jl, /

The operation A extends to a more general product on differential forms as follows. If f
and g are zero forms, then f A g is just the usual product fg. Similarly if f is a zero form
and Fidx + Fsdy is a one form, then

2.4 Wedge

Wedging together two one forms is more interesting: we put
(Fldl' + ngy) A (G1d$ + ngy) = (Fng — FgGl)d.iE VAN dy (11)

Note the following things:



1. There is a close correspondence between A and cross product:
(F1, F»,0) x (G1,G,0) = (0,0, F1Gy — FyGY),
and an analogous one between d and curl:
curl(Fy, F»,0) = (0,0, 0, F> — 0, F1).
Equation (10) above corresponds to the fact that the curl of a gradient is zero.
2. The wedge product is antisymmetric on one forms:

3. We could equivalently define d on one forms by

d(Flde + ngy) = dF1 Adz + dF2 A dy (13)

To check (13), apply (9) to the left hand side and (6) and (11) to the right hand side.
Actually, (13) is a special case of the more general product rule:

d(fa)=df Na+ fda,

for any zero form f and one form «.
Combining (7) and (11) gives a change of variables formula for two forms:

fdz Ndy = f(Oyzdu + dyxdv) A (Dyydu + Oyydv)
= f(auxavy - &Jx@uy)du A dv.

Integrating both sides and using (8) gives us a variant of (3)

//D fdxdy = //D f(Oux0yy — 0px0yy)du A dv. (14)

To get (3) from this one keeps track of the orientation in the conversion from an integral
over D to an integral over D*.

2.5 Hodge star

We have seen how A on one forms corresponds to taking a cross product, and d to taking
a curl. To get operations corresponding to dot product and divergence, we introduce the
Hodge star operator, denoted .

The Hodge star operator is defined by

x(Fidz + Fady) = Fidy — Fydx. (15)
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It corresponds to a right angle rotation of the vector (Fi, Fy). Combining with A gives
(Fidx + Fydy) A x(Grdx + Gady) = (F1G1 + F»Ge)dx A dy,
which corresponds to the dot product (Fi, Fy) - (G, G2). Similarly we have
d* (Fydx + Fody) = (0, F1 + 0,Fy)dx A dy,

which corresponds to the divergence div(F}, F).
The Hodge star converts the usual statement of Green’s Theorem (2) to a version related

to the divergence:
// (&Fl + 8yF2)dA == / Fldy — ngl‘
D oD

The integral on the right can be interpreted as the flux of the vector field (F7, Fy) outward
through the boundary of D, as can be seen by writing it out in terms of a parametrization
and observing that the integrand is the dot product of the vector field with an outward
normal vector.

3 Further reading

The references below are to the sixth edition of the book Vector Calculus by Marsden
and Tromba, and to Arapura’s notes on differential forms available at https://www.math.
purdue.edu/~dvb/preprints/diffforms.pdf.

For more on the line integral version of the Fundamental Theorem of Calculus, see
sections 7.2 of the book and 1.4 of the notes. For more on Green’s Theorem, see section
8.1 of the book and 1.6 of the notes. For more on changes of variables, see section 6.2 of
the book. For more on two forms, see section 2 of the notes.

A more complete account of this material can be found in the book Calculus on Mani-
folds by Spivak.



