Homework 11

Due April 23rd at the beginning of class, or by 1:50 pm in MATH 602. Justify your answers. Please let me know if you have a question or find a mistake.

1. For each of the following systems, find a>0 and b>0 such that $L(x,y)=ax^2+by^2$ obeys $\frac{d}{dt}L\neq 0$ whenever $(x,y)\neq (0,0)$. (This makes L a Liapounov function.) State whether the origin is a stable or unstable equilibrium in each case.

(a)

$$x' = -x^{3} + 7xy^{2},$$

$$y' = -3x^{2}y - y^{3}.$$

(b)

$$x' = x^3 - y^3,$$

 $y' = 3xy^2 + 4x^2y + 5y^3.$

2. Use the Laplace transform to solve

$$y'' - y' - 6y = 100e^{8t}$$
, $y(0) = 5$, $y'(0) = 20$.

3. Use the Laplace transform to find all real numbers a and b such that the solution to

$$y'' - y' - 6y = 3e^{-4t} + 5e^{-6t}, y(0) = a, y'(0) = b,$$

obeys $\lim_{t\to\infty} y(t) = 0$. (You do not have to fully find y(t).)

4. The motion of a forced spring mass system is given by

$$y''(t) + y(t) = \begin{cases} 1, & t < 1, \\ 0, & t \ge 1, \end{cases}$$
 $y(0) = 1, \quad y'(0) = 0.$

- (a) Use the Laplace transform to find y(t).
- (b) Find the maximum of y(t). At what times is the maximum achieved?
- (c) Find the minimum of y(t). At what times is the minimum achieved?