Riemann, Collected Papers

XII.
On the representation of a function by a trigonometric series.

(Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu
Gottingen, vol. 13.)

The following essay on trigonometric series consists of two essentially dif-
ferent parts. The first part contains a history of the research and opinions on
arbitrary (graphically given) functions and their representation by trigouo-
metric series. In its composition I was guided by some hints of the famous
mathematician, to whom the first fundamental work on this topic was due.
In the second part, I examine the representation of a function by a trigono-
metric series including cases that were previously unresolved. For this, it was
necessary to start with a short essay on the concept of a definite integral and
the scope of its validity.

History of the question of the representation of an arbitrary func-
tion by a trigonometric series.

1.

The trigonometric series named after Fourier, that is, the series of the
form

a,sinx + assin2x +azsin3x + - - -

1
-|—§ bo + by cos & + by cos2x + by cos3x + - - -

play a significant role in those parts of mathematics where arbitrary functions
occur. Indeed, there is reason to assert that the most substantial progress
in this part of mathematics, that is so important for physics, has depended
on a clear insight into the nature of these series. As soon as mathematical
research first led to consideration of arbitrary functions, the question arose
whether an arbitrary function could be expressed by a series of the above
form.

This occurred in the middle of the eighteenth century during the study
of vibrating strings, a topic in which the most prominent mathematicians of
the time were interested. Their insights about our topic would probably not
be represented were it not for the investigation of this problem.
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XII. On the representation of a function by a trigonometric series.

As is well known, under certain hypotheses that conforin approximately
to reality, the shape of a string under tension that is vibrating in a plane is
determined by the partial differential equation

82@/ ) aQy

o~ o

where z is the distance of an arbitrary one of its points from the origin and y
is the distance from the rest position at time ¢t. Furthermore « is independent
of t, and also of z for a string of uniform thickness.

D’Alembert was the first to give a general solution to this differential
equation.

He showed! that each function of z and t, which when set in the equation
for y yields an identity, must have the form

flz +at) + o(z — at).

This follows by introducing the independent variables x + at, x — ot instead
of  and t, whereby

Oy L Oy changes into 4 aTﬁmLt)
—_— — = — o 4——.
or? a? Ot? & d(z — at)

Besides the partial differential equation, which results from the general
laws of motion, y must also satisfy the condition that it is always 0 at the
endpoints of the string. Thus, if one of these points is at x = 0 and the other
at x = £, we have :

flat) = —¢(-at),  f(t+at)=—¢((—at)
and consequently
f(z) = =o(=2) = —o({ — (L + 2)) = f(20 + 2),
y= flat +z)— flat — x).

After d’Alembert had succeeded in finding the above for the general so-
lution of the problem, he treated, in a sequel? to his paper, the equation

Y Mémoires de l’académie de Berlin, 1747, p. 214.
2Ibid. p. 220.

220



Riemann, Collected Papers

f(z) = f(2¢ + z). That is, he looked for analytic expressions that remained
unchanged if z is increased by 2¢.

In the next issue of Mémoires de l’académie de Berlin®, Euler made a basic
advance, giving a new presentation of d’Alembert’s work and recognizing
more exactly the nature of the conditions which the function f(z) must
satisfy. He noted that, by the nature of the problem, the movement of the
string is completely determined, if at some point in time the shape of the
string and the velocity are given at each point (that is, y and %%). He showed
that if one thinks of the two functions as being determined by arbitrarily
drawn curves, then the d’Alembert function f(z) can always be found by a
simple geometric construction. In fact, if one assumes that y = g(x) and
%% = h(z) when t = 0, then one obtains

f@) = J(=2) = g(a) and f(@)+ f(=2) = = [ hia) da

for values of  between 0 and ¢, and hence obtains the function f(z) between
—¢ and ¢. From this, however, the values of f(z) can be derived for all other
values of z using the equation

f(z) = f(2¢+ 2).

This is, represented in abstract but now generally accepted concepts,
Euler’s determination of the function f(z).

D’Alembert at once protested against this extension of his methods by
Euler?, since it assumed that y could be expressed analytically in ¢ and z.

Before Euler replied to this, Daniel Bernoulli® presented a third treatment
of this topic, which was quite different from the previous two. Even prior

to d’Alembert, Taylor® had seen that y = sin ~7E Cos ’”;,O‘t, where n is an

. . 2 2
integer, satisfies %@ = 02%% and always equals 0 for z = 0 and z = £. From

this he explained the physical fact that a string, besides its fundamental
111

tone, can also give the fundamental tone of a string that is 5,3, 7,... as

3 Mémoires de l'académie de Berlin, 1748, p. 69.

4 Mémoires de l'académie de Berlin, 1750, p. 358. ‘Indeed, it seems to me, one can only
express y analytically in a more general fashion by supposing it is a function of ¢ and z.
But with this assumption one only finds a solution of the problem for the case where the
different graphs of the vibrating string can be contained in a single equation.’

5 Mémoires de ’academie de Berlin, 1753, p. 147.

STaylor, De methode incrementorum. '
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long (but otherwise similarly constituted). He took his particular solutions
as general: he thought that if the pitch of the tone was determined by the
integer n, then the vibration of the string would always be as expressed by
the equation, or at least very nearly. The observation that a string could
simultaneously sound different notes now led Bernoulli to the remark that
the string (by the theory) could also vibrate in accordance with the equation

. nrr  nwo
y-—*Zansm 7 08— (t — Bn).

Further, since all observed modifications of the phenomenon could be ex-
plained by this equation, he considered it the most general solution.” In or-
der to support this opinion, he examined the vibration of a massless thread
under tension, which was weighted at isolated points with finite masses. He
showed that the vibrations can be decomposed into a number of vibrations
that is always equal to the number of points, each vibration being of the
same duration for all masses.

This work of Bernoulli prompted a new paper from Euler, which was
printed immediately following it in the Mémoires de l’académie de Berlin®
He maintained, in opposition to d’Alembert®, that the function f(z) could
be completely arbitrary between —¢ and ¢. Euler!? noted that Bernoulli’s
solution (which he had previously represented as particular) is general if and
only if the series

. Im . 2z
a; SIn — + A9 SIN —— + - - -

14 ¢/
2xm

+é—b0+blcos%+bgcos T+

can represent the ordinate of an arbitrary curve for the abcissa x between
0 and ¢. Now no one doubted at that time that all transformations which
could be made with an analytic expression (finite or infinite) would be valid
for each value of the variable, or only inapplicable in very special cases.
Thus it seemed impossible to represent an algebraic curve, or in general a
nonperiodic analytically given curve, by the above expression. Hence Euler
thought that the question must be decided against Bernoulli.

"Loc. cit., p. 157 section XIII.

8 Mémoires de l’académie de Berlin, 1753, p. 196.
Loc. cit., p. 214

0T oc. cit., sections 111-X.
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The disagreement between Euler and d’Alembert was still unresolved by
this. This induced the young, and then little known, mathematician La-
prange to seek the solution of the problem in a completely new way, by
which he reached Euler’s results. He undertook!! to determine the vibration
of a massless thread which is weighted with an indeterminate finite number
of equal masses that are equally spaced. He then examined how the vibra-
lions change when the number of masses grows towards infinity. Although
he carried out the first part of this investigation with much dexterity and
a great display of analytic ingenuity, the transition from the finite to the
infinite left much to be desired. Hence d’Alembert could continue to vindi-
cate the reputation of his solution as the most general by making this point
in a note in his Opuscules Mathématiques. The opinions of the prominent
mathematicians of this time were, and remained, divided on the matter; for
in later work everyone essentially retained his own point of view.

In order to finally arrange his views on the problem of arbitrary func-
tions and their representation by trigonometric series, Euler first introduced
these functions into analysis, and supported by geometrical considerations,
applied infinitesimal analysis to them. Lagrange'? considered Euler’s results
(his geometric construction for the course of the vibration) to be correct,
but he was not satisfied with Fuler’s geometric treatment of the functions.
D’Alembert,'? on the other hand, acceded to Euler’s way of obtaining the
differential equation and restricted himself to disputing the validity of his
result, since one could not know for an arbitrary function whether its deriva-
tives were continuous. Concerning Bernoulli’s solution, all three agreed not
Lo consider it as general. While d’Alembert,!* in order to explain Bernoulli’s
solution as less general than his own, had to assert that an analytically given
periodic function cannot always be represented by a trigonometric series,
Lagrange®® believed it possible to prove this.

2.

Almost fifty years had passed without a basic advance having been made
in the question of the analytic representation of an arbitrary function. Then

11 Miscellanea Taurinensia, vol. I. Recherches sur la nature et la propagation du son.
12 Miscellanea Taurinensia, vol. 11, Pars math., p. 18.

13 Opuscules Mathématiques, d’Alembert. Vol. 1, 1761, p. 16, Sections VII—XX.

4 Opuscules Mathématiques, vol. 1, p. 42, Section XXIV.

15 Misc. Taur. vol. III, Pars math., p. 221, Section XXV.
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a remark by Fourier threw a new light on the topic. A new epoch in the
development of this part of mathematics began, which soon made itself known
in a wonderful expansion of mathematical physics. Fourier noted that in the
trigonometric series

flz) = a;sinx + assin2x + - - -
—|—%b0—|—b1cosx—|—b2c032x+~- )

the coefficients can be determined by the formulae

1 T 1 us

anp = — f(x)sinnxdz, b, = —/ f(x)cosnzx dz.

) . T )
He saw that the method can also be applied if the function f(x) is arbitrary.
He used a so-called discontinuous function for f(x) (with ordinate a broken
line for the abscissa z) and obtained a series which in fact always gives the
value of the function.

Fourier, in one of his first papers on heat, which was submitted to the
French academy!® (December 21, 1807) first announced the theorem, that
an arbitrary (graphically given) function can be expressed as a trigonometric
series. This claim was so unexpected to the aged Lagrange that he opposed
it. vigorously. There should!” be another note about this in the archives of
the Paris academy. Nevertheless, Poisson refers,'® whenever he makes use of
trigonometric series to represent arbitrary functions, to a place in Lagrange’s
work on the vibrating string where this method of representation can be
found. In order to refute this claim, which can only be explained by the well
known rivalry!'® between Fourier and Poisson, we must once again return to
Lagrange’s treatise, since nothing can be found that is published about these
facts by the academy.

In fact, one finds in the place cited?® by Poisson the formula:

‘y:2/YsinX7rdX xsinx7r+2/Ysin2X7rdX X sin 2z

+2/Ysin3X7rdX X sin3x7r+etc.+2/YsinnX7rdX X sin nxm,

16 Bulletin des sciences p. la soc. philomatique, vol I, p. 112.

17From a verbal report of Professor Dirichlet.

18 Among others, in the expanded Traité de mécanique No. 323, p. 638

19The review in the Bulletin des Sciences on the paper submitted by Fourier to the
academy was written by Poisson.

20 Misc. Taur., vol. 111, Pars math., p. 261.
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so that when z = X, one has y =Y, Y being the ordinate corresponding to
the abscissa X,

This formula looks so much like a Fourier series that is easy to confuse
them with just a quick glance. However, this appearance arises only because
Lagrange uses [ dX where today we would use > AX. Tt gives the solution
to the problem of determining the finite sine series

a;sinxm + as sin 2xm + - - - + a, SInnNaw

so that it has given values when z equals

1 2 n
n+1" n+1" "7 n+1

Lagrange denotes the variable by X. If Lagrange had let n become infinitely
large in this formula, then certainly he would have obtained Fourier’s re-
sult. However, if we read through his paper, we see that he was far from
believing that an arbitrary function could actually be represented by an in-
finite sine series. Rather, he had undertaken the whole work because be
believed that an arbitrary function could not be expressed by a formula.
Concerning trigonometric series, he thought they could be used to represent,
any analytically given periodic function. Admittedly, it now seems scarcely
possible that Lagrange did not obtain Fourier’s series from his summation
formula. However, this can be explained in that the dispute between Euler
and d’Alembert had predisposed him towards a particular opinion about the
proper method of proceeding. He thought that the vibration problem, for
an indeterminate finite number of masses, must be fully solved before apply-
ing limit considerations. This necessitated a rather extensive investigation?!,
which was unnecessary if he had been acquainted with the Fourier series.

The nature of the trigonometric series was recognized perfectly correctly
by Fourier.?? Since then these series have been applied many times in math-
ematical physics to represent arbitrary functions. In each individual case it
was easy to convince oneself that the Fourier series really converged to the
value of the function. However, it was a long time before this important
theorem would be proved in general.

2 Misc. Taur., vol 111, Pars math., p. 251.
22 Bulletin d. sc. vol. I, p. 115. ‘The coefficients a,a’,a”, ..., being then determined’,
etc.
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The proof which Cauchy® read to the Paris academy on February 27,
1826, is inadequate, as Dirichlet?? has shown. Cauchy assumed that if z is
replaced by the complex argument z + y¢ in an arbitrary periodic function
f(x), then the function is finite for each value of y. However, this only
occurs if the function is a constant. It is easy to see that this hypothesis was
unnecessary for the later conclusions. It suffices that a function ¢(z + yi)
exists which is finite for all positive values of y, whose real part is equal to
the given periodic function f(z) when y = 0. If one assumes this theorem,
which is in fact true,?® then Cauchy’s method certainly leads to the goal;
conversely, this theorem can be derived from the Fourier series.

3.

The question of the representation by trigonometric series of everywhere
integrable functions with finitely many maxima and minima was first settled
rigorously by Dirichlet?® in a paper of January 1829.

The recognition of the proper way to attack the problem came to him
from the insight that infinite series fall into two distinct classes, depending
on whether or not they remain convergent when all the terms are made
positive. In the first class the terms can be arbitrarily rearranged; in the
second, on the other hand, the value is dependent on the ordering of the
terms. Indeed, if we denote the positive terms of a series in the second class
by

a,as,as, ...,

and the negative terms by
_bl) _an _b3a SR

then it is clear that ) a as well as > b must be infinite. For if they were
both finite, the series would still be convergent after making all the signs the
same. If only one were infinite, then the series would diverge. Clearly now
an arbitrarily given value C can be obtained by a suitable reordering of the
terms. We take alternately the positive terms of the series until the sum is
greater than C'; and then the negative terms until the sum is less than C'.
The deviation from C never amounts to more than the size of the term at

23 Mémoires de ’ac. d. sc. de Paris, vol. VI, p. 603.

24 Crelle’s Journal fiir die Mathematik, vol IV, pp. 157 & 158.

25The proof can be found in the inaugural dissertation of the author.
26 Crelle’s Journal, vol. IV, p. 157.
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the last place the signs were switched. Now, since the numbers a as well as
he numbers b become infinitely small with increasing index, so also are the
Jdeviations from C'. If we proceed sufficiently far in the series, the deviation
hecones arbitrarily small, that is, the series converges to C.

The rules for finite sums only apply to the series of the first class. Only
hese can be considered as the aggregates of their terms; the series of the
necond class cannot. This circumstance was overlooked by mathematicians
ol the previous century, most likely, mainly on the grounds that the series
wlhich progress by increasing powers of a variable generally (that is, excluding
mdividual values of this variable) belong to the first class.

Clearly the Fourier series do not necessarily belong to the first class. The
convergence cannot be derived, as Cauchy futilely attempted,?” from the
riles by which the terms decrease. Rather, it must be shown that the finite
neries

1 ™ 1 ™
—/ fla)sinada sin:c+—/ f(a)sin2a dasin2z 4 - - -
T J_x L —

1 w
+—/ f(@)sinnada sinnz
™ —T
1 s

1 ™
+5- f(a)da-i-—/ f(a)cosadacosz
2 T J_x

—T

1 [" 1 [
+—/ f(a) cos2a da C082I+"'+—/ f(a)cosnadacosnz,
T —T 7T —Tr

or, what is the same, the integral

1 [T sin 228 (z — )
—_ d ,
o) @) T

npproaches the value f(z) infinitely closely when n increases infinitely.
Dirichlet based this proof on two theorems:

1) If0 < ¢ < /2, then [ qﬁ(ﬁ)w df tends to % ¢(0) as n increases to
infinity.
N0 <b<e< /2 then fbcqb(ﬁ)ii“—(;:’l—;l)—ﬁdﬁ tends to 0, as n increases to
infinity.

“"Dirichlet in Crelle’s Journal, vol IV, p. 158. ‘Quoi qu’il en soit de cette premiére
ohservation, ... a mesure que n croit.’
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It is assumed in both cases that the function ¢(() is either always increasing
or always decreasing between the limits of integration.

If the function f does not change from increasing to decreasing, or from
decreasing to increasing, infinitely often, then using the above theorems the
integral

1 [T sin 228 (z — )
— d
2m ), (@) sin 5= “

can clearly be split into a finite number of parts, one of which tends* to
5 f(z 4+ 0), another to 3 f(z — 0), and the others to 0, as n increases to
infinity.

It follows from this that a periodic function of period 27, which

1. is everywhere integrable,
2. does not have infinitely many maxima and minima, and

3. assumes the average of the two one-sided limits when the value changes
by a jump,

can be represented by a trigonometric series.

It is clear that a function satisfying the first two properties but not the
third cannot be represented by a trigonometric series. A trigonometric series
representing such a function, except at the discontinuities, would deviate
from it at the discontinuities. Dirichlet’s research leaves undecided, whether
and when functions can be represented by a trigonometric series that do not
satisfy the first two conditions.

Dirichlet’s work gave a firm foundation for a large amount of important
research in analysis. He succeeded in bringing light to a point where Euler
was in error. He settled a question that had occupied many distinguished
mathematicians for over 70 years (since 1753). In fact, for all cases of nature,
the only cases concerned in that work, it was completely settled. For however
great our ignorance about how forces and states of matter vary for infinitely
small changes of position and time, surely we may assume that the functions
which are not included in Dirichlet’s investigations do not occur in nature.

281t is easy to prove that the value of a function f, which does not have infinitely
many maxima or minima, for increasing or decreasing values of the argument with limit z,
either approaches fixed limits f(z + 0) and f(z — 0) (using Dirichlet’s notation in Dove’s
Repertorium der Physik, vol. 1, p. 170); or must become infinitely large.

228



Riemann, Collected Papers

Nevertheless, there are two reasons why those cases unresolved by Dirich-
let seem to be worthy of consideration.

First, as Dirichlet noted at the end of his paper, the topic has a very close
connection with the principles of infinitesimal calculus, and can serve to bring
preater clarity and rigor to these principles. In this regard the treatment of
Lhe topic has an immediate interest.

Secondly, however, the applications of Fourier series are not restricted to
research in the physical sciences. They are now also applied with success
in an area of pure mathematics, number theory. Here it is precisely the
[unctions whose representation by a trigonometric series was not examined
by Dirichlet that seem to be important.

Admittedly Dirichlet promised at the conclusion of his paper to return
to these cases later, but that promise still remains unfulfilled. The works by
Dirksen and Bessel on the cosine and sine series did not supply this com-
pletion. Rather, they take second place to Dirichlet in rigor and generality.
Dirksen’s paper,? (almost simultaneous with Dirichlet’s, and clearly written
without knowledge of it) was, indeed, in a general way correct. However, in
the particulars it contained some imprecisions. Apart from the fact that he
found an incorrect result in a special case®® for the sum of a series, he relied
in a secondary consideration on a series expansion®' that is only possible in
particular cases. Hence the proof is only complete for functions whose first
derivatives are everywhere finite. Bessel®? tried to simplify Dirichlet’s proof.
Ilowever, the changes in the proof did not give any essential simplification,
hut at most clothed it in more familiar concepts, at the expense of rigor and
generality.

Hence, until now, the question of the representation of a function by a
rigonometric series is only settled under the two hypotheses, that the func-
Lion is everywhere integrable and does not have infinitely many maxima and
minima. If the last hypothesis is not made, then the two integral theorems of
Dirichlet are not sufficient for deciding the question. If the first is discarded,
however, the Fourier method of determining the coefficients is not applica-
ble. In the following, when we examine the question without any particular
nssumptions on the nature of the function, the method employed, as we will
sce, is constrained by these facts. An approach as direct as Dirichlet’s is not

2 Crelle’s Journal, vol IX, p. 170.

30 Loc. cit., formula 22.

31 Loc. cit., section 3.

32Schumacher, Astronomische Nachrichten, 374 (vol. 16, p. 229.)
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possible by the nature of the case.
On the concept of a definite integral and the range of its validity.

4.

Vagueness still prevails in some fundamental points concerning the def-
inite integral. Hence I provide some preliminaries about the concept of a
definite integral and the scope of its validity.

Hence first: What is one to understand by f: f(z)dx?

In order to establish this, we take a sequence of values z,, zo, ..., T,
between a and b arranged in succession, and denote, for brevity, z; — a by
d1, Ta —xy by 9, ..., b—x,_; by ,, and a positive fraction less than 1 by

€. Then the value of the sum
S =01f(a+ b))+ 6af(x) + €202) + O3 f (xa + €303) + -+ + 6 f (Tn 1 + €,0,)

depends on the selection of the intervals § and the numbers €. If this now has
the property, that however the §’s and €’s are selected, S approaches a fixed
limit A when the ¢’s become infinitely small together, this limiting value is
called f:f(as) dzx.

If we do not have this property, then f: f(z) dz is undefined. In some of
these cases, attempts have been made to assign a meaning to the symbol,
and among these extensions of the concept of a definite integral there is one
recognized by all mathematicians. Namely, if the function f(z) becomes
infinitely large when the argument approaches an isolated value ¢ in the
interval (a,b), then clearly the sum S, no matter what degree of smallness
one may prescribe for 4, can reach an arbitrarily given value. Thus it has no

limiting value, and by the above f: f(z) dz would have no meaning. However
if

c—ay b
/ f(x)dz + f(z)dx
a ct+az
approaches a fixed limit when «; and @y become infinitely small, then one
understands this limit to be f: f(z)dz.

Other hypotheses by Cauchy on the concept of the definite integral in the
cases where the fundamental concepts do not give a value may be appropriate
in individual classes of investigation. These are not generally established, and
are hardly suited for general adoption in view of their great arbitrariness.
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5.

Let us examine now, secondly, the range of validity of the concept, or
the question: In which cases can a function be integrated, and in which cases
can it not?

We consider first the concept of integral in the narrow sense, that is, we
suppose that the sum S converges if the 4’s together become infinitely small.
We denote by D; the greatest fluctuation of the function between a and z,
that is, the difference of its greatest and smallest values in this interval, by
Do the greatest fluctuation between z; and zo,..., by D, that between z,, ,
and b. Then

0D+ 8Dy + -+ 06,D,

must become infinitely small when the 6’s do. We suppose further, that A is
the greatest value this sum can reach, as long as all of the §’s are smaller than
d. Then A will be a function of d, which is decreasing with d and becomes
infinitely small with d. Now, if the total length of the intervals, in which the
[{uctuation is greater than o, is s, then the contribution of these intervals to
the sum 6, Dy + 69Dy + - - - + 6, D, is clearly > os. Therefore one has

08 < 6Dy + 62Dy + -+ -+ 0,D, <A, hence s < %.
Now, if ¢ is given, A/o can always be made arbitrarily small by a suitable
choice of d. The same is true for s, which yields:

In order for the sum S to converge whenever all the §’s become infinitely
small, in addition to f(x) being finite, it is necessary that the total length
of the intervals, in which the fluctuations exceed o, can be made arbitrarily
sinall for any given o by a suitable choice of d.

This theorem also has a converse:

If the function f(z) is always finite, and by infinitely decreasing the §’s
logether, the total length s of the intervals in which the fluctuation of the
[unction is greater than a given number o always becomes infinitely small,
then the sum S converges as the d’s become infinitely small together.

For those intervals in which the fluctuations are > ¢ make a contribution
to the sum 6, Dy + - - - 4+ 6, D, less than s times the largest fluctuation of the
function between a and b, which is finite (by agreement). The contribution of
the remaining intervals is < o(b—a). Clearly one can now choose ¢ arbitrarily
small and then always determine the size of the intervals (by agreement) so
that s is also arbitrarily small. In this way the sum 6, Dy + 03Dy + - - -+ 96, D,
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can be made as small as desired. Consequently the value of the sum S can
be enclosed between arbitrarily narrow bounds.

Thus we have found necessary and sufficient conditions for the sum S to
be convergent when the quantities é tend together to zero, or equivalently,
for the existence of the integral of f(x) between a and b in the narrow sense.

If we now extend the integral concept as above, then it is clear that for
the integration to be possible everywhere, the second of the two conditions
established is still necessary. In place of the condition, that the function
is always finite, will enter the condition, that the function becomes infinite
only on the approach of the argument to isolated values, and that a definite
limiting value arises, if the limits of integration tend to these values.

6.

Having examined the conditions for integrability in general, that is, with-
out special assumptions on the nature of the function to be integrated, this
investigation will be applied and also carried further, in special cases. First
we consider functions which are discontinuous infinitely often between any
two numbers, no matter how close.

Since these functions have never been considered before, it is well to start
from a particular example. Designate, for brevity, (z) to be the excess of x
over the closest integer, or if x lies in the middle between two (and thus the
determination is ambiguous) the average of the two numbers 1/2 and —1/2,
hence zero. Furthermore, let n be an integer and p an odd integer, and form
the series

It is easy to see that the series converges for each value of x. When the argu-
ment continuously decreases to x, as well as when it continuously increases
to x, the value always approaches a fixed limit. Indeed, if z = £ (where p

2n
and n are relatively prime)

1 1 1 | 2
Hat0) = fla) = o (145 g+ )~ 1) - o

7T2

1602’

f(:c—O):f(a:)+2iTL2(1+%+2—15-+---> = f(z)+

in all other cases f(z +0) = f(z) and f(z — 0) = f(z).
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Hence this function is discontinuous for each rational value of z, which in
lowest terms is a fraction with even denominator. Thus, while f is discontin-
uous infinitely often between any two bounds, the number of jumps greater
than a fixed number is always finite. The function is everywhere integrable.
Besides finiteness, it has the two properties, that for each value of z it has
limiting values f(z + 0) and f(x + 0) on both sides, and that the number of
jumps greater than or equal to a given number o is always finite. Applying
our above investigation, as an obvious consequence of these two conditions, d
can be taken so small that in the intervals which do not contain these jumps,
the fluctuations are smaller then o, and the total length of the intervals which
do contain these jumps will be arbitrarily small.

It is worthwhile to note that functions which do not have infinitely many
maxima and minima (to which the example just considered does not belong),
where they do not become infinite, always have those two properties, and
hence permit an integration everywhere where they are not infinite. This is
also easy to show directly.

Now consider the case where the function f(z) to be integrated has a
single infinite value. We assume this occurs at z = 0, so that for decreasing
positive values of z its value eventually grows over any given bound.

It can easily be shown that xf(z) cannot always remain larger then finite
number ¢ as x decreases from a finite bound a. For then we would have

a ad
/ f(z)dx > ¢ %,

thus larger than c (log % — log %), which increases to infinity with decreasing
z. Thus if zf(z) does not have infinitely many maxima and minima in a
neighborhood of x = 0, then z f(z) must become infinitely small with z if
f(z) can be integrated. On the other hand, if

f(z)dz (1 — )
d(zl-*)

f(z)z® =

for a value a < 1, becomes infinitely small with z, then it is clear that the
integral converges as the lower limit tends to 0.

In the same way one finds that in the cases where the integral converges,
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the functions

1 f(z)dz 1 1 f(z)dz
- 1 P— G 1 — 1 1 _— PRI
J(z)zlog r  —dloglog &’ fla)zlog r 8y —dlogloglog 1"
1 1 S | flz)dz
flo)rlog 2 loglog o -log™ ! Zlog” =~y oy

xT

cannot remain always larger than a finite number as x decreases from a
finite bound. Thus if they do not have infinitely many maxima and minima,
these functions must become infinitely small with . On the other hand, the
integral [ f(z)dz converges as the lower limit of integration tends to 0, if

a d B
eyl -oolog” - (logn %) N f%o;flnla‘)’

becomes infinitely small with z, for a > 1.

However, if f(x) has infinitely many maxima and minima, then nothing
can be determined about the order at which it becomes infinite. In fact, given
the absolute value of f, and thereby given the order of infinity of f at 0, by a
suitable determination of the sign one can always make the integral f f(z)dx
converge when the lower limit of integration tends to 0. The function

d (z cosel/* 1
( ) =cose/T + —el/Tginel/*
dx x

serves as an example of a function which becomes infinite in such a way that
its order (taking the order of % as one) is infinitely large.

The above discussion, on the principles of a topic belonging to another
area, suffices. We now proceed to our actual problem, a general investigation
of the representation of a function by a trigonometric series.

Investigation of the representation of a function by a trigonometric
series without particular assumptions on the nature of the function.

7.

The previous work on this topic served the purpose of proving the Fourier
series for the cases occurring in nature. Hence the proofs could start for an
arbitrary function, and later for the purposes of the proof one could impose
arbitrary restrictions on the function, when they did not impair the goal.
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For our purposes we only impose conditions necessary for the representa-
tion of the function. Hence we must first look for necessary conditions for
the representation, and from these select sufficient conditions for the repre-
sentation. While the previous work showed: ‘If a function has this or that
property then it is represented by a Fourier series’, we must start from the
converse question: If a function is represented by a Fourier series, what are
the consequences for the function, regarding the changes of its values with a
continuous change of the argument?
Hence we consider the series

a1sinx + assin2x + - - -

1
+—2—b0+blcosx+b2cos2:c+---

as given. For brevity, set
1 , .
—2-b0 = Ay, aysinx +bycosz = A;, aysin2x + bycos2z = A,, ... ;

the series becomes
Ag+ A+ Ay + -

We denote this expression by €2 and its value by f(z), so that this function
is defined only for values of z where the series converges.

For the series to converge, it is necessary that the terms eventually become
infinitely small. If the coefficients a,, and b,, diminish infinitely with increas-
ing n, then the terms of the series {1 eventually become infinitely small for
each value of x. Otherwise convergence can only occur for particular values
of x. It is necessary to treat both cases separately.

8.

Hence we suppose, first of all, that the terms of the series {2 eventually
become arbitrarily small for each x.
Under this assumption, the series

converges for each value of x. The series is obtained by integrating each term
of ) twice with respect to . The value F'(z) changes continuously with z,
and consequently this function F of z is everywhere integrable.
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In order to establish both the convergence of the series and the continu-
ity of F(x), one denotes the sum of the terms to —%2& inclusive by N, the
remainder of the series, that is, the series

. An+1 . An+2
(n+1)2 (n+2)?

by R; and the greatest value of A,, for m > n by €. Then, no matter how
far one continues the series, the absolute value of R clearly remains

1 1 €
< + ) <o,
E((n+1)2 (n+2)2+ ) n

and R can be enclosed within arbitrarily small bounds if n is sufficiently
large. Hence the series converges. Furthermore, the function F(x) is contin-
uous, that is, its variation can be made as small as we wish, if one imposes
a sufficiently small corresponding change of z. For the combined changes of
F(z) consists of the change in R and in N. Clearly one can first assume
that n is so large that R is arbitrarily small whatever £ may be, and con-
sequently also the change of R will be arbitrarily small for any change in z.
Then assume the change of z is so small that the change in N also becomes
arbitrarily small.

It is well to place here some results about the function F(x), whose proofs
would otherwise break the thread of the investigation.

Theorem 1 If the series §) converges, then

Flz+a+p)—Fle+a—-08)—-Flze—a+8)+ Flz—a—p0)
4a8 ’

converges to the same value as 2 when a and 8 become infinitely small while
their ratio remains finite.

Indeed, we have

Flx+a+8)—Flz+a—-08)~Flz—a+ )+ Flz — a— 0)

4a3
sina sin 8 sin 2« sin 203 sin 3« sin 33
=Ag+ A A A
ot A gt A 25+33a 33
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In order to settle the simplest case 3 = « first,

F(z +2a) — 2F(z) + F(z — 2a) A4 A, sina\ 2 LA, sin 2a\ 2
402 o 20x

If the infinite series converges,

A0+A1+A2+=f(37),

and we write
AO+A1+“'+AR-1 :f(x)+€na

then for an arbitrarily given number 4, there must exist an integer m so that
if n > m we have ¢, < §. Now, assume « is so small that ma < w. We use
the substitution

An = €n+1 — €n,

to put Y o, (Smﬂ)2 A, in the form

no

o Se{(Re) - () )

and separate this last infinite series into three parts, in which we put together

L. the terms of index 1 to m inclusive,
s

2. from index m + 1 up to the largest integer s less than 2,

3. from s+ 1 to infinity.

Then the first part consists of a finite number of continuously varying terms,
and therefore approaches its limiting value 0 arbitrarily closely when one lets
« become sufficiently small. The second part, since the factor of ¢, is always
positive, has absolute value

{(sinmaz)2 (sinsa)z}
< — :
ma sSQ

In order to enclose the third part within bounds, one breaks up the general

term Iinto
(- ()]
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and

sin(n — 1)a\” sinna\ (sin(2n — 1)a) sina
€n - * = —€p .
no no (na)?

Hence clearly it is

<4 ! - + 0 !
(n—1)%2a%? n2a? no

and consequently the sum from n = s+ 1 to oo is

<5{(8;)2+$}.

For an infinitely small «, that number becomes

0 {# + %} :
e{(h) - (5

therefore approaches a limiting value, as o decreases, that cannot be larger

than
1 1
0 1+—+—5 ,
T T

hence must be zero. Consequently

The series

F(z +2a) — 2F(z) + F(z — 2a)
4o ’

which is equal to

sin(n — 1)a\ > sinna'\”
s e ()~ (5
converges to f(x) as « tends to 0. This proves our theorem for the case

0= qa.
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In order to prove the general case, let

F(z+a+8) - 2F(z) + Fz —a— ) = (a + 5)*(f(z) + &)
Flz+a— ) —2F(x) + Flx — a+ 8) = (a - 8(f(x) + 82),

from which

Flx+a+p)—-Fz+a—-p)-Fla—a+8)+ Flx —a—[)
— 405f(z) + (a+ B — (o — )2,

As a consequence of the above result, 4; and 4, become infinitely small when

a and § do. Then
(a+8)?,  (a—p)
4a3 ' 4a
will also be infinitely small if the coefficients of 4; and 4, do not become
infinitely large, which does not occur since 3/« remains finite. Consequently,

Flat+a+B)-Fieta-0)-Flz—-—a+p)+Flz—-a-70)
4a3

02

converges to f(z), as we wished to prove.

Theorem 2
F(z + 2a) + F(z — 2a) — 2F(x)

2c

tends to 0 with « for all x.

In order to prove this, we split the series

ZAn (sinnoz)2
no

into three parts. The first contains all terms up to a fixed index m, from
which term on the A, are always smaller than e. The second contains all of
the following terms for which na < a fixed number ¢. Then the third includes
the rest of the series. It is then easy to see that if o decreases infinitely, the
sum of the first finite part remains finite, that is, < a fixed number @); the
second < ¢ =; and the third

1 €
<€Zn2a2<;1_c-'

c<na
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Consequently

F(z +20) + F(z —20) = 2F(z) _, S A, <sm na) :
20 no

1
< 2 (Qa+e (c+~)>
c
from which the theorem follows.

Theorem 3 Let b and ¢ denote two arbitrary constants with ¢ > b. Let \(x)
denote a function which is always continuous together with its first derivative
between b and c, is 0 at the boundaries, and for which the second deriative
does not have infinitely many mazrima and minima. Then the integral

Lt /b F(z)cos u(z — a) A\(z) dz,

15 eventually less than any given number, if y grows to infinity.

If one replaces F'(z) by its series expression, then one obtains for

©? /bc F(z)cosu(x — a) AN(z)dz

the series (®)
c 1;2
p?/ (C +C'z + AO?) cos u(x — a) A(z) dz
b
2 pc
— z M—2 / A, cosu(z — a) Mz) dx.
n=1 n b

Now A, cos u(x — a) can clearly be expressed as an aggregate of
cos(p + n){x — a), sin(u + n){(z — a), cos(u — n)(z — a), sin(p — n)(x — a).

Denote the sum of the first two terms by By, and the sum of the last two
terms by B,,_,. Then Ap cos u(z — a) = Buyn + By,
d’B,in
dz?

&’B,
dz?

=—(u+ n)zBu+na = —(u— n)zBu—m
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and, with increasing n, B,;, and B,_, become infinitely small, whatever x
is.
Thus the general term of the series (@),

woe
- A, cos p(x — a) Mz) dz,
b
is equal to
0 ¢ o 2 c 32
H d°Byin H / 4By

Mo de 4+ —F Mz) dzx.

n?(p+mn)? ./b dz? (z)dz+ n*(p—n)? Jy  dr? @

After two integrations by parts, in which one first considers A(z) and then
XN(z) as constant, we obtain

e ‘ p ‘

— [ BN (2)dz —/B_/\"a:d:r,

T, B X @ i [ BV
since A\(z) and N (z), and hence also the terms standing outside the integral
sign, will be 0 at the limits.

It is now easy to convince ourselves that fbc Bin N'(z) dz becomes in-

finitely small when p grows to infinity, whatever n may be. For this expres-
sion is equal to an aggregate of the integrals

/c cos(u £ n)(z —a) \'(z) dx, /C sin(pp £ n)(x —a) \'(z) dz,
b b

and if g4 £ n becomes infinitely large, these integrals tend to 0. However,
it 4 £ n does not become infinitely large because n is infinitely large their
coefficients in these expressions are infinitely small.

Clearly, to prove our theorem it therefore suffices that the sum

I
2. (1 —n)?n?

extended over all values of n which satisfy n < —¢, " < n < u—¢",
it + ¢’V < n, remains finite when p becomes infinitely large for any choice
of quantities c¢. For, except for the terms for which —¢ <n < ¢’, p—¢” <
n < pu+ c'V, which clearly become infinitely small and are of finite number,
the series (®) clearly remains smaller than the sum multiplied by the largest
value of fbc Ban A’ (z) dz, which becomes infinitely small.
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However, if ¢ > 1, the sum

2

Y R
2 G

1
7]
within the limits above, is smaller than

1 / dz
p) =02

C’—l C”—l C///_l CIV——l
—o0 to — , to 1 — , 1+
p Iz p p

taken from

For if we decompose the whole interval from —oo to oo, starting from 0, into

intervals of length 1/, and replace the function under the integral sign by

the smallest value in each interval, we obtain all the terms of the series, since

this function does not have maxima anywhere between the integration limits.
If the integration is carried out, we obtain,

1 dx 1 1 1

and consequently between the above limits a number that does not become
infinitely large with p.

9.

We use these theorems to determine the following about the representa-
tion of a function by a trigonometric series whose terms tends to 0 for each
value of the argument.

I. For a periodic function of period 27 to be represented by a trigonometric
series whose terms eventually become infinitely small for each value of z, there
must exist a continuous function F(x) for which

Flz+a+p8)—-Flz+a-0)—Flz—-—a+8)+F(z—a-—0)
43 ’

converges to f(x) as a and § become infinitely small with their ratio remain-
ing finite.
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Furthermore, with increasing u,

;12/ F(z)cospu(r —a) Nz)dx
b

must eventually become infinitely small as p increases, if A(x) and X' (z) are
() at the integration limits and always continuous between them, and \’(x)
does not have infinitely many maxima and minima.

II. Conversely, if both these conditions are satisfied, then there is a
trigonometric series in which the coeflicients eventually become infinitely
small and which represents the function, wherever it converges.

For the proof, determine the numbers C’ and Ay so that

1.2

F(.E) — CIIZ‘ — AO—Z—

is a periodic function of period 27, and expand this by Fourier’s method into
a trigonometric series

Here we let

1 (7 . t2

2 .

1 [ 2
_/ (F(t)—C’t_AO%)Cosn(a:—t)dtz_ﬁ‘

T -7

Then, by agreement,

™

n2 T t2
A, = —— (F(t)—C’t—AO 5) cosn(x —t)dt

-7

must eventually become infinitely small with increasing n. It follows by
Theorem 1 of the preceding section that the series

Ao+ A+ Ay + -+

converges to the function f(x), wherever it converges.
IIL. Let b < z < ¢, and p(t) be a function such that o(t) and ¢'(t) are 0
for t = b and t = ¢ and are continuous between those values, and such that
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0"(t) does not have infinitely many maxima and minima, and, furthermore,
such that for t = z, o(t) = 1, o'(t) = 0, 0"(t) = 0, ¢"(t) and o'V (t) are finite
and continuous. Then the difference between the series

Ao+ A1+ -+ Ay

and the integral
e 0]

1 ¢ sin &t

— t 2 t)dt
— | FO)—=— ot

tends to zero with increasing n. Hence the series

Ao+ A+ Ap + -

will converge or not, depending on whether

sin Z2EL (p—¢
. . de J:t))

F t Sln 3
o *) dt?

approaches a limit with increasing n, or not.
In fact,

n

1 [" £2
A1+A2++An:—/ (F() C,t—AOE>Z—k2COS]€($-t)dt

T k=1
Since
sin 2281 (2 1) (1)
n d2it 2
d*cosk(z —t) sin E-0 2
2 k?cosk(z —t) =2 — 2
Z cos k(x Z s = :

9 sin 2ngl 21 (z—t)

1 K t2 d sinM
A+ A+ 4+ A, =— ( (t) — C,t—Aoa) : dt.

o dt?

Now, by Theorem 3 of the preceding section,

9 sin %i (z—t)

L[ F(t) — C't a b T A8) dt
%/ ()= Ct— Ao ()

244



Riemann, Collected Papers

tends to 0 with infinitely increasing n if A(t) along with its first derivative
is continuous, A”(t) does not have infinitely many inaxima and minima, and
for t = x, A(t) = 0, N(t) = 0, \'(t) = 0, \'(t) and AV (¢) are finite and
continuous.

Set A(t) equal to 1 outside the boundaries b, ¢ and 1 — p(t) within those
houndaries, which is clearly allowable. It follows that the difference between
the series A; 4+ --- + A, and the integral

) d2 sin 2"241 (xz—t)
. (z—t)
t sin ~=5=

1 [
— F(t)—-C't— Ay — t)dt
= [ (Fo-cr-al) —2— w0

tends to 0 with increasing n. We easily see, by integration by parts, that

sin 2L (1)
L S N e v
% ! (C t+ AO E) dt2 Q(t) dt,

converges to Ag when n becomes infinitely large, and we obtain the above
theorem.

10.

It has emerged from the investigation that if the coefficients of the se-
ries () tend to 0, then the convergence of the series for a particular value
of x depends only on the behavior of the function f(x) in the immediate
neighborhood of this value.

Whether the coefficients of the series eventually become infinitely small,
will in many cases not be decided by their expression as a definite integral,
but in other ways. One case should be emphasized where the determination
can be made immediately from the nature of the function. Namely, suppose
the function f(z) is everywhere finite and integrable.

In this case, we split the whole interval —n to 7 into a sequence of pieces
of length

01, 02, 03,...

and denote by D, the greatest fluctuation of the function in the first, by Dy
the greatest fluctuation in the second, and so on. Then

01Dy + 03Dy + 03D3 + - - -

must become infinitely small when the é’s become infinitely small together.
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Consider the integral [ f(z)sinn(z — a)dz, which, apart from the
factor 1/m, gives the coefficients of the series, or what is the same thing,
faaw7r f(x)sinn(z — a)dz. We split this integral beginning at z = a, into
integrals of range 2w /n. Then each integral contributes to the sum a quan-
tity less than 2/n multiplied by the greatest fluctuation in its interval, and
their sum is hence smaller than a number, which by assumption must become
infinitely small with 27 /n.

In fact, these integrals have the form

a+% 2w
/ f(x)sinn(z — a) dx.

+—f; 21

The sine is positive in the first half, and negative in the second. Denoting
the largest value of f(z) in the interval of integration by M and the smallest
by m, it is obvious that the integral is bigger if we replace f(z) by M in the
first half and by m in the second. The integral is smaller if f(x) is replaced
by m in the first half and M in the second. In the first case we obtain the
value 2 (M — m); in the other 2 (m — M). Hence the absolute value of the
integral is smaller than % (M — m), and the integral

/:HW f(z)sinn(z — a) dx

is smaller than

—2—(M1—ml)—|—2(M2—m2)—|—2(M3—m3)—|—-~ s
n n n
where M, denotes the largest value of f(z) in the s-th interval and mg the
smallest. However, if f(x) is integrable, this sum must become infinitely
small as n goes to infinity, and the lengths of the intervals 27 /n become
infinitely small.

In the case under discussion, then, the coefficients of the series become
infinitely small.

11.

We must still examine the case where the terms of the series €2 eventually
become infinitely small for an argument value z, without this occurring for
each value of the argument. This case can be reduced to the previous one.
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Namely, adding the terms of equal rank in the series for values x + ¢ and
© — t, we obtain the series

2A0 + 2A cost + 2A5cos2t + - - - .

In this series the terimns for each value of t eventually become infinitely small,
and the previous analysis can be applied.
For this purpose, denote the value of the infinite series
2 t2

T cost cos 2t cos 3t
C ! Ay— +Ag— — A
FCr+ Ao+ A5 —A— 1 9

by G(t), so that wherever the series F(z +t) and F(z —t) converge,

Flz +t)+ F(z —t)
2

= G(t).

We have the following;:

I. If the terms of the series 2 tend to 0 for an argument value z, then

s [)C G(t) cos u(t — a) A(t) dt,

must eventually become infinitely small with increasing p, where X is a func-
tion as designated in §9. The value of the integral consists of the components

s /bc E%iﬁ cos u(t—a) A(t)dt and p° ./bc F—(%_—Q cos pu(t—a) A(t) dt,

provided that these expressions have a value. Hence the integral tends to 0
because of the behavior of the function F' at two places lying symmetrically
on both sides of z. It should be noted, however, that the positions must be
situated where each component is not itself infinitely small. For then the
terms of the series would eventually become infinitely small for each value of
the argument. Thus the contribution of the positions situated symmetrically
on both sides of x must cancel in such a way that their sum becomes infinitely
small for an infinite p. It follows from this that the series {2 can converge
only for those values of z at the midpoint of places where

2 /bc F(z)cosp(r —a) Mz)dzx
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does not become infinitely small for an infinite p. Clearly the number of those
places must be infinitely large if the trigonometric series whose coefficients
are not infinitely decreasing is to converge for an infinite number of argument
values.

Conversely,

2 (7 t?
A, =-n?Z / (G(t) - Ap 5) cosntdt
0

v

and thus A,, tends to 0 with increasing n, if

2 /b " G(1) cos p(t — a) A1) dt

always becomes infinitely small for infinite p.

II. If the terms of the series ) eventually become infinitely small for an
argument value z, then whether or not the series converges depends only on
the behavior of the function G(t) for infinitely small ¢. Indeed, the difference
between

Ag+ A1+ -+ Ay

and the integral

QSinzn—;lt
1 b d sin £
;/0 G(t)—?i?;g’“é?(t)dt

tends to 0 with increasing n, where b is a constant, however small, between
0 and 7, and p(t) denotes a function such that g(¢) and ¢'(¢) are everywhere
continuous and zero for ¢t = b, ¢”(t) does not have infinitely many maxima
and minima and for t = 0, o(t) = 1, ¢'(t) = 0, o’(t) = 0, and " (t), o'V (¢)
are finite and continuous.

12.

The conditions for the representation of a function by a trigonometric series
can certainly be restricted a little further. Hence our examination can be
extended somewhat further without special hypothesis on the nature of the
functions. For example, in the last theorem the condition ¢”(t) = 0 can be
omitted if in the integral

o sin % t

1 b sin %
- [av—iea
0
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G(t) is replaced by G(t) — G(0). However, nothing essential is gained.

Therefore we turn to the consideration of particular cases. We will first
examine a function which does not have infinitely many maxima and minima.
We seek to give a complete solution for this case, which is possible by the
work of Dirichlet. |

It is noted above that such a function is everywhere integrable where it is
not infinite, and clearly that can only occur for a finite number of argument
values. Also by Dirichlet’s proof, in the integral expressions for the nth term
of the series and for the sum of the first n terms, the contribution from
all intervals eventually become infinitely small with increasing n, with the
exception of those where the function becomes infinite and the infinitesimal
interval enclosing the argument of the series. Further, by Dirichlet’s proof,

o+b in 2ot (g ¢
/ f(t)sm = (o )dt

s z—t
Sin 5

will converge to 7 f(z 4+ 0) as n tends to infinity, if 0 < b < 7 and f(¢) is not
infinite between the integration limits. Indeed nothing more is needed when
one omits the unnecessary hypothesis that the function is continuous. Hence
it only remains to examine, for this integral, in which cases the contribution
of the places where the function becomes infinite tends to 0 with increasing
n. This investigation is still incomplete. But Dirichlet showed in passing
that this takes place if the function to be represented is integrable. This
hypothesis is unnecessary.

We have seen above that if the terms of the series 2 tend to zero for each
value of z, the function F(z) whose second derivative is f(z) must be finite
and continuous and that

F(z+a)—2F(z) + F(z — a)

always becomes infinitely small with «. Now, if F'(z +t) — F'(z — t) does
not have infinitely many maxima and minima, then as ¢ tends to zero it must
converge to a limit L, or become infinitely large. It is clear that likewise,

1

—/Q(F’(a:th)—F'(a:—t))dt: Flzta) = 2F(z) + Flz ~o)

«

(87

must converge to L or to infinity and hence can only become infinitely small
if F'(z +1t)— F'(z —t) converges to zero. Therefore f(a+1)+ f(a —t) must
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always be integrable up to t = 0 if f(z) is infinitely large for £ = a. This

suffices for - 5
(/ —|—/ ) dz(f(x)cosn(z — a))
b ate

to converge with decreasing €, and to tend to 0 with increasing n. Further-
more, since F'(z) is finite and continuous, then F’(z) can be integrated up to
z = a and (z — a)F’'(z) becomes infinitely small with  — a, if this function
does not have infinitely many maxima and minima. It follows that

d(z —a)F'(x)
dz

= (z —a)f(z) + F'(z),
and hence (z—a) f(z), can be integrated up to z = a. Therefore [ f(z)sinn(z—

a) dzr can be integrated up to z = a. For the coefficients of the series even-
tually to become infinitely small, clearly it is only necessary that

/ f(z)sinn(z — a)dz, where b<a <c,
b

tends to 0 with increasing n. If one sets

flz)(z = a) = ¢(z),

then for an infinite n, if this function does not have infinitely many maxima
and minima,

" 9@) sinn(z — a) dI=7T¢(a+O) +éla=0)
y T —a 2

)

/ f(z)sinn(x —a)dz =
b
as Dirichlet has shown. Therefore

dla+t)+gla—1t)= fla+t)t — fla—t)t

must tend to 0 with ¢. Since
fla+t)+ fla—1)
is integrable up to ¢ = 0 and consequently
fla+t)t+ fla—t)t
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also becomes infinitely small with decreasing t, then f(a + t)t as well as
f(a — t)t tend to 0 with decreasing . Apart from the functions which have
infinitely many maxima and minima, it is necessary and suflicient for the
representation of a function f(xz) by a trigonometric series whose coefficients
tend to 0, that if f become infinite for x = a, then f(a + t)t and f(a — )t
tend to 0 with ¢t and f(a+t)+ f(a —t) is integrable up to t = 0.

A function f(¢) which does not have infinitely many maxima and min-
ima can be represented only for finitely many values of the argument by a
trigonometric series whose coefficients do not eventually tend to 0. For

2 /bc F(z)cospu(x —a) \z)dz

fails to tend to 0 as u becomes infinite, at only a finite number of values.
Hence it is unnecessary to consider this further.

13.

Concerning functions with infinitely many maxima and minima, it is
probably not superfluous to note that there exists such a function f(xz),
everywhere integrable, that cannot be represented by a Fourier series. This
occurs, for example, if

d (:c” cos l)

flx) = y 22 for0<zx<2m and 0 < v < 1/2.
T

For the contribution in the integral f027r f(x)cosn(x — a) dx with increasing

n of those places where x is close to \/g is, generally speaking, eventually

infinitely large, so that the ratio of this integral to
1

5 sin (2\/_75 —na + %) ﬁnlfU

converges to 1, as we find by the method just described. In order to generalize
the the example, and bring out the essence of the matter, let

/f(a:) dr = ¢(x) cos ()

and assume that ¢(z) is infinitely small for an infinitely small x, and ¥ (z)
becomes infinitely large, and elsewhere these functions together with their
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derivatives are continuous and do not have infinitely many maxima and min-
ima. Then

f(2) = ¢'(x) cosyp(z) — d(z)y () sin(z),
and

/f(:z) cosn(r —a) dx

is the sum of the four integrals

/¢ cos(y(z) £ n(x — a)) dz,
- /¢ Jsin(¢(z) £ n(z — a)) dzx.

Taking ¢ (x) positive, we consider the term

——/¢ )sin(¢(z) + n(x —a)) dz

and examine in this integral the place where the changes of sign of the sine
follow one another most slowly. Let

Y(z) + n(z —a) =y,
then this occurs where % = (. Thus £ = o with
YP'(a) +n = 0.

We therefore examine the behavior of the integral

——/ d(x)Y' (z) siny dx

in the case that € becomes infinitely small for an infinite n, and introduce y
as a variable. Let

() +n(a—a) = B,
then for sufficiently small €

(z— o)’

y=P0+y"(a) —
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and, indeed, ¥"(«a) is positive, since ¥(x) tends to +00 as x tends to 0.
Furthermore,

dy " . 7]
o= d(a)(x — a) = £V/20"(@)(y — B).

depending on whether z — a > 0 or < 0; and

1 a—+¢€

—= | d@)(z)sinydz

2 Ja—e
1 / /M”(a)% o' () ( dy )
= — — —————= | siny
2 \Jprwr 2 s 29" (e) y—>8

e dee) dy
= /0 sin(y + ) 20 a) i

Let € decrease with increasing n so that 1" (a)e? becomes infinitely large. If

/0 sin(y + 8) — 7

which is known to be sin(3+m/4)+/7, is not zero, then disregarding quantities
of lower order,

2 s @) sin(@) + (s — 0)) do = _Sm(ﬁ+4)”2(¢,),( (> .

2 Ja—e
Hence, if the last quantity does not become infinitely small, its ratio to

" f(x)cosn(z — a)dx
0

converges to 1 with an infinite increase of n, since the remaining contributions
become infinitely small.

Assume that ¢(x) and ¢'(x) are of the same order as powers of z for
infinitely small z, with ¢(x) of the order of =¥ and %’'(z) of the order of
z7 "1, where we must have v > 0 and gz > 0. Then for infinite n,

$(a)y'(a)
27,0"(04)

253



XII. On the representation of a function by a trigonometric series.

has the same order as o~ % and hence is not infinitely small when pu > 2v.
In general however, if z1)'(x) or, what is the same thing, if % is infinitely
large for an infinitely small z, ¢(z) can be taken so that ¢(x) tends to 0 with

x, while
()

o(2) Y@ _ el@)
V29" (z) ,/_zd%m \/—2limm

will be infinitely large. Consequently [ f(z)dz can be extended to z = 0,
while

27
f(z)cosn(z - a)dx
0
does not become infinitely small for an infinite n. We see that the increases
in the integral [ f(z)dz as z tends to O cancel out because of the rapid
changes of sign of the function f(z), although their variation increases very
rapidly in ratio to the change of . However, the introduction here of the
factor cosn(x — a) results in this increase being summable.

Just as, in the above, the Fourier series does not converge for a function in
spite of the overall integrability, and the terms themselves eventually become
infinitely large, it can happen that, despite the overall non-integrability of
f(x), between each two values of x, no matter how close, there are infinitely
many values for which the series {2 converges.

An example is given by the function defined by the series

which exists for each rational value of z, where the meaning of (nx) is taken
as in §6. This can be represented by the trigonometric series

1 0
E sin 2nxm,

n=1

where 6 runs over the divisors of n. The function is not bounded in any
interval, no matter how small, and hence is nowhere integrable.
Another example is obtained if in the series

& o] oo

E ¢ COS 2T, E ¢ sinn’z

n=0 n=1
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o, C1, Ca, . . . are positive numbers which always decrease and tend to 0, while
S ¢ _, ¢s becomes infinitely large with n. For if the ratio of z to 2 is rational
and in lowest terms has denominator m, then clearly the series converges or
tends to infinity depending on whether

m—1 m—1
2 . 2
E cosn’r, E sinn“xc

are zero or not. Both cases arise, by a well known theorem®” on partitioning
the circle, for infinitely many values of x between any two bounds, no matter
how close.

The series {2 can converge in a range just as large, without the value of
the series

33

1 dA
/ n
C—f—AOL’L'—ZE d(E’

which one obtains by termwise integration of €2, being integrable on any
interval, however small.
For example, we expand the expression

i %(1 — ") log (—log(qlf qﬂ)) ,

n=1

where the logarithms are taken so that they vanish for ¢ = 0, by increasing
powers of ¢, and replace g by e*'. The imaginary part is a trigonometric
series whose second derivative with respect to x converges infinitely often on
any interval, while its first derivative becomes infinite infinitely often.

In the same range, that is, between any two argument values no matter
how close, a trigonometric series can also converge infinitely often when its
coefficients do not tend to 0. A simple example of such a series is given by

Y o> sin(nlzw), where as usual,

nl=1-2-3--.n.

This not only converges for each rational value of x, for which it changes
into a finite sum, but also for an infinite number of irrationals, of which the

e_1

simplest are sin 1, cos 1, 2/e and their multiples, odd multiples of e, —45, and
SO on.

33Disquis. ar. p. 636, §356. (Gauss, Werke, vol. I, p. 442.)
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