Linear Independence, Span, and Basis of a Set of Vectors

What is linear independence?

A set of vectors \(S = \{v_1, \ldots, v_k\} \) is **linearly independent** if none of the vectors \(v_i \) can be written as a linear combination of the other vectors, i.e. \(v_j = \alpha_1 v_1 + \cdots + \alpha_k v_k \).

Suppose the vector \(v_j \) can be written as a linear combination of the other vectors, i.e. there exist scalars \(\alpha_i \) such that \(v_j = \alpha_1 v_1 + \cdots + \alpha_k v_k \) holds. (This is equivalent to saying that the vectors \(v_1, \ldots, v_k \) are linearly dependent).

We can subtract \(v_j \) to move it over to the other side to get an expression \(0 = \alpha_1 v_1 + \cdots + \alpha_k v_k \) (where the term \(v_j \) now appears on the right hand side).

In other words, the condition that “the set of vectors \(S = \{v_1, \ldots, v_k\} \) is linearly dependent” is equivalent to the condition that there exists \(\alpha_i \) not all of which are zero such that

\[
0 = \begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{bmatrix}.
\]

More concisely, form the matrix \(V \) whose columns are the vectors \(v_i \). Then the set \(S \) of vectors \(v_i \) is a linearly dependent set if there is a nonzero solution \(x \) such that \(Vx = 0 \).

This means that the condition that “the set of vectors \(S = \{v_1, \ldots, v_k\} \) is linearly independent” is equivalent to the condition that there exists \(\alpha_i \) not all of which are zero such that

\[
0 = \begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{bmatrix}.
\]

How do you determine if a set is lin. ind.?

To determine if a set \(S = \{v_1, \ldots, v_k\} \) is linearly independent, we have to determine if the equation \(Vx = 0 \) has solutions other than \(x = 0 \). To do this,

1. Form the matrix \(V \) whose columns are the vectors \(v_i \).
2. Put \(V \) in row echelon form. Denote the row echelon form of \(V \) by \(\text{ref}(V) \)
3. check if each column contains a leading 1.

If every column of \(\text{ref}(V) \) contains a leading 1, then \(S = \{v_1, \ldots, v_k\} \) is **linearly independent**. Otherwise, the set \(S \) is linearly **dependent**.

Example: Let \(V = \mathbb{R}^4 \), and let \(T = \begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & \frac{1}{2} \\ 2 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix} \). Is \(T \) linearly independent?
To answer this, we do the following:

1. Form a matrix whose columns are the vectors in T. Call the matrix M_T.
2. Row reduce T until it is in row echelon form, $\text{ref}(M_T)$.
3. Check if each column has a leading 1.

Step 1. Form a matrix M_T whose columns are the vectors in the set T:

\[
\begin{bmatrix}
1 & 3 & -2 \\
0 & 1 & 1 \\
2 & 0 & 2 \\
0 & 1 & -1
\end{bmatrix} \rightarrow M_T = \begin{bmatrix}
1 & 3 & -2 \\
0 & 1 & 1 \\
2 & 0 & 2 \\
0 & 1 & -1
\end{bmatrix}
\]

Step 2. Row reduce the matrix M_T.

\[
\begin{bmatrix}
1 & 3 & -2 \\
0 & 1 & 1 \\
2 & 0 & 2 \\
0 & 1 & -1
\end{bmatrix} \rightarrow R_3 \rightarrow R_3 - 2R_1 \rightarrow \begin{bmatrix}
1 & 3 & -2 \\
0 & 1 & 1 \\
0 & -6 & 6 \\
0 & 1 & -1
\end{bmatrix} \rightarrow R_3 \rightarrow R_3 + 6R_4 \rightarrow \begin{bmatrix}
1 & 3 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & -1
\end{bmatrix} \rightarrow R_3 \leftrightarrow R_4 \rightarrow \begin{bmatrix}
1 & 3 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \rightarrow R_3 \rightarrow R_3 - R_2 \rightarrow \begin{bmatrix}
1 & 3 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \rightarrow R_3 \rightarrow \frac{1}{2}R_3 \rightarrow \begin{bmatrix}
1 & 3 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

and now we can stop because we’ve reached row echelon form.

Step 3. What does this tell us? Because the row echelon form has a “leading 1” in each column, the columns of the original matrix are linear independent. This also tells us the vectors in our original set T are also linearly independent.

On the other hand, if any columns of the row echelon form did not contain a leading 1, then the original column vectors would then be linear dependent.

Determining if a set of vectors spans a vectorspace

A set of vectors $F = \{f_1, \cdots, f_n\}$ taken from a vectorspace V is said to span the vectorspace if every vector in the vectorspace V can be expressed as a linear combination of the elements in F. In other words, every vector x in V can be written $x = y_1f_1 + \cdots + y_nf_n$ for some scalars y_j. We can rewrite this idea from a matrix perspective:

\[
x = y_1f_1 + \cdots + y_nf_n = \begin{bmatrix} f_1 & \cdots & f_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \tag{1}
\]

This matrix approach leads us to the method we use to determine whether our set of vectors F spans the vectorspace V. Let’s be more concrete. The vectorspaces we deal with in this class tend to be like \mathbb{R}^n – the set of vectors with n entries that are any real numbers. To show that the set F spans the vectorspace \mathbb{R}^n, we do the following:

0. Form the matrix $F = \begin{bmatrix} f_1 & \cdots & f_n \end{bmatrix}$ with the vectors f_j as its columns
1. Compute the reduced row echelon form of that matrix F, $\text{ref}(F)$.
2. If \(\text{rref}(F) \) has a leading 1 in every row, then the set \(F \) spans the vectorspace \(\mathbb{R}^n \)!

Determining if a set of vectors is a basis for a vectorspace

A **basis** for a vectorspace \(V \) is a set of vectors \(B = \{b_1, \cdots, b_m\} \) that (1) span the vectorspace \(B \); and (2) are linearly independent.

To determine if a set \(B = \{b_1, \cdots, b_m\} \) of vectors spans \(V \), do the following:

0. Form the matrix \(B = [b_1 \; \cdots \; b_m] \)
1. Compute \(\text{rref}(B) \)
2. Test for linear independence: does every column of \(\text{rref}(B) \) have a leading 1? (if yes, the set \(B \) is linearly independent)
3. Test whether \(B \) spans the vectorspace: does every row of \(\text{rref}(B) \) have a leading 1? (If yes, then the set \(B \) spans the vectorspace).
4. If \(B \) passes both tests, then the set \(B \) is a basis!

Determining a linearly independent subset of a set of vectors

Suppose we find out that the set of vectors \(G = \{g_1, \cdots, g_k\} \) spans the vectorspace \(\mathbb{R}^m \), but the set \(G \) is not linearly independent. How can we find a subset of \(G \) that is linearly independent? In other words, can we find a basis for our vectorspace \(\mathbb{R}^m \) hidden inside our linearly dependent set of vectors \(G \)?

Do the following:

0. As always, first form a matrix \(G = [g_1 \; \cdots \; g_k] \)
1. Then compute \(\text{rref}(G) \).
2. Each column of \(\text{rref}(G) \) that contains a leading 1 corresponds to a vector \(g_j \) in the original set \(G \). Let \(S \) be the subset of those vectors. Then \(S \) is linearly independent, AND \(\text{span}(S) = \text{span}(G) \). This means that \(S \) is a basis for the span of \(G \)!!

Example: Let \(V = \mathbb{R}^3 \), and let \(W = \left\{ \begin{bmatrix} 2 \\ 4 \\ -4 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 8 \end{bmatrix}, \begin{bmatrix} -2 \\ 6 \\ 6 \end{bmatrix} \right\} \). Find a subset of \(W \) that is a basis for \(V \).

Step 0. First form the matrix \(W = \begin{bmatrix} 2 & 2 & 0 & -2 \\ 4 & 1 & 1 & 6 \\ -4 & -2 & 8 & 6 \end{bmatrix} \).

Step 1. Compute \(\text{rref}(W) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \end{bmatrix} \).
Step 2. First note that not every column contains a leading 1 – that means that our original set T is not linearly independent, and so it cannot be a basis. However, the first three columns of rref(W) contain a leading 1. If we let $S = \{w_1, w_2, w_3\}$ (since those are the three vectors that correspond to the columns of rref(W) that contain leading 1s), then S is a linearly independent set. Since each row of rref(W) contains a leading 1, we know that W spans the vectorspace. But the columns of rref(W) that correspond to our subset of vectors, S, also all contain leading 1s (our subset S is the first three vectors, w_1, w_2, w_3; this corresponds to the first three columns of rref(W)) – that means that our subset S still spans the vectorspace!

1 Determining a basis for span(S) without using vectors from S

We have seen already that you can locate a linearly independent set of vectors within the set of vectors $S = \{s_1, \ldots, s_m\}$ by forming a matrix $S = [s_1 \cdots s_m]$, computing rref(S), and then taking each of the vectors s_j that corresponds to a column of rref(S) that contains a leading 1.

In lessons 22-23 (class on 10/20, 10/22) we’ll look at an examples of finding a basis for S using things other than vectors taken directly from S.