Algebraicity of metric tangent cones via normalized volume and K-stability

Chi Li

based on a series of works (joint with Yuchen Liu, Chenyang $X u$ and Xiaowei Wang)

Mathematics Department, Purdue University

University of Michigan, February 12, 2019
(1) Background and the conjecture
(2) Overview of main results
(3) Key concepts

4 Minimizing normalized volumes
(5) Uniqueness of minimizers
(6) Uniqueness of K-polystable degenerations
(7) Supplements and Applications
$\left(M_{i}, g_{i}, J_{i}\right)$: a sequence of Kähler-Einstein Fano manifolds:

$$
\operatorname{Ric}\left(\omega_{i}\right)=\omega_{i}, \quad \omega_{i}=g_{i}\left(\cdot, J_{i} \cdot\right) \in 2 \pi c_{1}\left(M, J_{i}\right)>0
$$

Gromov's compactness: $\left(M_{i}, g_{i}\right)$ sub-sequentially converges to a limit metric space $\left(X, d_{\infty}\right)$ in the Gromov-Hausdorff topology.

Question: How regular is the limit $\left(X, d_{\infty}\right)$?
Answer: X is homeomorphic to a normal projective variety such that
(1) X is a Fano: $-m K_{X}$ is an ample line bundle for some $m>0 \in \mathbb{Z}$.
(2) X has a weak Kähler-Einstein metric $\Longrightarrow X$ has Klt singularities.

Tian (proved dim 2 case and reduced it to a partial C^{0}-estimate conjecture) Donaldson-Sun (proved the partial C^{0}-estimate conjecture)

Further question: What does the metric look like near the singularity of X ?

Metric tangent cone is the first order approximation of the metric structure:

$$
C_{x} X:=\lim _{r_{k} \rightarrow 0+}^{p-G H}\left(X, x, \frac{d_{X}}{r_{k}}\right)
$$

is a metric cone (Cheeger-Colding). The limit a priori could depend on $\left\{r_{k}\right\}$. General results:
(1) (Cheeger-Colding-Tian) $\left(C_{X} X\right)^{\text {sing }}$ has complex Hausdorff codimension at least 2. $\left(C_{x} X\right)^{\text {reg }}$ is Ricci-flat Kähler cone.
(2) (Donaldson-Sun) $C_{x} X$ is homeomorphic to an affine variety with an effective torus action (generated by the Reeb vector field) and is uniquely determined by the metric structure on the GH limit X.

Conjecture (Donaldson-Sun)

$C_{x} X$ depends only on the algebraic structure of the germ $x \in X$.
If true, the object $C_{x} X$ is a canonically new algebraic object associated to the KIt singularity. No metric structure needed!
The goal of this talk is to explain our work proving that this is indeed true.

Define a map $D_{\text {metric }}: \mathcal{O}_{X, x} \rightarrow[0, \infty]$: for any $f \in \mathcal{O}_{x, \chi}$,

$$
D_{\text {metric }}(f)=\limsup _{r \rightarrow 0} \frac{\max _{z \in B(p, r)} \log |f(z)|}{\log r}
$$

Assume $D_{\text {metric }}\left(\mathcal{O}_{x, x}\right)=: \Gamma=\left\{\lambda_{i}\right\}$. Let $\mathcal{F}_{i}=\left\{f \in \mathcal{O}_{x, x} ; D(f) \geq \lambda_{i}\right\}$

$$
R_{D_{\text {metric }}}:=\bigoplus_{\lambda_{i} \in \Gamma} \frac{\mathcal{F}_{i}}{\mathcal{F}_{i+1}} .
$$

Theorem (Donaldson-Sun, '15)

(1) $D_{\text {metric }}$ is a pseudovaluation, $R_{D_{\text {metric }}}$ is finitely generated and $W=\operatorname{Spec}\left(R_{D_{\text {metric }}}\right)$ is a normal affine variety.
(2) The metric tangent cone $C_{x} X$ is the central fibre of a torus equivariant degeneration of W, through affine varieties in \mathbb{C}^{N} under the torus action.

Rephrase Donaldson-Sun's Conjecture: $D_{\text {metric }}$ is uniquely determined by the algebraic structure of the germ $x \in X$.

3-dimensional A_{k} singularities:

$$
X=\left\{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{k+1}=0\right\} \subset \mathbb{C}^{4}
$$

X degenerates, via $\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow\left(t^{2} z_{1}, t^{2} z_{2}, t^{2} z_{3}, t^{\alpha} z_{4}\right)$ for $\alpha>\frac{4}{k+1}$, to

$$
X^{\prime}:=\mathbb{C}^{2} / \mathbb{Z}_{2} \times \mathbb{C} \cong\left\{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0\right\} \subset \mathbb{C}^{4}
$$

Metric tangent cones:

k	$\frac{4}{k+1}$	W	$C_{x} X$	ξ_{0} on $C_{x} X$
$0,1,2$	>1	X	X	$(k+1, k+1, k+1,2)$
3	$=1$	X	X^{\prime}	$(2,2,2,1)$
$k \geq 4$	<1	X^{\prime}	X^{\prime}	$(2,2,2,1)$

The Ricci-flat Kähler cone metric on $C_{x} X: g=d r^{2}+r^{2} g_{M^{2 n-1}}$.
The holomorphic vector field $\xi_{0}=r \partial_{r}-i J\left(r \partial_{r}\right)$ is called the Reeb vector field. We say that $\left(Z, \xi_{0}\right):=\left(C_{x} X, \xi_{0}\right)$ is a Fano cone with the Reeb vector field ξ_{0}.

Overview II: Ricci-flat Kähler cone and K-stability

Definition (Collins-Székelyhidi, generalizing Fano case of Tian and Donaldson)

A Fano cone $\left(Z, \xi_{0}\right)$ is K-semistable (resp. K-polystable) if for any T-equivariant degeneration \mathcal{Z} to another Fano cone $\left(Z_{0}, \xi_{0}\right)$, $\operatorname{Fut}(\mathcal{Z}) \geq 0$ (and $=0$ iff \mathcal{Z} is induced by a holomorphic vector field on Z).

Theorem (Collins-Székelyhidi, L.-Xu)

If a (Klt) Fano cone $\left(Z, \xi_{0}\right)$ admits a Ricci-flat Kähler cone metric, then $\left(Z, \xi_{0}\right)$ is K-polystable.

This says that $\left(Z, \xi_{0}\right):=\left(C_{x} X, \xi_{0}\right)$ is K-polystable.

Theorem (L.-Xu '17)

If a Fano cone W equivariantly degenerates to a K-polystable Fano cone, then W is K-semistable.

This means that W is K-semistable and we say that $D_{\text {metric }}$ is a K-semistable valuation.

Donaldson-Sun's conjecture follows from the following main results, which are proved using only tools from algebraic geometry.

Theorem (L.-Xu '16-'17, (see below for notations))

For any Klt singularity, a K-semistable valuation is the unique minimizer of the normalized volume functional among all quasi-monomial valuations.

This implies $D_{\text {metric }}$ and W are uniquely determined by $x \in X$.

Theorem (L.-Wang-Xu '18)

Any K-semistable Fano cone W degenerates to a K-polystable Fano cone Z. Moreover, such a Z is uniquely determined by W.

This implies $Z:=C_{x} X$ is uniquely determined by W.

Let (X, x) be a normal singularity such that $m K_{X}$ is locally generated over an open set U by a nowhere vanishing holomorphic section s. (X, x) is KIt if:

$$
\begin{equation*}
\int_{U^{\mathrm{reg}}} \sqrt{-1}^{m n^{2}}(s \wedge \bar{s})^{1 / m}<+\infty \tag{2}
\end{equation*}
$$

How to check this? Choose a \log resolution $\mu: Y \rightarrow X$ and write:

$$
\mu^{*}(s \wedge \bar{s})^{\frac{1}{m}}=h(z) \prod_{i}\left|z_{i}\right|^{2 a_{i}} d z \wedge d \bar{z}
$$

where $h(z)$ is a nowhere vanishing function. Then (2) is satisfied if and only if $a_{i}>-1$ for every i.

The KIt condition can be formulated algebraically: Write

$$
K_{Y}=\mu^{*} K_{X}+\sum_{i} a_{i} E_{i}
$$

X is KIt if and only if $A\left(\operatorname{ord}_{E_{i}}\right):=a_{i}+1>0$ for all i. Examples include:
(1) $\operatorname{dim}_{\mathbb{C}} X=2$. $\mathrm{Klt=isolated}$ quotient singularity \mathbb{C}^{2} / G.
(2) $\operatorname{dim}_{\mathbb{C}} X=3$. partial classification $(\{$ terminal $\}$ (classified) $\subset\{$ canonical $\} \subset$ Klt)
(0) Isolated quotient singularities and \mathbb{Q}-Gorenstein toric singularities are Klt.

- Fano cone singularity $\left(X, \xi_{0}\right)$: Klt singularity with an effective torus action and an attractive point (and a distinguished Reeb vector field).

Assume S is a Fano manifold: $-K_{S}$ is ample. Assume $K_{S}^{-1}=r L$ with $r \in \mathbb{Q}>0$ for a holomorphic line bundle L.
Contraction of zero section S, or extraction of S from the affine cone:

$$
S \subset Y \xrightarrow{\mu} C(S, L):=\operatorname{Spec}_{\mathbb{C}}\left(\bigoplus_{k=0}^{+\infty} H^{0}(S, k L)\right)
$$

$\left(C(S, L), \xi_{0}\right)$ is a Fano cone singularity where ξ_{0} is the holomorphic vector field corresponding to the \mathbb{Z}-grading.
Examples:

- $S=\mathbb{C P}^{n-1}, r=\frac{1}{n}, L=H:=\mathcal{O}_{\mathbb{C P}^{n-1}}(1), X=\mathbb{C}^{n}, \xi_{0}=\sum_{i=1}^{n} z_{i} \frac{\partial}{\partial z_{i}}$.
- $S=\left\{F\left(Z_{1}, \ldots, Z_{n+1}\right)=0\right\} \subset \mathbb{P}^{n}$ with $d<n+1, r=\frac{1}{n+1-d}$ and $L=\left.H\right|_{M}, X=\left\{F\left(z_{1}, \ldots, z_{n+1}\right)=0\right\} \subset \mathbb{C}^{n+1}$.

More generally, $S=(S, \Delta)$ can be a Fano orbifold and have KIt singularities.
Example: $X=\left\{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{k+1}=0\right\}$ are Fano cones (with $\left.\xi_{0}=(k+1, k+1, k+1,2)\right)$ over the Fano orbifold:

$$
(S, \Delta)= \begin{cases}\left(\mathbb{P}^{2}, \frac{k}{k+1} C\right) & k \text { even } \\ \left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \frac{k-1}{k+1} \Delta\left(\mathbb{P}^{1}\right)\right) & k \text { odd }\end{cases}
$$

(X, ξ_{0}) admits a Ricci-flat Kähler cone metric if and only if $0 \leq k \leq 3$
(Martelli-Sparks-Yau, L.-Sun, see (1))
Example: $\mathbb{C}^{2} / \mathbb{Z}_{2} \times \mathbb{C} \cong\left\{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0\right\}=C\left(\left(S^{\prime}, \Delta^{\prime}\right), L^{\prime}\right)$ with $\left(S^{\prime}, \Delta^{\prime}\right)=\left(\mathbb{P}(1,1,2), \frac{1}{2} D\right)=\mathbb{P}^{2} / \mathbb{Z}_{2}$. Reeb vector field $\xi_{0}=(2,2,2,1)$.

A consequence of deep results from Minimal Model Program (MMP):
Any KIt singularity can degenerate to a Fano orbifold cone (associated to a plt blow-up).
So the Fano cones can be considered as prototypes of KIt singularities.

Example: Let $\sigma \subset N_{\mathbb{R}}$ be a rational polyhedral cone. $X:=X_{\sigma}$ is the associated toric variety. For any $\xi_{0} \in \operatorname{int}(\sigma),\left(X, \xi_{0}\right)$ is a Fano cone singularity (assuming \mathbb{Q}-Gorenstein).

General Fano cone singularity $x \in X:=\operatorname{Spec}_{\mathbb{C}}(A)$:

- X : a normal KIt singularity with an effective torus $T:=\left(\mathbb{C}^{*}\right)^{d}$ action.
- there is a unique closed point $x \in X$ that is in the orbit closure of any T-orbit.
- a distinguished Reeb vector $\xi_{0} \in \mathfrak{t}_{\mathbb{R}}^{+}$.
(Co-)characters: $M=\operatorname{Hom}\left(T, \mathbb{C}^{*}\right) . N:=\operatorname{Hom}\left(\mathbb{C}^{*}, T\right)$.
Weight decomposition: $\quad A=\bigoplus_{\lambda \in \Gamma} A_{\lambda}, \quad \Gamma \subset M$
Reeb cone: $\quad \sigma:=\mathfrak{t}_{\mathbb{R}}^{+}=\left\{\xi \in N_{\mathbb{R}} ;\langle\lambda, \xi\rangle>0\right.$ for any $\left.\lambda \in \Gamma \backslash\{0\}\right\}$
Moment cone: $\quad \sigma^{\vee}=\operatorname{Span}_{\mathbb{R}}(\Gamma) \subset M$.

In general, there is a combinatorial description using the theory of T-varieties via divisorial polytopes (Altmann-Hausen, Ilten-Süss, ...).

Assume $(X, x)=\left(\operatorname{Spec}_{\mathbb{C}}(R), \mathfrak{m}\right)$ where R is a local integral domain which is a finitely generated \mathbb{C}-algebra.

Definition

A real valuation on X with center x is a function $v: R \rightarrow \mathbb{R} \cup\{+\infty\}$ satisfying:
(1) $v(f+g) \geq \min \{v(f), v(g)\}, \quad \forall f, g \in R$;
(2) $v(f \cdot g)=v(f)+v(g), \quad \forall f, g \in R$;
(3) $v(0)=+\infty$, and $v(a)=1$ for any $a \in \mathbb{C}^{*}$;
(4) $v(f)>0$ for any $f \in \mathfrak{m}$.

One should think of v as a measure of vanishing order of f around $x \in X$. Denote by $\operatorname{Val}_{x, x}$ the space of all real valuations centered at $x \in X$. If $v \in \operatorname{Val}_{X, x}$, then $\lambda v \in \operatorname{Val}_{X, x}$ for any $\lambda>0$.
(1) Divisorial valuations. Let $\mu: Y \rightarrow X$ be a birational morphism and E is a Weil divisor on Y. Define: for any $f \in \mathcal{O}_{x}$

$$
\operatorname{ord}_{E}(f)=\operatorname{ord}\left(\mu^{*} f\right)
$$

(2) Monomial valuations on \mathbb{C}^{n}. Fix $\xi \in \mathbb{R}_{+}^{n}$, for any $f \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, define:

$$
v_{\xi}(f)=\min \left\{\sum_{\mathbf{m}} m_{i} \xi_{i} ; f=\sum_{\mathbf{m}} a_{\mathbf{m}} z^{\mathbf{m}}, a_{\mathbf{m}} \neq 0\right\}
$$

(3) Quasi-monomial valuations: monomial valuations on Y on some birational morphism $\mu: Y \rightarrow X$. Quasi-monomial valuations include all divisorial valuations and the following
Quasi-monomial valuation from torus actions: Assume $X=\operatorname{Spec}_{\mathbb{C}}(A)$ is a Fano cone singularity with $A=\bigoplus_{\lambda \in \Gamma} A_{\lambda}$. For any $\xi \in \mathfrak{t}_{\mathbb{R}}^{+}$,

$$
v_{\xi}(f)=\min \left\{\langle\xi, \lambda\rangle ; f=\sum_{\lambda} f_{\lambda}, f_{\lambda} \neq 0\right\}
$$

v_{ξ} is divisorial if and only if $\xi \in \mathfrak{t}_{\mathbb{Q}}^{+}$.

General construction: For any $v \in \operatorname{Val}_{X, x}, \Gamma=v(R)$ is an ordered semigroup. Γ-graded sequence of valuative ideals $\mathfrak{a}_{\bullet}=\left\{\mathfrak{a}_{\lambda} ; \lambda \in \Gamma\right\}$:

$$
\mathfrak{a}_{\lambda}(v)=\{f \in R ; v(f) \geq \lambda\}, \quad \mathfrak{a}_{>\lambda}(v)=\{f \in A ; v(f)>\lambda\} .
$$

Associated graded ring of v :

$$
\operatorname{gr}_{v} R=\bigoplus_{\lambda \in \Gamma} \mathfrak{a}_{\lambda}(v) / \mathfrak{a}_{>\lambda}(v)
$$

Suppose $\operatorname{gr}_{v} R$ is finite generated then $W:=\operatorname{Spec}_{\mathbb{C}}\left(\operatorname{gr}_{v} R\right)$ is an affine variety with an effective torus action.

Recall: For metric tangent cones, Donaldson-Sun's work implies:
There is a valuation v determined by the metric structure of X such that W is well defined and degenerates to the metric tangent cone $C_{x} X$.
Questions 1: How to characterize such v ? Question 2: How to characterize $C_{x} X$ in terms of v ?

Normalized volumes

Motivated by result of Martelli-Sparks-Yau from Sasaki-Einstein geometry:

Definition (L. '15, the normalized volume)

$$
\begin{aligned}
\widehat{\operatorname{vol}}:=\widehat{\operatorname{vol}}_{X, x}: \operatorname{Val}_{X, x} & \longrightarrow \mathbb{R}_{>0} \cup\{+\infty\} \\
v & \mapsto
\end{aligned} A_{X}(v)^{n} \cdot \operatorname{vol}(v) .
$$

- $A_{X}(v)$: log disrepancy of v satisfying: $A_{X}(v)=A_{Y}(v)+\operatorname{ord}_{v}\left(K_{Y / X}\right)$ $X \mathrm{KIt} \Longleftrightarrow A_{X}(v)>0$ for any $v \in \operatorname{Val}_{X}$.
Example/Key Observation: For valuations induced by torus actions:

$$
A_{X}\left(v_{\xi}\right)=\frac{\mathcal{L}_{\xi} \Omega}{\Omega}
$$

where Ω is a $\left(\mathbb{C}^{*}\right)^{d}$-equivariant nowhere vanishing holomorphic n-form.

- $\operatorname{vol}(v)=\lim _{m \rightarrow+\infty} \frac{\operatorname{dim}_{\mathbb{C}}\left(A / \mathfrak{a}_{m}(v)\right)}{m^{n} / n!}$ (Ein-Lazarsfeld-Smith).

Basic properties of normalized volume functional:
(1) $\widehat{\operatorname{vol}}(\lambda v)=\widehat{\operatorname{vol}}(v)$ for any $\lambda>0$.
(2) $\widehat{\operatorname{vol}}(v) \geq C \frac{A_{X}(v)}{v(\mathfrak{m})} \geq C \cdot \operatorname{lct}(\mathfrak{m})>0$ (L. '15).

Conjecture (Proposed by L., Li-Xu)

Given any Klt singularity $x \in X=\operatorname{Spec}(R)$, there is a unique minimizer v up to rescaling. Furthermore, v is quasi-monomial, with a finitely generated associated graded ring such that $\left(Z:=\operatorname{Spec}\left(\operatorname{gr}_{v}(R)\right), \xi_{v}\right)$ is a K-semistable Fano cone singularity.

- Existence of minimizer: H. Blum used de-Fernex-Ein-Mustață's technique of generic limits (for attacking ACC conjecture) to prove the existence.
- Uniqueness:
- Divisorival minimizers are unique (L.-Xu '16)
- On semistable Fano cone, quasi-monomial minimizers are unique (L.-Xu).
- Regularity of minimizer:
- True for valuations from Gromov-Hausdorff limits, wide open in general
- The quasi-monomial part is implied by a conjecture of Jonsson-Mustață (which is related to the openness conjecture).

Theorem (L., L.-Liu, L.-Xu, '15-'17)

A Fano cone $\left(Z, \xi_{0}\right)$ is K-semistable if and only if $v_{\xi_{0}}$ is a minimizer of $\widehat{\text { vol. }}$
This is a generalization of the minimization result by Martelli-Sparks-Yau who considered valuations from torus actions.

Idea of Proof:

- Reduce to the torus invariant valuations;
- Derivative of normalized volume is the Futaki invariant;
- The normalized volume is convex along "equivariant rays".

Example: $\widehat{\operatorname{vol}}\left(0, \mathbb{C}^{n} / G\right)=\frac{n^{n}}{|G|}, \widehat{\operatorname{vol}}\left(x,\left(X, d_{\infty}\right)\right)=n^{n} \cdot \lim _{r \rightarrow 0} \frac{\operatorname{vol}(B(x, r)}{\operatorname{vol}\left(B\left(0, \mathbb{C}^{n}\right)\right)}$
Related development: valuative criterion of K-(semi)stability (L., Fujita) and uniform K-stability (by Fujita, Blum-Jonsson)

Theorem (Y. Liu, L.-Xu)

$$
\widehat{\operatorname{vol}}(x, X)=\inf _{\mathfrak{a}} \operatorname{lct}(\mathfrak{a})^{n} \operatorname{mult}(\mathfrak{a})=\inf _{Y / X} \operatorname{vol}_{X}\left(-\left(K_{Y}+E\right)\right)=\inf _{S p / t} \widehat{\operatorname{vol}}\left(\operatorname{ord}_{S}\right)
$$

$E=\mu^{-1}(x)_{\text {red }}$ and vol_{x} is the local volume studied by Fulger:

$$
\operatorname{vol}_{x}\left(-\left(K_{Y}+E\right)\right)=\lim _{m \rightarrow+\infty} \frac{\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{X, x} / \mu_{*}\left(\mathcal{O}_{Y}\left(-m\left(K_{Y}+E\right)\right)\right)\right.}{m^{n} / n!}
$$

Important consequence: Minimizers v computes $\operatorname{lct}\left(\mathfrak{a}_{\bullet}(v)\right)$.
Example: A new interpretation of de-Fernex-Ein-Mustață's inequality: $\mathbb{C P}^{n-1}$ is K -semistable
$\Longleftrightarrow \quad \operatorname{lct}(\mathfrak{a})^{n} \operatorname{mult}(\mathfrak{a}) \geq n^{n}$ for any \mathfrak{m}-primary ideal \mathfrak{a}
$\Longleftrightarrow \quad$ Arithmetic Mean - Geometric Mean inequality.

Assume $\left(Z, \xi_{0}\right)$ is a Fano cone singularity with Reeb cone σ and moment cone σ^{\vee}. For any T-invariant quasi-monomial valuation v.

- Connect $v_{\xi_{0}}$ with v by a path $\left\{v_{t}\right\}_{t \in(0,1)}$ of T-invariant quasi-monomial valuations.
- Use the tools of Newton-Okounkov to express $\operatorname{vol}\left(v_{t}\right)$ as volumes of varying convex bodies.
- Reduce to the following convex geometric problem.

Let $\tilde{\sigma} \subset \mathbb{R}^{n}$ be a strictly convex cone. Fix $u_{0} \in \operatorname{int}\left(\tilde{\sigma}^{\vee}\right)$. Consider the map:

$$
\left\{\xi \in \tilde{\sigma} ;\left\langle u_{0}, \xi\right\rangle=1\right\}=H_{u_{0}}^{+} \ni \xi \quad \mapsto \quad \Delta_{\xi}=\left\{y \in \tilde{\sigma}^{\vee} ;\langle y, \xi\rangle \leq 1\right\}
$$

Lemma (Gigena, 1978)

The function $\xi \mapsto \operatorname{vol}\left(\Delta_{\xi}\right)$ is proper and strictly convex on $H_{u_{0}}^{+}$and hence has a unique minimizer ξ_{0}.

Toric Example: non-divisorial minimizers on the affine cone over $\mathbb{P}^{2} \sharp \overline{\mathbb{P}^{2}}$ (Martelli-Sparks-Yau, Futaki-Ono-Wang, H. Blum)

Theorem (L.-Xu)

A divisorial valuation ords is a minimizer if and only if
(1) There is a plt blow up $\mu: Y \rightarrow X$ with S being the exceptional divisor, and
(2) The log Fano pair $\left(S, \operatorname{Diff}_{S}(0)\right)$ is K-semistable.

Moreover, such a divisorial minimizer is unique if it exists.
Necessity of item 1 is also independently proved by H.Blum. The proof is based the the fact that ords computes $\operatorname{lct}\left(\mathfrak{a}_{\bullet}\left(\operatorname{ord}_{s}\right)\right)$ and the following key result from MMP (used again and again in the following argument).

Theorem (Birkar-Casini-Hacon-McKernan)

Let \mathscr{X} be a normal projective variety, $\mathscr{A} \subset \mathcal{O}_{\mathscr{X}}$ an ideal sheaf and $c>0$. Assume ord ${ }_{E}$ is a divisorial valuation which has center on \mathscr{X} and satisfies:

$$
\operatorname{lct}(\mathscr{X}, c \cdot \mathscr{A})<1 \quad \text { and } \quad A_{\mathscr{X}}(\mathscr{E})-c \cdot \operatorname{ord}_{\mathscr{E}}(\mathscr{A})<1
$$

Then \mathscr{E} can be extracted as a prime divisor on a birational model over \mathscr{X}

Idea of Proof of Uniquenss: Fix a divisorial (plt) minimizer $S \subset Y \rightarrow X$.
(1) Construct the degeneration \mathcal{X} of X to $C\left((S, \Delta),-\left.S\right|_{S}\right) \cup Y$ by the deformation to the normal cone (or using associated graded ring).
(2) For any divisorial (plt) minimizer $S^{\prime} \subset Y^{\prime} \rightarrow X$, equivariantly degenerate ideals \mathfrak{a}_{\bullet} (ord ${ }_{S^{\prime}}$).
© Degenerate the model $Y^{\prime} \rightarrow X$, equivalently extract divisor $S^{\prime} \times \mathbb{C}$ over $X \times \mathbb{C}$. To do this, use minimizing property to find an ideal \mathfrak{A} on \mathcal{X} satisfying Theorem 9 .

- Use uniqueness in the torus invariant case on the central fibre to conclude $S^{\prime} \cong S$ over the cone.
(0. Contract the blown-up cone to conclude $S \cong S^{\prime}$ over X. Algebraically, $\operatorname{ord}_{s^{\prime}}(f)=\operatorname{ord}_{s^{\prime}=s}(\operatorname{in}(f))=\operatorname{ords}(f)$.

We apply similar strategy to prove the uniqueness result for K-semistable valuations v (i.e. v is quasimonomial, $\operatorname{gr}_{v}(R)$ is finitely generated and $\operatorname{Spec}\left(\operatorname{gr}_{v} R\right)$ is a K-semistable Fano cone). The essential and technical results we proved are contained in the following:

Proposition (L.-Xu '17)

For a quasi-monomial minimizer v, we can find divisors S_{1}, \ldots, S_{r}, s.t.
(1) there is a model $Y \rightarrow X$ which precisely extracts S_{1}, \ldots, S_{r} over x,
(2) v is a monomial valuation w.r.t. (Y, E).
(3) (Y, E) is \log canonical, and $-K_{Y}-E$ is nef.

If moreover $\operatorname{gr}_{v}(R)$ is finitely generated, then $X^{\prime}=\operatorname{Spec}\left(\operatorname{gr}_{v} R\right)$ has Klt singularities.

Assume (X, ξ_{0}) degenerates to two K -polystable Fano cones $X_{0}^{(i)}, i=1,2$.

Key arguments:

- Approximate ξ_{0} by a sequence of divisorial valuations ord $E_{E_{k}}$.
- Show that $E_{k} \times \mathbb{C}$ can be extracted: $\mathcal{Y}_{k}^{(2)} \rightarrow \mathcal{X}^{(2)} . \operatorname{Fut}\left(\mathcal{X}^{(\mathrm{i})}\right)=0$ is crucial:
- $\widehat{\operatorname{vol}}\left(E_{k}\right)=\widehat{\operatorname{vol}}\left(v_{\xi_{0}}\right)+O\left(k^{-2}\right)$.
- $X_{0}^{(i)}$ is K -semistable and hence has the volume minimizing property.
- The equivariant degeneration of the ideal sheaf $\mathfrak{a}\left(\operatorname{ord}_{E_{k}}\right)$ on $\mathcal{X}^{(2)}$ produces \mathfrak{A} satisfying the condition of Theorem 9.
- Degenerate the model $\mathcal{Y}_{k}^{(2)} \rightarrow \mathcal{X}^{(2)}$ to complete the square.
- Show that $\operatorname{Fut}\left(\mathcal{X}^{\prime(\mathrm{i})}\right)=0$ and that $\mathcal{X}_{0}^{\prime(i)}$ are Fano cones.

Recent applications of the study of metric tangent cones/normalized volumes
(1) Determine the metric tangent cones a priori without knowing the metric. This is useful:
(1) Prove the polynomial asymptotics of Kähler-Einstein metrics near special (stable) isolated conical points (Hein-Sun).
(2) New examples of slow convergence of singular Kähler-Einstein metrics to metric tangent cones (Han-L.).
(2) New (torus-equivariant) criterions for the K-semistability/K-polystability of Fano varieties (L., L.-Liu, L.-Wang-Xu)
(3) Bound the singularities of K-semistable Fano varieties (Liu) and application to the construction of moduli (Liu-Xu, Spotti-Sun)
(9) 2-dimensional logarithmic normalized volume is equal to Langer's local orbifold Euler number (Borbon-Spotti, L.)

Thanks for your attention!

