Algebraicity of metric tangent cones via normalized volume and K-stability

Chi Li

based on a series of works (joint with Yuchen Liu, Chenyang Xu and Xiaowei Wang)

Mathematics Department, Purdue University

University of Michigan, February 12, 2019

<ロ> <目 > < 回 > < 回 > < 回 > < 回 > <

2 Overview of main results

3 Key concepts

- 4 Minimizing normalized volumes
- 5 Uniqueness of minimizers
- 6 Uniqueness of K-polystable degenerations

<ロト <回ト < 回ト < 回ト

Supplements and Applications

 (M_i, g_i, J_i) : a sequence of Kähler-Einstein Fano manifolds:

$$Ric(\omega_i) = \omega_i, \quad \omega_i = g_i(\cdot, J_i \cdot) \in 2\pi c_1(M, J_i) > 0.$$

Gromov's compactness: (M_i, g_i) sub-sequentially converges to a limit metric space (X, d_{∞}) in the Gromov-Hausdorff topology.

Question: How regular is the limit (X, d_{∞}) ? **Answer:** X is homeomorphic to a normal projective variety such that

- **1** X is a Fano: $-mK_X$ is an ample line bundle for some $m > 0 \in \mathbb{Z}$.
- **2** X has a weak Kähler-Einstein metric \implies X has Klt singularities.

Tian (proved dim 2 case and reduced it to a partial C^0 -estimate conjecture) Donaldson-Sun (proved the partial C^0 -estimate conjecture)

Further question: What does the metric look like near the singularity of X?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Metric tangent cone is the first order approximation of the metric structure:

$$C_{x}X := \lim_{r_{k} \to 0+}^{p-GH} \left(X, x, \frac{d_{x}}{r_{k}}\right)$$

is a metric cone (Cheeger-Colding). The limit a priori could depend on $\{r_k\}$. General results:

- (Cheeger-Colding-Tian) (C_xX)^{sing} has complex Hausdorff codimension at least 2. (C_xX)^{reg} is Ricci-flat Kähler cone.
- (Donaldson-Sun) C_xX is homeomorphic to an affine variety with an effective torus action (generated by the Reeb vector field) and is uniquely determined by the *metric* structure on the GH limit X.

Conjecture (Donaldson-Sun)

 $C_x X$ depends only on the algebraic structure of the germ $x \in X$.

If true, the object $C_x X$ is a canonically new algebraic object associated to the Klt singularity. No metric structure needed!

The goal of this talk is to explain our work proving that this is indeed true.

Define a map $D_{\text{metric}} : \mathcal{O}_{X,x} \to [0,\infty]$: for any $f \in \mathcal{O}_{X,x}$,

$$\mathcal{D}_{ ext{metric}}(f) = \limsup_{r o 0} \frac{\max_{z \in \mathcal{B}(p,r)} \log |f(z)|}{\log r}.$$

Assume $D_{\text{metric}}(\mathcal{O}_{X,x}) =: \Gamma = \{\lambda_i\}$. Let $\mathcal{F}_i = \{f \in \mathcal{O}_{X,x}; D(f) \ge \lambda_i\}$

$$R_{D_{\text{metric}}} := \bigoplus_{\lambda_i \in \Gamma} \frac{\mathcal{F}_i}{\mathcal{F}_{i+1}}.$$

Theorem (Donaldson-Sun, '15)

1

- D_{metric} is a pseudovaluation, R_{D_{metric}} is finitely generated and W = Spec(R_{D_{metric}}) is a normal affine variety.
- On the metric tangent cone C_xX is the central fibre of a torus equivariant degeneration of W, through affine varieties in C^N under the torus action.

Rephrase Donaldson-Sun's Conjecture: D_{metric} is uniquely determined by the *algebraic* structure of the germ $x \in X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

3-dimensional A_k singularities:

$$X = \{z_1^2 + z_2^2 + z_3^2 + z_4^{k+1} = 0\} \subset \mathbb{C}^4.$$

X degenerates, via $(z_1, z_2, z_3, z_4) \rightarrow (t^2 z_1, t^2 z_2, t^2 z_3, t^{\alpha} z_4)$ for $\alpha > \frac{4}{k+1}$, to

$$X':=\mathbb{C}^2/\mathbb{Z}_2\times\mathbb{C}\cong\{z_1^2+z_2^2+z_3^2=0\}\subset\mathbb{C}^4$$

Metric tangent cones:

The Ricci-flat Kähler cone metric on $C_x X$: $g = dr^2 + r^2 g_{M^{2n-1}}$. The holomorphic vector field $\xi_0 = r\partial_r - iJ(r\partial_r)$ is called the Reeb vector field. We say that $(Z, \xi_0) := (C_x X, \xi_0)$ is a Fano cone with the Reeb vector field ξ_0 .

Definition (Collins-Székelyhidi, generalizing Fano case of Tian and Donaldson)

A Fano cone (Z, ξ_0) is K-semistable (resp. K-polystable) if for any T-equivariant degeneration \mathcal{Z} to another Fano cone (Z_0, ξ_0) , $\operatorname{Fut}(\mathcal{Z}) \ge 0$ (and = 0 iff \mathcal{Z} is induced by a holomorphic vector field on Z).

Theorem (Collins-Székelyhidi, L.-Xu)

If a (Klt) Fano cone (Z, ξ_0) admits a Ricci-flat Kähler cone metric, then (Z, ξ_0) is K-polystable.

This says that $(Z, \xi_0) := (C_x X, \xi_0)$ is K-polystable.

Theorem (L.-Xu '17)

If a Fano cone W equivariantly degenerates to a K-polystable Fano cone, then W is K-semistable.

This means that W is K-semistable and we say that $D_{\rm metric}$ is a K-semistable valuation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Donaldson-Sun's conjecture follows from the following main results, which are proved using only tools from algebraic geometry.

Theorem (L.-Xu '16-'17, (see below for notations))

For any KIt singularity, a K-semistable valuation is the unique minimizer of the normalized volume functional among all quasi-monomial valuations.

This implies D_{metric} and W are uniquely determined by $x \in X$.

Theorem (L.-Wang-Xu '18)

Any K-semistable Fano cone W degenerates to a K-polystable Fano cone Z. Moreover, such a Z is uniquely determined by W.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This implies $Z := C_x X$ is uniquely determined by W.

Let (X, x) be a normal singularity such that mK_X is locally generated over an open set U by a nowhere vanishing holomorphic section s. (X, x) is Klt if:

$$\int_{U^{\mathrm{reg}}} \sqrt{-1}^{mn^2} (s \wedge \bar{s})^{1/m} < +\infty.$$
⁽²⁾

How to check this? Choose a log resolution $\mu: Y \to X$ and write:

$$\mu^*(\boldsymbol{s}\wedge\bar{\boldsymbol{s}})^{\frac{1}{m}}=\boldsymbol{h}(\boldsymbol{z})\prod_i|\boldsymbol{z}_i|^{2a_i}d\boldsymbol{z}\wedge d\bar{\boldsymbol{z}},$$

where h(z) is a nowhere vanishing function. Then (2) is satisfied if and only if $a_i > -1$ for every *i*.

イロト イヨト イヨト イヨト

The Klt condition can be formulated algebraically: Write

$${\mathcal K}_{\mathbf Y}=\mu^*{\mathcal K}_{\!X}+\sum_i{\mathsf a}_i{\mathsf E}_i$$

X is Klt if and only if $A(\operatorname{ord}_{E_i}) := a_i + 1 > 0$ for all *i*. Examples include:

- **1** dim_{\mathbb{C}} X = 2. Klt=isolated quotient singularity \mathbb{C}^2/G .
- ② dim_C X = 3. partial classification ({terminal} (classified) ⊂ {canonical} ⊂ Klt)
- O Isolated quotient singularities and \mathbb{Q} -Gorenstein toric singularities are Klt.
- Fano cone singularity (X, ξ₀): Klt singularity with an effective torus action and an attractive point (and a distinguished Reeb vector field).

イロト イポト イヨト イヨト

Assume S is a Fano manifold: $-K_S$ is ample. Assume $K_S^{-1} = rL$ with $r \in \mathbb{Q}_{>0}$ for a holomorphic line bundle L.

Contraction of zero section S, or extraction of S from the affine cone:

$$\mathcal{S} \subset \mathbf{Y} \stackrel{\mu}{\longrightarrow} \mathcal{C}(\mathcal{S},\mathcal{L}) := \operatorname{Spec}_{\mathbb{C}} \left(\bigoplus_{k=0}^{+\infty} \mathcal{H}^0(\mathcal{S},k\mathcal{L})
ight).$$

 $(C(S, L), \xi_0)$ is a Fano cone singularity where ξ_0 is the holomorphic vector field corresponding to the \mathbb{Z} -grading.

Examples:

•
$$S = \mathbb{CP}^{n-1}$$
, $r = \frac{1}{n}$, $L = H := \mathcal{O}_{\mathbb{CP}^{n-1}}(1)$, $X = \mathbb{C}^n$, $\xi_0 = \sum_{i=1}^n z_i \frac{\partial}{\partial z_i}$.

•
$$S = \{F(Z_1, ..., Z_{n+1}) = 0\} \subset \mathbb{P}^n$$
 with $d < n+1$, $r = \frac{1}{n+1-d}$ and $L = H|_M$, $X = \{F(z_1, ..., z_{n+1}) = 0\} \subset \mathbb{C}^{n+1}$.

<ロト < 団ト < 団ト < 団ト

More generally, $S = (S, \Delta)$ can be a Fano orbifold and have KIt singularities.

Example: $X = \{z_1^2 + z_2^2 + z_3^2 + z_4^{k+1} = 0\}$ are Fano cones (with $\xi_0 = (k + 1, k + 1, k + 1, 2)$) over the Fano orbifold:

$$(S,\Delta) = \left\{ egin{array}{cc} (\mathbb{P}^2,rac{k}{k+1}C) & k ext{ even,} \ (\mathbb{P}^1 imes \mathbb{P}^1,rac{k-1}{k+1}\Delta(\mathbb{P}^1)) & k ext{ odd} \end{array}
ight.$$

 (X, ξ_0) admits a Ricci-flat Kähler cone metric if and only if $0 \le k \le 3$ (Martelli-Sparks-Yau, L.-Sun, see (1))

Example: $\mathbb{C}^2/\mathbb{Z}_2 \times \mathbb{C} \cong \{z_1^2 + z_2^2 + z_3^2 = 0\} = C((S', \Delta'), L')$ with $(S', \Delta') = (\mathbb{P}(1, 1, 2), \frac{1}{2}D) = \mathbb{P}^2/\mathbb{Z}_2$. Reeb vector field $\xi_0 = (2, 2, 2, 1)$.

A consequence of deep results from Minimal Model Program (MMP): Any Klt singularity can degenerate to a Fano orbifold cone (associated to a plt blow-up).

So the Fano cones can be considered as prototypes of Klt singularities.

э

(日)

Example: Let $\sigma \subset N_{\mathbb{R}}$ be a rational polyhedral cone. $X := X_{\sigma}$ is the associated toric variety. For any $\xi_0 \in int(\sigma)$, (X, ξ_0) is a Fano cone singularity (assuming \mathbb{Q} -Gorenstein).

General Fano cone singularity $x \in X := \text{Spec}_{\mathbb{C}}(A)$:

- X : a normal Klt singularity with an effective torus $T := (\mathbb{C}^*)^d$ action.
- there is a unique closed point $x \in X$ that is in the orbit closure of any T-orbit.
- a distinguished Reeb vector $\xi_0 \in \mathfrak{t}_{\mathbb{R}}^+$.

(Co-)characters: $M = \operatorname{Hom}(T, \mathbb{C}^*)$. $N := \operatorname{Hom}(\mathbb{C}^*, T)$.

Weight decomposition: $A = \bigoplus_{\lambda \in \Gamma} A_{\lambda}, \quad \Gamma \subset M$

 $\begin{array}{ll} \text{Reeb cone:} & \sigma := \mathfrak{t}_{\mathbb{R}}^+ = \{\xi \in \textit{N}_{\mathbb{R}}; \langle \lambda, \xi \rangle > 0 \text{ for any } \lambda \in \Gamma \backslash \{0\} \} \\ \text{Moment cone:} & \sigma^{\vee} = \operatorname{Span}_{\mathbb{R}}(\Gamma) \subset \textit{M}. \end{array}$

In general, there is a combinatorial description using the theory of T-varieties via divisorial polytopes (Altmann-Hausen, Ilten-Süss, ...).

Assume $(X, x) = (\text{Spec}_{\mathbb{C}}(R), \mathfrak{m})$ where R is a local integral domain which is a finitely generated \mathbb{C} -algebra.

Definition

A real valuation on X with center x is a function $v : R \to \mathbb{R} \cup \{+\infty\}$ satisfying:

•
$$v(f+g) \ge \min\{v(f), v(g)\}, \quad \forall f, g \in R;$$

• $v(f \cdot g) = v(f) + v(g), \quad \forall f, g \in R;$
• $v(0) = +\infty, \text{ and } v(a) = 1 \text{ for any } a \in \mathbb{C}^*;$
• $v(f) > 0 \text{ for any } f \in \mathfrak{m}.$

One should think of v as a measure of vanishing order of f around $x \in X$. Denote by $\operatorname{Val}_{X,x}$ the space of all real valuations centered at $x \in X$. If $v \in \operatorname{Val}_{X,x}$, then $\lambda v \in \operatorname{Val}_{X,x}$ for any $\lambda > 0$.

イロト イポト イヨト イヨト

• Divisorial valuations. Let $\mu : Y \to X$ be a birational morphism and E is a Weil divisor on Y. Define: for any $f \in \mathcal{O}_x$

 $\operatorname{ord}_{E}(f) = \operatorname{ord}(\mu^{*}f).$

2 Monomial valuations on \mathbb{C}^n . Fix $\xi \in \mathbb{R}^n_+$, for any $f \in \mathbb{C}[z_1, \ldots, z_n]$, define:

$$v_{\xi}(f) = \min\left\{\sum_{\mathbf{m}} m_i \xi_i; f = \sum_{\mathbf{m}} a_{\mathbf{m}} z^{\mathbf{m}}, a_{\mathbf{m}} \neq 0\right\}.$$

Quasi-monomial valuations: monomial valuations on Y on some birational morphism µ : Y → X. Quasi-monomial valuations include all divisorial valuations and the following

Quasi-monomial valuation from torus actions: Assume $X = \text{Spec}_{\mathbb{C}}(A)$ is a Fano cone singularity with $A = \bigoplus_{\lambda \in \Gamma} A_{\lambda}$. For any $\xi \in \mathfrak{t}_{\mathbb{R}}^+$,

$$v_{\xi}(f) = \min\left\{\langle \xi, \lambda \rangle; f = \sum_{\lambda} f_{\lambda}, f_{\lambda} \neq 0.
ight\}$$

 v_{ξ} is divisorial if and only if $\xi \in \mathfrak{t}_{\mathbb{Q}}^+$.

<ロト <問ト < 国ト < 国ト

General construction: For any $v \in \operatorname{Val}_{X,x}$, $\Gamma = v(R)$ is an ordered semigroup. Γ -graded sequence of valuative ideals $\mathfrak{a}_{\bullet} = {\mathfrak{a}_{\lambda}; \lambda \in \Gamma}$:

$$\mathfrak{a}_{\lambda}(v) = \{f \in R; v(f) \geq \lambda\}, \quad \mathfrak{a}_{>\lambda}(v) = \{f \in A; v(f) > \lambda\}.$$

Associated graded ring of v:

$$\operatorname{gr}_{v} R = \bigoplus_{\lambda \in \Gamma} \mathfrak{a}_{\lambda}(v) / \mathfrak{a}_{>\lambda}(v)$$

Suppose $gr_v R$ is finite generated then $W := Spec_{\mathbb{C}}(gr_v R)$ is an affine variety with an effective torus action.

Recall: For metric tangent cones, Donaldson-Sun's work implies: There is a valuation v determined by the metric structure of X such that W is well defined and degenerates to the metric tangent cone $C_x X$. **Questions 1:** How to characterize such v? **Question 2:** How to characterize $C_x X$ in terms of v?

イロト イポト イヨト イヨト

Normalized volumes

Motivated by result of Martelli-Sparks-Yau from Sasaki-Einstein geometry:

Definition (L. '15, the normalized volume)

$$\begin{array}{rcl} \widehat{\mathrm{vol}} := \widehat{\mathrm{vol}}_{X,x} : \mathrm{Val}_{X,x} & \longrightarrow & \mathbb{R}_{>0} \cup \{+\infty\} \\ & v & \mapsto & A_X(v)^n \cdot \mathrm{vol}(v). \end{array}$$

• $A_X(v)$: log disrepancy of v satisfying: $A_X(v) = A_Y(v) + \operatorname{ord}_v(K_{Y/X})$ $X \text{ Klt} \iff A_X(v) > 0$ for any $v \in \operatorname{Val}_X$.

Example/Key Observation: For valuations induced by torus actions:

$$A_X(v_\xi) = rac{\mathcal{L}_\xi\Omega}{\Omega}$$

where Ω is a $(\mathbb{C}^*)^d$ -equivariant nowhere vanishing holomorphic *n*-form.

• $\operatorname{vol}(v) = \lim_{m \to +\infty} \frac{\dim_{\mathbb{C}}(A/a_m(v))}{m^n/n!}$ (Ein-Lazarsfeld-Smith).

Basic properties of normalized volume functional:

•
$$\widehat{\operatorname{vol}}(\lambda v) = \widehat{\operatorname{vol}}(v)$$
 for any $\lambda > 0$.
• $\widehat{\operatorname{vol}}(v) \ge C \frac{A_X(v)}{v(\mathfrak{m})} \ge C \cdot \operatorname{lct}(\mathfrak{m}) > 0$ (L. '15).

Normalized volumes

人口下 人間下 人居下 人居下 一日

Conjecture (Proposed by L., Li-Xu)

Given any Klt singularity $x \in X = \text{Spec}(R)$, there is a unique minimizer v up to rescaling. Furthermore, v is quasi-monomial, with a finitely generated associated graded ring such that $(Z := \text{Spec}(\text{gr}_v(R)), \xi_v)$ is a K-semistable Fano cone singularity.

- Existence of minimizer: H. Blum used de-Fernex-Ein-Mustață's technique of generic limits (for attacking ACC conjecture) to prove the existence.
- Uniqueness:
 - Divisorival minimizers are unique (L.-Xu '16)
 - On semistable Fano cone, quasi-monomial minimizers are unique (L.-Xu).
- Regularity of minimizer:
 - True for valuations from Gromov-Hausdorff limits, wide open in general
 - The quasi-monomial part is implied by a conjecture of Jonsson-Mustață (which is related to the openness conjecture).

Theorem (L., L.-Liu, L.-Xu, '15-'17)

A Fano cone (Z, ξ_0) is K-semistable if and only if v_{ξ_0} is a minimizer of \widehat{vol} .

This is a generalization of the minimization result by Martelli-Sparks-Yau who considered valuations from torus actions.

Idea of Proof:

- Reduce to the torus invariant valuations;
- Derivative of normalized volume is the Futaki invariant;
- The normalized volume is convex along "equivariant rays".

Example: $\widehat{\operatorname{vol}}(0, \mathbb{C}^n/G) = \frac{n^n}{|G|}, \quad \widehat{\operatorname{vol}}(x, (X, d_\infty)) = n^n \cdot \lim_{r \to 0} \frac{\operatorname{vol}(B(x, r))}{\operatorname{vol}(B(0, \mathbb{C}^n))}$

Related development: valuative criterion of K-(semi)stability (L., Fujita) and uniform K-stability (by Fujita, Blum-Jonsson)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theorem (Y. Liu, L.-Xu)

$$\widehat{\operatorname{vol}}(x,X) = \inf_{\mathfrak{a}} \operatorname{lct}(\mathfrak{a})^n \operatorname{mult}(\mathfrak{a}) = \inf_{Y/X} \operatorname{vol}_x(-(K_Y + E)) = \inf_{S \text{ plt}} \widehat{\operatorname{vol}}(\operatorname{ord}_S)$$

 $E = \mu^{-1}(x)_{red}$ and vol_x is the local volume studied by Fulger:

$$\operatorname{vol}_{\mathsf{x}}(-(K_Y+E)) = \lim_{m \to +\infty} \frac{\dim_{\mathbb{C}}(\mathcal{O}_{X,\mathsf{x}}/\mu_*(\mathcal{O}_Y(-m(K_Y+E))))}{m^n/n!}$$

Important consequence: Minimizers v computes $lct(\mathfrak{a}_{\bullet}(v))$.

Example: A new interpretation of de-Fernex-Ein-Mustață's inequality:

 \mathbb{CP}^{n-1} is K-semistable $\iff \operatorname{lct}(\mathfrak{a})^n \operatorname{mult}(\mathfrak{a}) \ge n^n$ for any m-primary ideal \mathfrak{a} \iff Arithmetic Mean - Geometric Mean inequality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Assume (Z, ξ_0) is a Fano cone singularity with Reeb cone σ and moment cone σ^{\vee} . For any *T*-invariant quasi-monomial valuation *v*.

- Connect v_{ξ_0} with v by a path $\{v_t\}_{t \in (0,1)}$ of T-invariant quasi-monomial valuations.
- Use the tools of Newton-Okounkov to express vol(v_t) as volumes of varying convex bodies.
- Reduce to the following convex geometric problem.

Let $\tilde{\sigma} \subset \mathbb{R}^n$ be a strictly convex cone. Fix $u_0 \in int(\tilde{\sigma}^{\vee})$. Consider the map:

$$\{\xi \in \tilde{\sigma}; \langle u_0, \xi \rangle = 1\} = H_{u_0}^+ \ni \xi \quad \mapsto \quad \Delta_{\xi} = \{y \in \tilde{\sigma}^{\vee}; \langle y, \xi \rangle \leq 1\}$$

Lemma (Gigena, 1978)

The function $\xi \mapsto \operatorname{vol}(\Delta_{\xi})$ is proper and strictly convex on $H_{u_0}^+$ and hence has a unique minimizer ξ_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Toric Example: non-divisorial minimizers on the affine cone over $\mathbb{P}^2 \sharp \mathbb{P}^2$ (Martelli-Sparks-Yau, Futaki-Ono-Wang, H. Blum)

Theorem (L.-Xu)

A divisorial valuation ord_S is a minimizer if and only if

- **()** There is a plt blow up $\mu : Y \to X$ with S being the exceptional divisor, and
- **2** The log Fano pair $(S, \text{Diff}_{S}(0))$ is K-semistable.

Moreover, such a divisorial minimizer is unique if it exists.

Necessity of item 1 is also independently proved by H.Blum. The proof is based the the fact that $\operatorname{ord}_{\mathcal{S}}$ computes $\operatorname{lct}(\mathfrak{a}_{\bullet}(\operatorname{ord}_{\mathcal{S}}))$ and the following key result from MMP (used again and again in the following argument).

Theorem (Birkar-Casini-Hacon-McKernan)

Let \mathscr{X} be a normal projective variety, $\mathscr{A} \subset \mathcal{O}_{\mathscr{X}}$ an ideal sheaf and c > 0. Assume ord_{E} is a divisorial valuation which has center on \mathscr{X} and satisfies:

$$\operatorname{lct}(\mathscr{X}, c \cdot \mathscr{A}) < 1$$
 and $A_{\mathscr{X}}(\mathscr{E}) - c \cdot \operatorname{ord}_{\mathscr{E}}(\mathscr{A}) < 1$.

Then $\mathscr E$ can be extracted as a prime divisor on a birational model over $\mathscr X$

Idea of Proof of Uniquenss: Fix a divisorial (plt) minimizer $S \subset Y \to X$.

- Onstruct the degeneration X of X to C((S, △), -S|_S) ∪ Y by the deformation to the normal cone (or using associated graded ring).
- ② For any divisorial (plt) minimizer S' ⊂ Y' → X, equivariantly degenerate ideals a_•(ord_{S'}).
- Obegenerate the model Y' → X, equivalently extract divisor S' × C over X × C. To do this, use minimizing property to find an ideal A on X satisfying Theorem 9.
- Use uniqueness in the torus invariant case on the central fibre to conclude S' ≅ S over the cone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• Contract the blown-up cone to conclude $S \cong S'$ over X. Algebraically, $\operatorname{ord}_{S'}(f) = \operatorname{ord}_{S'=S}(\operatorname{in}(f)) = \operatorname{ord}_{S}(f)$.

We apply similar strategy to prove the uniqueness result for K-semistable valuations v (i.e. v is quasimonomial, $gr_v(R)$ is finitely generated and $Spec(gr_vR)$ is a K-semistable Fano cone). The essential and technical results we proved are contained in the following:

Proposition (L.-Xu '17)

For a quasi-monomial minimizer v, we can find divisors S_1, \ldots, S_r , s.t.

- $\textbf{0} \ \ \text{there is a model } Y \to X \ \text{which precisely extracts } S_1, \ldots, S_r \ \text{over } x, \\$
- 2 v is a monomial valuation w.r.t. (Y, E).
- **(**Y, E**)** is log canonical, and $-K_Y E$ is nef.

If moreover $gr_v(R)$ is finitely generated, then $X' = Spec(gr_vR)$ has Klt singularities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theorem 5: Uniqueness of K-polystable degenerations

Assume (X, ξ_0) degenerates to two K-polystable Fano cones $X_0^{(i)}$, i = 1, 2.

Key arguments:

- Approximate ξ_0 by a sequence of divisorial valuations ord_{E_k} .
- Show that $E_k \times \mathbb{C}$ can be extracted: $\mathcal{Y}_k^{(2)} \to \mathcal{X}^{(2)}$. $\operatorname{Fut}(\mathcal{X}^{(i)}) = 0$ is crucial:

•
$$\widehat{\operatorname{vol}}(E_k) = \widehat{\operatorname{vol}}(v_{\xi_0}) + O(k^{-2}).$$

- X₀⁽¹⁾ is K-semistable and hence has the volume minimizing property.
- The equivariant degeneration of the ideal sheaf $\mathfrak{a}(\operatorname{ord}_{E_k})$ on $\mathcal{X}^{(2)}$ produces \mathfrak{A} satisfying the condition of Theorem 9.

イロト イヨト イヨト イヨト 三日

- Degenerate the model $\mathcal{Y}_k^{(2)}
 ightarrow \mathcal{X}^{(2)}$ to complete the square.
- Show that $\operatorname{Fut}(\mathcal{X}'^{(i)}) = 0$ and that $\mathcal{X}'^{(i)}_0$ are Fano cones.

Recent applications of the study of metric tangent cones/normalized volumes

- Determine the metric tangent cones a priori without knowing the metric. This is useful:
 - Prove the polynomial asymptotics of K\u00e4hler-Einstein metrics near special (stable) isolated conical points (Hein-Sun).
 - New examples of slow convergence of singular Kähler-Einstein metrics to metric tangent cones (Han-L.).
- New (torus-equivariant) criterions for the K-semistability/K-polystability of Fano varieties (L., L.-Liu, L.-Wang-Xu)
- Bound the singularities of K-semistable Fano varieties (Liu) and application to the construction of moduli (Liu-Xu, Spotti-Sun)
- 2-dimensional logarithmic normalized volume is equal to Langer's local orbifold Euler number (Borbon-Spotti, L.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thanks for your attention!

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへ⊙