# Geodesic rays and stability in the cscK problem

### Chi Li

#### Department of Mathematics, Purdue University

### BICMR on-line seminar, April 15, 2020

# Table of Contents









Riemann surface: surface with a complex structure:

| Topology                                  | Metric     | Curvature |
|-------------------------------------------|------------|-----------|
| $\mathbb{S}^2=\mathbb{CP}^1$              | spherical  | 1         |
| $\mathbb{T}^2=\mathbb{C}/\mathbb{Z}^2$    | flat       | 0         |
| $\Sigma_g = \mathbb{B}^1/\pi_1(\Sigma_g)$ | hyperbolic | -1        |

 $\Sigma_g$  closed oriented surface of genus  $g \ge 2$ .  $\mathbb{B}^1 = \{z \in \mathbb{C}; |z| < 1\}.$ 

Generalization for higher dimensional complex projective manifolds?

# Kähler manifolds and Kähler metrics

X: complex manifold,  $\{(U_{\alpha}, z_1, \dots, z_n)\}$ . Kähler form: a smooth closed positive (1, 1)-form:

$$\omega = rac{\sqrt{-1}}{2\pi}\sum_{i,j=1}^n g_{i\overline{j}}dz^i\wedge d\overline{z}^j, \quad (g_{i\overline{j}})>0.$$

 $d\omega = 0 \Longrightarrow$  Kähler class  $[\omega] \in H^2(X, \mathbb{R}) \cap H^{1,1}_{\bar{\partial}}(X, \mathbb{C}).$ 

Local  $\partial \overline{\partial}$ -Lemma:  $\exists$  local potentials  $\varphi_0 = \{(\varphi_0)_\alpha \in C^\infty(U_\alpha)\}$ 

$$\omega_0 = \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \varphi_0 =: \frac{\sqrt{-1}}{2\pi} \frac{\partial^2 \varphi_0}{\partial z_i \partial \bar{z}_j} dz_i \wedge d\bar{z}_j = dd^c \varphi_0.$$

Global  $\partial \bar{\partial}$ -Lemma: any Kähler form in  $[\omega]$  can be written as

$$dd^{c}\varphi := \omega_{0} + \sqrt{-1}\partial\bar{\partial}u = \sqrt{-1}\sum_{i,j}\left((\varphi_{0})_{i\bar{j}} + u_{i\bar{j}}\right)dz^{i} \wedge d\bar{z}^{j}$$

where  $\varphi = \varphi_0 + u$  is locally defined, while  $u = \varphi - \varphi_0$  and  $dd^c \varphi$  are globally defined.

# Constant scalar curvature Kähler (cscK) metrics

### Ricci curvature:

$$R_{i\overline{j}} := Ric(dd^c \varphi)_{i\overline{j}} = -\frac{\partial^2}{\partial z_i \partial \overline{z}_j} \log \det (\varphi_{k\overline{l}}).$$

Scalar curvature:

$$\begin{array}{lll} S(dd^{c}\varphi) & = & g^{i\bar{j}}R_{i\bar{j}} \\ & = & -g^{i\bar{j}}\frac{\partial}{\partial z_{i}\partial\bar{z}_{j}}\log\det\left(\varphi_{k\bar{l}}\right). \end{array}$$

cscK equation is a 4-th order highly nonlinear equation:

$$S(dd^c\varphi) = \underline{S}.$$

 $\underline{S}$  is a topological constant:

$$\underline{S} = \frac{n \langle c_1(X) \wedge [\omega]^{n-1}, X \rangle}{\langle [\omega]^n, X \rangle}$$

## Kähler metric as curvature forms

If  $[\omega] \in H^{1,1}(X, \mathbb{C}) \cap H^2(X, \mathbb{Z})$ , then  $[\omega] = c_1(L)$  for an ample holomorphic line bundle L over X and  $\omega = dd^c \varphi$  for a Hermitian metric  $e^{-\varphi}$  on L.

Holomorphic line bundle: transition functions  $f_{\alpha\beta} \in \mathcal{O}(U_{\alpha} \cap U_{\beta})$ .

$$L = \left(\bigsqcup_{\alpha} U_{\alpha} \times \mathbb{C}\right) / \{s_{\alpha} = f_{\alpha\beta}s_{\beta}\}.$$

Hermitian metrics:  $e^{-\varphi} := \{e^{-\varphi_{\alpha}}\}$  Hermitian metric on *L*:

$$e^{-\varphi_{\alpha}} = |f_{\alpha\beta}|^2 e^{-\varphi_{\beta}}.$$

 $\partial \overline{\partial}$ -lemma: Fix any reference metric  $e^{-\varphi_0}$ , then  $\exists u \in C^{\infty}(X)$  s.t.

$$e^{-\varphi}=e^{-\varphi_0}e^{-u}.$$

Chern curvature

$$dd^{c} \varphi = rac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \varphi_{lpha}.$$

### Conjecture (YTD conjecture)

(X, L) admits a cscK metric if and only if (X, L) is  $Aut(X, L)_0$ -uniformly K-stable for test configurations.

The only if direction of this Conjecture is known to be true. Example:

If  $L = -K_X$  ample, then X is Fano and cscK=Kähler-Einstein.

In this case the above YTD conjecture is equivalent to the results of Tian, Chen-Donaldson-Sun, Berman. The existence part depends on Cheeger-Colding-Tian theory and partial  $C^0$ -estimates. Different variational approach, based on pluripotential theory and non-Archimedean geometry, works also for singular Fano varieties and has been successfully carried out by Berman-Boucksom-Jonsson, L. -Tian-Wang, Hisamoto and L. . Moreover the K-stability condition for Fano varieties are in many

cases checkable.

### Theorem (**L**. '20)

Let  $\mathbb{G}$  be a reductive subgroup of  $\operatorname{Aut}(X, L)_0$ . If (X, L) is  $\mathbb{G}$ -uniformly K-stable for models (or for filtrations), then (X, L) admits a cscK metric.

We have implications and conjecture they are all equivalent: Aut $(X, L)_0$ -uniformly K-stable for models  $\implies$  cscK  $\implies$  Aut $(X, L)_0$ -uniformly K-stable for test configurations

Applications: reproving the toric YTD conjecture (without Donaldson's toric analysis):

Theorem (Donaldson, Zhou-Zhu, Chen-Li-Sheng, Hisamoto, Chen-Cheng, **L.** )

A polarized toric manifold (X, L) admits a cscK metric if and only if (X, L) is  $(\mathbb{C}^*)^r$ -uniformly K-stable.

(日) (同) (三) (三)

э

# Mabuchi functional

Mabuchi functional (K-energy): Chen-Tian's formula:

$$\begin{split} \mathsf{M}(\varphi) &= -\int_0^1 dt \int_X \dot{\varphi} \cdot (S(\varphi(t)) - \underline{S}) (dd^c \varphi(t))^n \\ &= \mathsf{H}(\varphi) - \mathsf{H}(\varphi_0) + \mathsf{E}^{-\operatorname{Ric}(\Omega)}(\varphi) + \frac{\underline{S}}{n+1} \mathsf{E}(\varphi). \end{split}$$

Entropy, twisted energy and Monge-Ampère energy:

$$\begin{aligned} \mathbf{H}(\varphi) &= \int_{X} \log \frac{(dd^{c}\varphi)^{n}}{\Omega} (dd^{c}\varphi)^{n}. \\ \frac{d}{dt} \mathbf{E}^{-Ric(\Omega)}(\varphi) &= -n \int_{X} \dot{\varphi} Ric(\Omega) \wedge (dd^{c}\varphi)^{n-1}. \\ \frac{d}{dt} \mathbf{E}(\varphi) &= \int_{X} \dot{\varphi} (dd^{c}\varphi)^{n}. \end{aligned}$$

3

Space of smooth Kähler metrics:

$$\mathcal{H} = \{ \varphi = \varphi_0 + u; u \in C^{\infty}(X), \omega_0 + dd^c u > 0 \}.$$

Finite energy metrics as Completion of  $\mathcal{H}$  (Cegrell, Guedj-Zeriahi)

$$\begin{split} \mathcal{E}^1 &= \{ \varphi \in \mathrm{PSH}(X, [\omega]); \\ & \mathsf{E}(\varphi) := \inf\{\mathsf{E}(\tilde{\varphi}); \tilde{\varphi} \geq \varphi, \tilde{\varphi} \in \mathcal{H}\} > -\infty \}. \end{split}$$

Strong topology on  $\mathcal{E}^1$ :  $\varphi_m \to \varphi$  strongly if  $\varphi_m \to \varphi$  in  $L^1(\omega^n)$  and  $\mathbf{E}(\varphi_m) \to \mathbf{E}(\varphi)$ . All 3-parts in  $\mathbf{M}$  are defined on  $\mathcal{E}^1$ . There is a norm-like energy:

$$\begin{aligned} \mathsf{J}(\varphi) &= \int_{X} (\varphi - \varphi_0) (dd^c \varphi)^n - \mathsf{E}(\varphi) \\ &= \sum_{i=0}^{n-1} \frac{n-i}{n+1} \frac{\sqrt{-1}}{2\pi} \int_{X} \partial u \wedge \bar{\partial} u \wedge \omega_u^i \wedge \omega^{n-1-i} \ge 0. \end{aligned}$$

3 K K 3 K 3

### Definition

Given  $\varphi_1, \varphi_2 \in \mathcal{E}^1$ , a geodesic segment joining  $\varphi_1, \varphi_2$  is:

 $\Phi = \sup\{\tilde{\Phi} \in \operatorname{PSH}(X \times [s_1, s_2] \times S^1, p_1^*L); \tilde{\Phi}(\cdot, s_i) \leq \varphi_i, i = 1, 2\}.$ 

A geodesic ray emanating from  $\varphi_0$  is a map  $\Phi : \mathbb{R}_{\geq 0} \to \mathcal{E}^1$  s.t.  $\forall s_1, s_2 \in \mathbb{R}_{\geq 0}, \Phi|_{[s_1, s_2]}$  is the geodesic segment joining  $\varphi(s_1)$  and  $\varphi(s_2)$ , and  $\Phi(\cdot, 0) = \varphi_0$ .

• Geodesics originates from Mabuchi's L<sup>2</sup>-metric on  $\mathcal{H}$  and satisfies the Homogeneous Complex Monge-Ampère (HCMA) equation in pluripotential sense (Semmes, Donaldson):

 $(\sqrt{-1}\partial\bar\partial\Phi)^{n+1}=0.$ 

- $\mathbf{E}(\varphi(s))$  is linear with respect to s.
- $\sup(\varphi(s) \varphi_0)$  is linear with respect to s.

### Theorem (Chen-Tian, Berman-Berndtsson, Berman-Darvas-Lu)

**M** is convex along geodesics in  $\mathcal{E}^1$ . It is linear if and only if the geodesic is generated by holomorphic vector fields.

Consequences of convexity:

Theorem (Berman-Berndtsson, Berman-Darvas-Lu)

CscK metrics obtain the minimum of **M** over  $\mathcal{E}^1$ . Moreover (smooth) cscK metrics are unique up to  $Aut(X, [\omega])_0$ .

This reproves and generalizes previous results of Chen-Tian, Donaldson and Mabuchi.

# Variational criterion

 $\mathbb{G}$ : a reductive Lie group,  $\mathbb{G} = \mathbb{K}^{\mathbb{C}}$  and  $\mathbb{T} \cong (\mathbb{C}^*)^r$  the center of  $\mathbb{G}$ .

Definition (Tian, refined by Darvas-Rubinstein and Hisamoto)

**M** is  $\mathbb{G}$ -coercive if there exists  $\gamma > 0$  such that for any  $\varphi \in \mathcal{H}^{\mathbb{K}}$ ,

 $\mathsf{M}(\varphi) \geq \gamma \cdot \mathsf{J}_{\mathbb{T}}(\varphi),$ 

where  $\mathbf{J}_{\mathbb{T}}(\varphi) := \inf_{\sigma \in \mathbb{T}} \mathbf{J}(\sigma^* \varphi).$ 

We have hard results:

Theorem (Chen-Cheng, Darvas-Rubinstein, Berman-Darvas-Lu)

Tian's properness conjecture is true: there exists a cscK metric in  $(X, [\omega])$  if and only if **M** is  $Aut(X, [\omega])_0$ -coercive.

Hisamoto, **L**. :  $\operatorname{Aut}(X, [\omega])_0$  can be replaced by any reductive  $\mathbb{G}$  that contains a maximal torus of  $\operatorname{Aut}(X, [\omega])_0$ .

For a geodesic ray  $\Phi$  and a functional **F** defined over  $\mathcal{E}^1$ , set:

$$\mathsf{F}'^{\infty}(\Phi) = \lim_{s \to +\infty} rac{\mathsf{F}(\varphi(s))}{s}.$$

The limit exists for all  $\mathbf{F} \in {\{\mathbf{E}, \mathbf{E}^{-Ric(\Omega)}, \mathbf{H}, \mathbf{M}, \mathbf{J}, \mathbf{J}_{\mathbb{T}}\}}$ .

Based on compactness result about strong topology in Berman-Boucksom-Eyssidieux-Guedj-Zeriahi (BBEGZ), destabilizing sequence produces destabilizing a geodesic ray:

Theorem (Darvas-He, Chen-Cheng, Berman-Boucksom-Jonsson)

**M** is  $\mathbb{G}$ -coercive iff there exists  $\gamma > 0$  s.t. for any geodesic ray  $\Phi$ ,

 $\mathbf{M}^{\prime\infty}(\Phi) \geq \gamma \cdot \mathbf{J}^{\prime\infty}_{\mathbb{T}}(\Phi).$ 

# Contact with algebraic geometry: Test configurations (Tian, Donaldson)

A test configuration (TC)  $(\mathcal{X}, \mathcal{L})$  is a  $\mathbb{C}^*$ -equivariant degeneration of (X, L):

**(**  $\pi: \mathcal{X} \to \mathbb{C}$ : a  $\mathbb{C}^*$ -equivariant family of projective varieties;

**2**  $\mathcal{L} \to \mathcal{X}$ : a  $\mathbb{C}^*$ -equiv. semiample holomorphic  $\mathbb{Q}$ -line bundle;

Trivial test configuration:  $(X_{\mathbb{C}}, L_{\mathbb{C}}) := (X, L) \times \mathbb{C}$ .

 $(\mathcal{X}, \mathcal{L})$  is dominating if there is a  $\mathbb{C}^*$ -equivariant birational morphism  $\rho : \mathcal{X} \to X \times \mathbb{C}$ .

Under the isomorphism  $\eta$ , psh metrics on  $\mathcal{L}|_{\pi^{-1}(\mathbb{C}^*)}$  are considered as *subgeodesic* rays on (X, L).

▲ロ → ▲ 翻 → ▲ 画 → ▲ 画 → ● ● ●

For any TC  $(\mathcal{X}, \mathcal{L})$ , there are many smooth subgeodesic ray which extend to be a smooth psh metrics on  $\mathcal{L}$ .

### Theorem (Phong-Sturm)

For any test configuration, there exists a unique geodesic ray  $\Phi$  emanating from  $\varphi_0$  s.t.  $\Phi$  extends to a bounded psh metric on  $\mathcal{L}$ .

 $\Phi$  is obtained by solving the HCMA on a resolution of  $\mathcal{X}\colon$ 

$$(\mu^*(dd^c ilde{\Phi})+U)^{n+1}=0; \quad U|_{X imes S^1}=0,$$

where  $\tilde{\Phi}$  is any smooth positively curved Hermitian metric on  $\mathcal{L}$ . In general the solution  $\Phi := \tilde{\Phi} + U$  is at most  $C^{1,1}$  (Phong-Sturm, Chu-Tosatti-Weinkove).

# Mabuchi slopes along (sub)geodesic rays on TCs

For any TC  $(\mathcal{X}, \mathcal{L})$ , set:

$$\begin{split} \mathbf{M}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) &= \mathcal{K}^{\mathrm{log}}_{\bar{\mathcal{X}}/\mathbb{P}^{1}} \cdot \bar{\mathcal{L}}^{\cdot n} + \frac{\underline{S}}{n+1} \bar{\mathcal{L}}^{\cdot n+1} \\ \mathbf{J}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) &= \bar{\mathcal{L}} \cdot \mathcal{L}^{\cdot n}_{\mathbb{P}^{1}} - \frac{\bar{\mathcal{L}}^{\cdot n+1}}{n+1}. \end{split}$$

Theorem (Tian, Boucksom-Hisamoto-Jonsson)

For any smooth psh metric  $\Phi$  on  $\mathcal{L}$ , we have the slope formula:

$$\mathsf{M}^{\prime\infty}(\Phi) = \mathsf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) = rac{1}{d} \mathrm{CM}((\mathcal{X}, \mathcal{L}) imes_{\mathbb{C}, t \mapsto t^d} \mathbb{C}).$$

### Theorem (**L**. '20 (Xia proved $\leq$ ))

If  $\Phi$  is the geodesic ray associated to  $(\mathcal{X}, \mathcal{L})$ , then:

$$\mathbf{M}^{\prime\infty}(\Phi) = \mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}).$$

### Proposition (Hisamoto)

For any  $\mathbb{G}$ -equivariant test configuration  $(\mathcal{X}, \mathcal{L})$ ,

$$\mathbf{J}^{\infty}_{\mathbb{T}}(\Phi) = \mathbf{J}^{\mathrm{NA}}_{\mathbb{T}}(\mathcal{X}, \mathcal{L}) := \inf_{\xi \in \boldsymbol{N}_{\mathbb{P}}} \mathbf{J}^{\mathrm{NA}}(\mathcal{X}_{\xi}, \mathcal{L}_{\xi}).$$

Definition (Tian, Donaldson, Székelyhidi, Dervan, BHJ, Hisamoto)

(X, L) is  $\mathbb{G}$ -uniformly K-stable if there exists  $\gamma > 0$  such that for any  $\mathbb{G}$ -equivariant test configuration  $(\mathcal{X}, \mathcal{L})$ ,

$$\mathbf{M}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) \geq \gamma \cdot \mathbf{J}_{\mathbb{T}}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}).$$
(1)

イロン 不同 とくほう イロン

3

Proposition (Hisamoto for  $Aut(X, L)_0$ , **L**. for general  $\mathbb{G}$ )

Assume that (X, L) admits a cscK metric. If  $\mathbb{G}$  contains a maximal torus of  $Aut(X, L)_0$ , then (X, L) is  $\mathbb{G}$ -uniformly K-stable.

# Berkovich's analytic space

Let X be a projective variety defined over  $\mathbb{C}$ .

- If  $\mathbb{C}$  is endowed with the standard (Archimedean) absolute valuation, then  $X^{an}$  is the usual complex analytic manifold.
- If  $\mathbb{C}$  is given the trivial valuation, then  $(X^{\mathrm{an}}, L^{\mathrm{an}})$  is the non-Archimedean Berkovich space. The set of divisorial valuations  $X_{\mathbb{Q}}^{\mathrm{div}}$  is dense in  $X^{\mathrm{NA}} := X^{\mathrm{an}}$ . A metric  $\phi$  on  $L^{\mathrm{NA}} := L^{\mathrm{an}}$  is represented by the function  $\phi \phi_{\mathrm{triv}}$  on  $X_{\mathbb{O}}^{\mathrm{div}}$ .

Each (dominating) TC  $(\mathcal{X}, \mathcal{L})$  defines a smooth NA metric:  $\forall v \in X_{\mathbb{Q}}^{\text{div}}$ , if  $G(v) \in (X \times \mathbb{C})_{\mathbb{Q}}^{\text{div}}$  is the Gauss extension (i.e. G(v) is  $\mathbb{C}^*$ -invariant extension of v satisfying G(v)(t) = 1), we have

$$f_{\mathcal{L}}(\mathbf{v}) := f_{(\mathcal{X},\mathcal{L})}(\mathbf{v}) = G(\mathbf{v})(\mathcal{L} - \rho^* L_{\mathbb{C}}).$$

Smooth NA psh metrics  $\Leftrightarrow$  equivalence class of test configurations

$$\mathcal{H}^{\mathrm{NA}}(\mathcal{L}) = \{ \phi_{(\mathcal{X},\mathcal{L})} := \phi_{\mathrm{triv}} + f_{\mathcal{L}}; (\mathcal{X},\mathcal{L}) \text{ is a test configuration} \}.$$

# Non-Archimedean $\mathcal{E}^{1,\mathrm{NA}}$ (by Boucksom-Favre-Jonsson)

For any 
$$\phi = \phi_{(\mathcal{X}, \mathcal{L})} \in \mathcal{H}^{NA}$$
, set:  
 $\bar{\mathcal{L}}^{\cdot n+1}$ 

$$\mathsf{\Xi}^{\mathrm{NA}}(\phi) := \frac{\mathcal{L}^{n+1}}{n+1}.$$

Non-Archimedean version of PSH/finite energy metrics:

$$\begin{split} \mathrm{PSH}^{\mathrm{NA}}(\mathcal{L}) &= \{\phi: X_{\mathbb{Q}}^{\mathrm{div}} \to \mathbb{R} \cup \{-\infty\}; \exists \text{ a decreasing sequence} \\ \phi_{(\mathcal{X}_m, \mathcal{L}_m)} \in \mathcal{H}^{\mathrm{NA}} \text{ such that } \phi = \lim_{m \to +\infty} \phi_{(\mathcal{X}_m, \mathcal{L}_m)} \}, \\ \mathcal{E}^{1, \mathrm{NA}} &= \{\phi \in \mathrm{PSH}^{\mathrm{NA}}; \\ \mathbf{E}^{\mathrm{NA}}(\phi) := \inf\{\mathbf{E}^{\mathrm{NA}}(\tilde{\phi}); \tilde{\phi} \ge \phi\} > -\infty\}. \end{split}$$

Strong topology:  $\phi_m \to \phi$  strongly if converges pointwise and  $\mathbf{E}^{NA}(\phi_m) \to \mathbf{E}^{NA}(\phi)$ . All Archimedean functionals before can be defined on  $\mathcal{E}^{1,NA}$ .

# Non-Archimedean Calabi-Yau theorem

### Theorem (Boucksom-Favre-Jonsson, Boucksom-Jonsson)

 $\exists \text{ operator } MA^{NA}: \mathcal{E}^1 \to \mathcal{M}^{1,NA} \text{ (finite energy radon measures):}$ 

• For any TC  $(\mathcal{X}, \mathcal{L})$ , one recovers Chambert-Loir's measure:

$$\mathrm{MA}^{\mathrm{NA}}(\phi_{(\mathcal{X},\mathcal{L})}) = \sum_{j} b_{j} \left(\mathcal{L}|_{E_{j}}\right)^{\cdot n} \delta_{x_{j}}, \qquad (2)$$

where  $x_j = b_j^{-1} r(\operatorname{ord}_{E_j}) \in X_{\mathbb{Q}}^{\operatorname{div}}$  with  $\mathcal{X}_0 = \sum_j b_j E_j$ .

Interpretation of the second secon

$$MA^{NA}: \mathcal{E}^{1,NA}(\mathcal{L})/\mathbb{R} \to \mathcal{M}^{1,NA}$$
 (3)

w.r.t. the strong topology. Moreover, if  $\nu$  is a Radon measure supported on a dual complex  $\Delta_{\mathcal{X}}$  for a SNC model  $\mathcal{X}$ , then  $(MA^{NA})^{-1}(\nu)$  is continuous.

# Non-Archimedean metrics from geodesic rays

A subgeodesic ray  $\Phi = \{\varphi(s)\}_{s \ge 0}$  is of linear growth if

$$\sup_{s>0}\frac{\sup(\varphi(s)-\varphi_0)}{s}<+\infty.$$

Subgeodesic rays of linear growth define non-Archimedean metrics:

$$\Phi^{\mathrm{NA}}({m v})=-G({m v})(\Phi), \quad orall {m v}\in X^{\mathrm{div}}_{\mathbb Q}.$$

 $\Phi^{\mathrm{NA}} \in \mathcal{E}^{1,\mathrm{NA}}$  as a decreasing limit of  $\phi_{m} \in \mathcal{H}^{\mathrm{NA}}$ :

**①** Consider the multiplier ideal sheaf (MIS) over  $X \times \mathbb{C}$ :

$$\mathcal{J}(m\Phi)(\mathcal{U}) = \left\{ f \in \mathcal{O}(\mathcal{U}); \int_{\mathcal{U}} |f|^2 e^{-m\Phi} < +\infty \right\}.$$

- Using the Nadel vanishing and global generation property of MIS, (X<sub>m</sub>, L<sub>m</sub>) is a test configuration of (X, L)
- Using valuative description of MIS (Boucksom-Favre-Jonsson),  $\phi_m := \phi_{(\mathcal{X}_m, \mathcal{L}_m)}$  decreases to  $\phi$ .

# Maximal geodesic rays

### Definition (Berman-Boucksom-Jonsson (BBJ))

A geodesic ray  $\Phi$  is maximal if for any subgeodesic ray  $\tilde{\Phi}$  satisfying  $\tilde{\Phi}_{NA} \leq \Phi_{NA}$ , we have  $\tilde{\Phi} \leq \Phi$ .

### Theorem (Berman-Boucksom-Jonsson )

There is a one-to-one correspondence between  $\mathcal{E}^{1,NA}$  and the set of maximal geodesic rays. For any maximal geodesic ray  $\Phi$ , we have:

$$\mathbf{E}^{\prime\infty}(\Phi) = \mathbf{E}^{NA}(\Phi_{NA}).$$

- Not every geodesic ray is maximal (examples of Darvas, BBJ).
- Maximal geodesic rays are exactly those that are algebraically approximable, i.e. approximable by geodesic rays associated to test configurations. Moreover for such approximations:

$$\lim_{m\to+\infty} \mathbf{E}^{\prime\infty}(\Phi_m) = \mathbf{E}^{\prime\infty}(\Phi).$$

# Non-Archimedean metrics from Models

In the definition of a test configuration  $(\mathcal{X}, \mathcal{L})$ , if we don't require  $\mathcal{L}$  to be semiample, then we say that  $(\mathcal{X}, \mathcal{L})$  is a model of (X, L). Let  $\mathfrak{b}_m$  be the relative base ideal of  $m\mathcal{L}$  and set

$$\mathcal{X}_m = \mathrm{Bl}_{\mathfrak{b}_m} \mathcal{X} \xrightarrow{\mu_m} \mathcal{X}, \quad \mathcal{L}_m = \mu_m^* \mathcal{L} - \frac{1}{m} E_m.$$

We associate a model psh metric:

$$\phi_{\mathcal{L}} := \phi_{(\mathcal{X},\mathcal{L})} := \lim_{m \to +\infty} \phi_{(\mathcal{X}_m,\mathcal{L}_m)}$$

Theorem-Definition (Movable Intersection Formula, L. '20)

For 
$$\phi=\phi_{(\mathcal{X},\mathcal{L})}$$
, with  $\mathcal{L}_{c}=\mathcal{L}+c\mathcal{X}_{0},c\gg1$ ,

$$\mathsf{M}^{\mathrm{NA}}(\phi) := \langle ar{\mathcal{L}}^n_c 
angle \cdot \left( \mathcal{K}^{\mathsf{log}}_{ar{\mathcal{X}}/\mathbb{P}^1} + rac{\mathcal{S}}{n+1} ar{\mathcal{L}}_c 
ight)$$

where  $\langle \cdot \rangle$  is the movable intersection product of big line bundles studied in Boucksom-Demailly-Păun-Peternell.

# K-stability for models

Model psh metric by using associated filtration  $\mathcal{F}R_{\bullet} = \{\mathcal{F}^{\lambda}R_{m}\}$ :

$$\mathcal{F}^{\lambda}H^{0}(X,mL) = \{ s \in H^{0}(X,mL); t^{-\lceil \lambda \rceil} \overline{s} \in H^{0}(\mathcal{X},mL) \}.$$

To any filtration  $\mathcal{F}R_{\bullet}$ , one can associate a maximal geodesic ray (Ross-WittNyström) and a lower regularizable NA psh metric (Boucksom-Jonsson, Székelyhidi).  $\phi_{\mathcal{L}}$  is also a non-Archimedean envelope which is always continuous:

$$\phi_{\mathcal{L}} = \sup\{\phi \in \mathrm{PSH}^{\mathrm{NA}}(\mathcal{L}); \phi - \phi_{\mathrm{triv}} \leq f_{\mathcal{L}}\}.$$

### Definition (L.)

(X, L) is  $\mathbb{G}$ -uniformly K-stable for models if  $\exists \gamma > 0$  such that for any model  $(\mathcal{X}, \mathcal{L})$ ,

$$\mathbf{M}^{\mathrm{NA}}(\phi_{(\mathcal{X},\mathcal{L})}) \geq \gamma \cdot \mathbf{J}^{\mathrm{NA}}_{\mathbb{T}}(\phi_{(\mathcal{X},\mathcal{L})}).$$

э

글 > - < 글 >

Image: A matrix and a matrix

### Theorem (Thm A, **L.** , '20)

A geodesic ray  $\Phi$  satisfies  $\mathbf{M}^{\prime\infty}(\Phi) < +\infty$  is necessarily maximal.

The proof uses two key ingredients: equisingularity of multiplier approximation (via valuative description of MIS) and Jensen's inequality (motivated by Tian's  $\alpha$ -type estimate): for any  $\alpha > 0$ ,

$$egin{aligned} \mathcal{C}(lpha) &> & \log \int_{X imes \mathbb{D}} e^{lpha(\hat{\Phi} - \Phi)} \Omega \sqrt{-1} dt \wedge dar{t} \ &\geq & lpha \int_X (\hat{arphi}(s) - arphi(s)) (dd^c arphi(s))^n - \mathbf{H}_\Omega(arphi(s)) - s \ &\geq & \mathcal{C} lpha \cdot (\mathbf{E}(\hat{arphi}(s)) - \mathbf{E}(arphi(s))) - \mathbf{H}(arphi(s)) - s. \end{aligned}$$

Divide both sides by s and letting  $s \to +\infty$  to get  $\mathbf{E}'^{\infty}(\hat{\Phi}) = \mathbf{E}'^{\infty}(\Phi)$ , which by linearity of  $\mathbf{E}$  implies  $\mathbf{E}(\hat{\varphi}(s)) \equiv \mathbf{E}(\varphi)$  and consequently by Dinew's domination principle gives  $\hat{\varphi} \equiv \varphi$ .

### Theorem (Thm B, L., Berman-Boucksom-Jonsson)

If a maximal geodesic ray  $\Phi$  is approximated by  $\{\Phi_m\}$  associated to test configurations, then

$$\lim_{m\to+\infty} (\mathbf{E}^{-Ric(\Omega)})^{\prime\infty}(\Phi_m) = (\mathbf{E}^{-Ric})^{\prime\infty}(\Phi).$$

As a consequence, we have:

$$(\mathbf{E}^{-Ric(\Omega)})^{\prime\infty}(\Phi) = (\mathbf{E}^{K_X})^{NA}(\Phi_{NA}).$$

The same statement holds for J and  $J_{\mathbb{T}}.$ 

The proof uses the following estimate from BBEGZ:

$$egin{aligned} &\int_X (arphi_2 - arphi_1) ((dd^c arphi_3)^n - (dd^c arphi_4)^n) \ &\leq \mathbf{I}(arphi_1, arphi_2)^{1/2^n} \cdot \mathbf{I}(arphi_3, arphi_4)^{1/2^n} \max\{\mathbf{I}(arphi_i)\}^{1-2^{1-n}}. \end{aligned}$$

# Slopes of entropy

For any  $\phi \in \mathcal{E}^{1,\mathrm{NA}}$ , define:

$$\mathbf{H}^{\mathrm{NA}}(\phi) = \int_{X^{\mathrm{NA}}} A_X(\mathbf{v}) \mathrm{MA}^{\mathrm{NA}}(\phi).$$

If 
$$\phi = \phi_{(\mathcal{X},\mathcal{L})}$$
, then  $\mathbf{H}^{\mathrm{NA}}(\phi) = K_{\mathcal{X}/X_{\mathbb{C}}}^{\log} \cdot \bar{\mathcal{L}}^{\cdot n}$ .

### Theorem (Thm C, L., '20)

For any (maximal) geodesic ray  $\Phi$ , we have:

$${\boldsymbol{\mathsf{H}}}^{\prime\infty}(\Phi)\geq {\boldsymbol{\mathsf{H}}}^{\rm NA}(\Phi_{\rm NA}),\quad {\boldsymbol{\mathsf{M}}}^{\prime\infty}(\Phi)\geq {\boldsymbol{\mathsf{M}}}^{\rm NA}(\Phi_{\rm NA}).$$

The key is to use the non-Archimedean identity for entropy:

$$\mathbf{H}^{\mathrm{NA}}(\phi) = \sup\left\{\int_{\mathcal{X}^{\mathrm{NA}}} f_{\mathcal{K}^{\mathrm{log}}_{\mathcal{Y}/\mathcal{X}_{\mathbb{C}}}} \mathrm{MA}^{\mathrm{NA}}(\phi); \mathcal{Y} ext{ an SNC model}
ight\},$$

Jensen's inequality and an asymptotic lemma of Boucksom-Hisamoto-Jonsson.

## Conjecture (L., '20)

If 
$$\Phi$$
 is maximal, then  $\mathbf{H}^{\prime\infty}(\Phi) = \mathbf{H}^{\mathrm{NA}}(\Phi_{\mathrm{NA}})$ .

This is implied by

Conjecture (Boucksom-Jonsson)

For any  $\phi \in \mathcal{E}^{1,\mathrm{NA}}$ , there exist  $\phi_m \in \mathcal{H}^{\mathrm{NA}}$  s.t.  $\phi_m$  converges to  $\phi$  in the strong topology and

$$\mathbf{H}^{\mathrm{NA}}(\phi) = \lim_{m \to +\infty} \mathbf{H}^{\mathrm{NA}}(\phi_m).$$

Difficulty: As in the Archimedean case,  $\mathbf{H}^{NA}$  is only lower-semi-continuous, not continuous, under the strong convergence. One needs some nice smoothing process that preserves the non-Archimedean entropy. We give some partial smoothing in the following theorem.

### Theorem (Thm D, **L.** )

For any  $\phi \in \mathcal{E}^{1,NA}$ , there exist models  $(\mathcal{X}_m, \mathcal{L}_m)$  such that  $\phi_m = \phi_{(\mathcal{X}_m, \mathcal{L}_m)}$  converges to  $\phi$  in the strong topology and

$$\mathbf{M}^{\mathrm{NA}}(\phi) = \lim_{m \to +\infty} \mathbf{M}^{\mathrm{NA}}(\phi_m).$$

Step 1:  $\forall \phi \in \mathcal{E}^{1,\mathrm{NA}}$ ,  $\exists \phi_m \in \mathcal{E}^{1,\mathrm{NA}} \cap C^0(\mathcal{L}^{\mathrm{NA}})$  s.t.  $\phi_m \xrightarrow{\text{strongly}} \phi$ ,  $\mathbf{M}^{\mathrm{NA}}(\phi_m) \to \mathbf{M}^{\mathrm{NA}}(\phi)$  and  $\mathrm{MA}^{\mathrm{NA}}(\phi_m)$  is supported on a dual complex  $\Delta_{\mathcal{Y}}$  of an SNC model  $(\mathcal{Y}, \mathcal{L}_{\mathcal{Y}})$  of  $(X, \mathcal{L})$ . Step 2:  $\forall \phi \in \mathcal{E}^{1,\mathrm{NA}}$  with  $\mathrm{MA}^{\mathrm{NA}}(\phi)$  supported on  $\Delta_{\mathcal{Y}}$ ,  $\exists \phi_k \in \mathcal{E}^{1,\mathrm{NA}} \cap C^0(\mathcal{L}^{\mathrm{NA}})$  s.t.  $\phi_k \xrightarrow{\text{strongly}} \phi$ ,  $\mathbf{M}^{\mathrm{NA}}(\phi_k) \to \mathbf{M}^{\mathrm{NA}}(\phi)$ and  $\mathbf{M}^{\mathrm{NA}}(\phi_k)$  is a Dirac-type measure supported on  $\Delta_{\mathcal{Y}}$ . Step 3: Boucksom-Favre-Jonsson showed that solution  $(\mathrm{MA}^{\mathrm{NA}})^{-1}(\nu)$  for Dirac type  $\nu$  is  $\phi_{(\mathcal{Y}, \mathcal{L}_{\mathcal{Y}})}$  for some  $\mathbb{R}$ -line bundle  $\mathcal{L}_{\mathcal{Y}}$ . A perturbation makes  $\mathcal{L}_{\mathcal{Y}}$  a  $\mathbb{Q}$ -line bundle.

# Synthesis: proof of existence result

Proof by contradiction.

Step 1: If **M** is not  $\mathbb{G}$ -coercive, then  $\exists$  destabilizing ray  $\Phi$  s.t.

$$\mathbf{M}'^{\infty}(\Phi) \leq 0, \quad \mathbf{J}_{\mathbb{T}}'^{\infty}(\Phi) = 1.$$

Step 2: By Thm A,  $\Phi$  is maximal. By Thm B, with  $\phi = \Phi_{NA}$ ,

$$\mathsf{E}^{\prime\infty}(\Phi) = \mathsf{E}^{\mathrm{NA}}(\phi), \quad (\mathsf{E}^{-\operatorname{\it Ric}(\Omega)})^{\prime\infty}(\Phi) = (\mathsf{E}^{\operatorname{\it K}_X})^{\mathrm{NA}}(\phi),$$

Step 3: By Thm C,  $\mathbf{H}^{\infty}(\Phi) \geq \mathbf{H}^{NA}(\phi)$ . Step 4: By Thm D, there exist models  $(\mathcal{X}_m, \mathcal{L}_m)$ :

$$\lim_{m \to +\infty} \mathbf{M}^{\mathrm{NA}}(\phi_m) = \mathbf{M}^{\mathrm{NA}}(\phi), \text{ with } \phi_m = \phi_{(\mathcal{X}_m, \mathcal{L}_m)}.$$

Step 5: Contradiction:

$$egin{aligned} 0 &\geq & \mathbf{M}'^\infty(\Phi) \geq \mathbf{M}^{\mathrm{NA}}(\phi) = \lim_{m o +\infty} \mathbf{M}^{\mathrm{NA}}(\phi_m) \ &\geq_{\mathrm{stability}} & \lim_{m o +\infty} \mathbf{J}^{\mathrm{NA}}_{\mathbb{T}}(\phi_m) = \mathbf{J}^{\mathrm{NA}}_{\mathbb{T}}(\phi) = 1. \end{aligned}$$

A toric manifold  $X^n$  is a projective manifold with an effective  $\mathbb{T} \cong (\mathbb{C}^*)^r$  action with an open dense orbit.

Ample toric line bundle  $\iff$  lattice (moment) polytope  $\Delta \subset \mathbb{Z}^n$ .

 $(\mathbb{C}^*)^r$ -equivariant test configurations  $\iff$  convex piecewise linear rational functions on  $\Delta$ .

 $(\mathbb{C}^*)^r$ -equivariant models  $\iff$  piecewise linear rational functions  $f_{\mathcal{L}}$  on  $\Delta$ , and

 $\phi_{\mathcal{L}} =$  lower convex envelope of  $f_{\mathcal{L}}$ , and is convex piecewise linear rational and hence comes from a test configuration. This corresponds to the algebraic fact: toric divisors on toric varieties admit Zariski decomposition.

So we get the toric YTD conjecture for all polarized toric manifolds.

# YTD in Kähler-Einstein case: use of D = -E + L

Proof by contradiction.

Step 1: If **M** and **D** are not  $\mathbb{G}$ -coercive, then  $\exists$  geodesic  $\Phi$  s.t.

 $\mathbf{D}^{\prime\infty}(\Phi) \leq 0, \quad \mathbf{J}^{\prime\infty}_{\mathbb{T}}(\Phi) = 1.$ 

Step 2: By Thm A,  $\Phi$  is maximal and hence with  $\phi = \Phi_{NA}$ ,

$$\mathsf{E}^{\prime\infty}(\Phi) = \mathsf{E}^{\mathrm{NA}}(\phi).$$

Step 3: Berman-Boucksom-Jonsson showed  $\mathbf{L}^{\prime\infty}(\Phi) = \mathbf{L}^{NA}(\phi)$ . Step 4: By Multiplier Approximation, there exist TCs  $(\mathcal{X}_m, \mathcal{L}_m)$ :

$$\lim_{m \to +\infty} \mathbf{D}^{\mathrm{NA}}(\phi_m) = \mathbf{D}^{\mathrm{NA}}(\phi), \text{ with } \phi_m = \phi_{(\mathcal{X}_m, \mathcal{L}_m)}.$$

Step 5: Contradiction:

$$0 \geq \mathbf{D}^{\prime\infty}(\Phi) = \mathbf{D}^{\mathrm{NA}}(\phi) = \lim_{m \to +\infty} \mathbf{D}^{\mathrm{NA}}(\phi_m)$$
  
$$\geq_{\mathsf{stability}} \lim_{m \to +\infty} \mathbf{J}^{\mathrm{NA}}_{\mathbb{T}}(\phi_m) = \mathbf{J}^{\mathrm{NA}}_{\mathbb{T}}(\phi) = 1.$$

# Thanks for your attention!

э