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Uniformatization Theorem for Riemann Surfaces

Riemann surface: surface with a complex structure:

Topology Metric Curvature

S2 = CP1 spherical 1

T2 = C/Z2 flat 0

Σg = B1/π1(Σg ) hyperbolic -1

Σg closed oriented surface of genus g ≥ 2.

B1 = {z ∈ C; |z | < 1}.

Generalization for higher dimensional complex projective manifolds?
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Kähler manifolds and Kähler metrics

X : complex manifold, {(Uα, z1, . . . , zn)}.
Kähler form: a smooth closed positive (1, 1)-form:

ω =

√
−1

2π

n∑
i ,j=1

gi j̄dz
i ∧ dz̄ j , (gi j̄) > 0.

dω = 0 =⇒ Kähler class [ω] ∈ H2(X ,R) ∩ H1,1

∂̄
(X ,C).

Local ∂∂̄-Lemma: ∃ local potentials ϕ0 = {(ϕ0)α ∈ C∞(Uα)}

ω0 =

√
−1

2π
∂∂̄ϕ0 =:

√
−1

2π

∂2ϕ0

∂zi∂z̄j
dzi ∧ dz̄j = ddcϕ0.

Global ∂∂̄-Lemma: any Kähler form in [ω] can be written as

ddcϕ := ω0 +
√
−1∂∂̄u =

√
−1
∑
i ,j

(
(ϕ0)i j̄ + ui j̄

)
dz i ∧ dz̄ j

where ϕ = ϕ0 + u is locally defined, while u = ϕ− ϕ0 and ddcϕ
are globally defined.
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Constant scalar curvature Kähler (cscK) metrics

Ricci curvature:

Ri j̄ := Ric(ddcϕ)i j̄ = − ∂2

∂zi∂z̄j
log det (ϕkl̄) .

Scalar curvature:

S(ddcϕ) = g i j̄Ri j̄

= −g i j̄ ∂

∂zi∂z̄j
log det (ϕkl̄) .

cscK equation is a 4-th order highly nonlinear equation:

S(ddcϕ) = S .

S is a topological constant:

S =
n〈c1(X ) ∧ [ω]n−1,X 〉

〈[ω]n,X 〉
.
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Kähler metric as curvature forms

If [ω] ∈ H1,1(X ,C) ∩ H2(X ,Z), then [ω] = c1(L) for an ample
holomorphic line bundle L over X and ω = ddcϕ for a Hermitian
metric e−ϕ on L.
Holomorphic line bundle: transition functions fαβ ∈ O(Uα ∩ Uβ).

L =

(⊔
α

Uα × C

)
/{sα = fαβsβ}.

Hermitian metrics: e−ϕ := {e−ϕα} Hermitian metric on L:

e−ϕα = |fαβ|2e−ϕβ .

∂∂̄-lemma: Fix any reference metric e−ϕ0 , then ∃u ∈ C∞(X ) s.t.

e−ϕ = e−ϕ0e−u.

Chern curvature

ddcϕ =

√
−1

2π
∂∂̄ϕα.
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Yau-Tian-Donaldson (YTD) conjecture

Conjecture (YTD conjecture)

(X , L) admits a cscK metric if and only if (X , L) is
Aut(X , L)0-uniformly K-stable for test configurations.

The only if direction of this Conjecture is known to be true.
Example:
If L = −KX ample, then X is Fano and cscK=Kähler-Einstein.

In this case the above YTD conjecture is equivalent to the results
of Tian, Chen-Donaldson-Sun, Berman. The existence part
depends on Cheeger-Colding-Tian theory and partial C 0-estimates.

Different variational approach, based on pluripotential theory and
non-Archimedean geometry, works also for singular Fano varieties
and has been successfully carried out by
Berman-Boucksom-Jonsson, L. -Tian-Wang, Hisamoto and L. .

Moreover the K-stability condition for Fano varieties are in many
cases checkable.
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Main results

Theorem (L. ’20)

Let G be a reductive subgroup of Aut(X , L)0. If (X , L) is
G-uniformly K-stable for models (or for filtrations), then (X , L)
admits a cscK metric.

We have implications and conjecture they are all equivalent:
Aut(X , L)0-uniformly K-stable for models =⇒ cscK
=⇒ Aut(X , L)0-uniformly K-stable for test configurations

Applications: reproving the toric YTD conjecture (without
Donaldson’s toric analysis):

Theorem (Donaldson, Zhou-Zhu, Chen-Li-Sheng, Hisamoto,
Chen-Cheng, L. )

A polarized toric manifold (X , L) admits a cscK metric if and only
if (X , L) is (C∗)r -uniformly K-stable.
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Mabuchi functional

Mabuchi functional (K-energy): Chen-Tian’s formula:

M(ϕ) = −
∫ 1

0
dt

∫
X
ϕ̇ · (S(ϕ(t))− S)(ddcϕ(t))n

= H(ϕ)−H(ϕ0) + E−Ric(Ω)(ϕ) +
S

n + 1
E(ϕ).

Entropy, twisted energy and Monge-Ampère energy:

H(ϕ) =

∫
X

log
(ddcϕ)n

Ω
(ddcϕ)n.

d

dt
E−Ric(Ω)(ϕ) = −n

∫
X
ϕ̇Ric(Ω) ∧ (ddcϕ)n−1.

d

dt
E(ϕ) =

∫
X
ϕ̇(ddcϕ)n.
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Space of Kähler metrics

Space of smooth Kähler metrics:

H = {ϕ = ϕ0 + u; u ∈ C∞(X ), ω0 + ddcu > 0}.

Finite energy metrics as Completion of H (Cegrell, Guedj-Zeriahi)

E1 = {ϕ ∈ PSH(X , [ω]);

E(ϕ) := inf{E(ϕ̃); ϕ̃ ≥ ϕ, ϕ̃ ∈ H} > −∞}.

Strong topology on E1: ϕm → ϕ strongly if ϕm → ϕ in L1(ωn) and
E(ϕm)→ E(ϕ).
All 3-parts in M are defined on E1. There is a norm-like energy:

J(ϕ) =

∫
X

(ϕ− ϕ0)(ddcϕ)n − E(ϕ)

=
n−1∑
i=0

n − i

n + 1

√
−1

2π

∫
X
∂u ∧ ∂̄u ∧ ωi

u ∧ ωn−1−i ≥ 0.
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Geodesic rays

Definition

Given ϕ1, ϕ2 ∈ E1, a geodesic segment joining ϕ1, ϕ2 is:

Φ = sup{Φ̃ ∈ PSH(X × [s1, s2]× S1, p∗1L); Φ̃(·, si ) ≤ ϕi , i = 1, 2}.

A geodesic ray emanating from ϕ0 is a map Φ : R≥0 → E1 s.t.
∀s1, s2 ∈ R≥0, Φ|[s1,s2] is the geodesic segment joining ϕ(s1) and
ϕ(s2), and Φ(·, 0) = ϕ0.

Geodesics originates from Mabuchi’s L2-metric on H and
satisfies the Homogeneous Complex Monge-Ampère (HCMA)
equation in pluripotential sense (Semmes, Donaldson):

(
√
−1∂∂̄Φ)n+1 = 0.

E(ϕ(s)) is linear with respect to s.

sup(ϕ(s)− ϕ0) is linear with respect to s.
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CscK metrics are minimizers of Mabuchi functional

Theorem (Chen-Tian, Berman-Berndtsson, Berman-Darvas-Lu)

M is convex along geodesics in E1. It is linear if and only if the
geodesic is generated by holomorphic vector fields.

Consequences of convexity:

Theorem (Berman-Berndtsson, Berman-Darvas-Lu)

CscK metrics obtain the minimum of M over E1. Moreover
(smooth) cscK metrics are unique up to Aut(X , [ω])0.

This reproves and generalizes previous results of Chen-Tian,
Donaldson and Mabuchi.
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Variational criterion

G: a reductive Lie group, G = KC and T ∼= (C∗)r the center of G.

Definition (Tian, refined by Darvas-Rubinstein and Hisamoto)

M is G-coercive if there exists γ > 0 such that for any ϕ ∈ HK,

M(ϕ) ≥ γ · JT(ϕ),

where JT(ϕ) := inf
σ∈T

J(σ∗ϕ).

We have hard results:

Theorem (Chen-Cheng, Darvas-Rubinstein, Berman-Darvas-Lu)

Tian’s properness conjecture is true: there exists a cscK metric in
(X , [ω]) if and only if M is Aut(X , [ω])0-coercive.

Hisamoto, L. : Aut(X , [ω])0 can be replaced by any reductive G
that contains a maximal torus of Aut(X , [ω])0.
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Criterion via destabilizing geodesic rays

For a geodesic ray Φ and a functional F defined over E1, set:

F′∞(Φ) = lim
s→+∞

F(ϕ(s))

s
.

The limit exists for all F ∈ {E,E−Ric(Ω),H,M, J, JT}.

Based on compactness result about strong topology in
Berman-Boucksom-Eyssidieux-Guedj-Zeriahi (BBEGZ),
destabilizing sequence produces destabilizing a geodesic ray:

Theorem (Darvas-He, Chen-Cheng, Berman-Boucksom-Jonsson)

M is G-coercive iff there exists γ > 0 s.t. for any geodesic ray Φ,

M′∞(Φ) ≥ γ · J′∞T (Φ).
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Contact with algebraic geometry: Test configurations
(Tian, Donaldson)

A test configuration (TC) (X ,L) is a C∗-equivariant degeneration
of (X , L):

1 π : X → C: a C∗-equivariant family of projective varieties;

2 L → X : a C∗-equiv. semiample holomorphic Q-line bundle;

3 η : (X ,L)×C C∗ ∼= (X , L)× C∗.

Trivial test configuration: (XC, LC) := (X , L)× C.

(X ,L) is dominating if there is a C∗-equivariant birational
morphism ρ : X → X × C.

Under the isomorphism η, psh metrics on L|π−1(C∗) are considered
as subgeodesic rays on (X , L).
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Geodesic rays from test configurations

For any TC (X ,L), there are many smooth subgeodesic ray which
extend to be a smooth psh metrics on L.

Theorem (Phong-Sturm)

For any test configuration, there exists a unique geodesic ray Φ
emanating from ϕ0 s.t. Φ extends to a bounded psh metric on L.

Φ is obtained by solving the HCMA on a resolution of X :

(µ∗(ddcΦ̃) + U)n+1 = 0; U|X×S1 = 0,

where Φ̃ is any smooth positively curved Hermitian metric on L.
In general the solution Φ := Φ̃ + U is at most C 1,1 (Phong-Sturm,
Chu-Tosatti-Weinkove).
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Mabuchi slopes along (sub)geodesic rays on TCs

For any TC (X ,L), set:

MNA(X ,L) = K log

X̄/P1 · L̄·n +
S

n + 1
L̄·n+1

JNA(X ,L) = L̄ · L·nP1 −
L̄·n+1

n + 1
.

Theorem (Tian, Boucksom-Hisamoto-Jonsson)

For any smooth psh metric Φ on L, we have the slope formula:

M′∞(Φ) = MNA(X ,L) =
1

d
CM((X ,L)×C,t 7→td C).

Theorem (L. ’20 (Xia proved ≤))

If Φ is the geodesic ray associated to (X ,L), then:

M′∞(Φ) = MNA(X ,L).
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G-uniformly K-stable

Proposition (Hisamoto)

For any G-equivariant test configuration (X ,L),

J′∞T (Φ) = JNA
T (X ,L) := inf

ξ∈NR
JNA(Xξ,Lξ).

Definition (Tian, Donaldson, Székelyhidi, Dervan, BHJ, Hisamoto)

(X , L) is G-uniformly K-stable if there exists γ > 0 such that for
any G-equivariant test configuration (X ,L),

MNA(X ,L) ≥ γ · JNA
T (X ,L). (1)

Proposition (Hisamoto for Aut(X , L)0, L. for general G)

Assume that (X , L) admits a cscK metric. If G contains a maximal
torus of Aut(X , L)0, then (X , L) is G-uniformly K-stable.
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Berkovich’s analytic space

Let X be a projective variety defined over C.

If C is endowed with the standard (Archimedean) absolute
valuation, then X an is the usual complex analytic manifold.

If C is given the trivial valuation, then (X an, Lan) is the
non-Archimedean Berkovich space. The set of divisorial
valuations X div

Q is dense in XNA := X an. A metric φ on

LNA := Lan is represented by the function φ− φtriv on X div
Q .

Each (dominating) TC (X ,L) defines a smooth NA metric:
∀v ∈ X div

Q , if G (v) ∈ (X × C)divQ is the Gauss extension (i.e. G (v)
is C∗-invariant extension of v satisfying G (v)(t) = 1), we have

fL(v) := f(X ,L)(v) = G (v)(L − ρ∗LC).

Smooth NA psh metrics ⇔ equivalence class of test configurations

HNA(L) = {φ(X ,L) := φtriv + fL; (X ,L) is a test configuration}.
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Non-Archimedean E1,NA (by Boucksom-Favre-Jonsson)

For any φ = φ(X ,L) ∈ HNA, set:

ENA(φ) :=
L̄·n+1

n + 1
.

Non-Archimedean version of PSH/finite energy metrics:

PSHNA(L) = {φ : X div
Q → R ∪ {−∞};∃ a decreasing sequence

φ(Xm,Lm) ∈ HNA such that φ = lim
m→+∞

φ(Xm,Lm)},

E1,NA = {φ ∈ PSHNA;

ENA(φ) := inf{ENA(φ̃); φ̃ ≥ φ} > −∞}.

Strong topology: φm → φ strongly if converges pointwise and
ENA(φm)→ ENA(φ).
All Archimedean functionals before can be defined on E1,NA.
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Non-Archimedean Calabi-Yau theorem

Theorem (Boucksom-Favre-Jonsson, Boucksom-Jonsson)

∃ operator MANA : E1 →M1,NA (finite energy radon measures):

1 For any TC (X ,L), one recovers Chambert-Loir’s measure:

MANA(φ(X ,L)) =
∑
j

bj
(
L|Ej

)·n
δxj , (2)

where xj = b−1
j r(ordEj

) ∈ X div
Q with X0 =

∑
j bjEj .

2 The Monge-Ampère operator defines a homeomorphism

MANA : E1,NA(L)/R→M1,NA (3)

w.r.t. the strong topology. Moreover, if ν is a Radon measure
supported on a dual complex ∆X for a SNC model X , then
(MANA)−1(ν) is continuous.
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Non-Archimedean metrics from geodesic rays

A subgeodesic ray Φ = {ϕ(s)}s≥0 is of linear growth if

sup
s>0

sup(ϕ(s)− ϕ0)

s
< +∞.

Subgeodesic rays of linear growth define non-Archimedean metrics:

ΦNA(v) = −G (v)(Φ), ∀v ∈ X div
Q .

ΦNA ∈ E1,NA as a decreasing limit of φm ∈ HNA:
1 Consider the multiplier ideal sheaf (MIS) over X × C:

J (mΦ)(U) =

{
f ∈ O(U);

∫
U
|f |2e−mΦ < +∞

}
.

2 µm : Xm = BlJ (mΦ)XC → XC, Lm = µ∗mLC − 1
m+m0

Em.
Using the Nadel vanishing and global generation property of
MIS, (Xm,Lm) is a test configuration of (X , L)
Using valuative description of MIS (Boucksom-Favre-Jonsson),
φm := φ(Xm,Lm) decreases to φ.
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Maximal geodesic rays

Definition (Berman-Boucksom-Jonsson (BBJ))

A geodesic ray Φ is maximal if for any subgeodesic ray Φ̃ satisfying
Φ̃NA ≤ ΦNA, we have Φ̃ ≤ Φ.

Theorem (Berman-Boucksom-Jonsson )

There is a one-to-one correspondence between E1,NA and the set of
maximal geodesic rays. For any maximal geodesic ray Φ, we have:

E′∞(Φ) = ENA(ΦNA).

Not every geodesic ray is maximal (examples of Darvas, BBJ).

Maximal geodesic rays are exactly those that are algebraically
approximable, i.e. approximable by geodesic rays associated to
test configurations. Moreover for such approximations:

lim
m→+∞

E′∞(Φm) = E′∞(Φ).
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Non-Archimedean metrics from Models

In the definition of a test configuration (X ,L), if we don’t require
L to be semiample, then we say that (X ,L) is a model of (X , L).
Let bm be the relative base ideal of mL and set

Xm = BlbmX
µm→ X , Lm = µ∗mL −

1

m
Em.

We associate a model psh metric:

φL := φ(X ,L) := lim
m→+∞

φ(Xm,Lm).

Theorem-Definition (Movable Intersection Formula, L. ’20)

For φ = φ(X ,L), with Lc = L+ cX0, c � 1,

MNA(φ) := 〈L̄nc〉 ·
(
K log

X̄/P1 +
S

n + 1
L̄c
)

where 〈·〉 is the movable intersection product of big line bundles
studied in Boucksom-Demailly-Pǎun-Peternell.
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K-stability for models

Model psh metric by using associated filtration FR• = {FλRm}:

FλH0(X ,mL) = {s ∈ H0(X ,mL); t−dλes̄ ∈ H0(X ,mL)}.

To any filtration FR•, one can associate a maximal geodesic ray
(Ross-WittNyström) and a lower regularizable NA psh metric
(Boucksom-Jonsson, Székelyhidi).
φL is also a non-Archimedean envelope which is always continuous:

φL = sup{φ ∈ PSHNA(L);φ− φtriv ≤ fL}.

Definition (L. )

(X , L) is G-uniformly K-stable for models if ∃γ > 0 such that for
any model (X ,L),

MNA(φ(X ,L)) ≥ γ · JNA
T (φ(X ,L)).
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Key result: destabilizing geodesic rays are maximal

Theorem (Thm A, L. , ’20)

A geodesic ray Φ satisfies M′∞(Φ) < +∞ is necessarily maximal.

The proof uses two key ingredients: equisingularity of multiplier
approximation (via valuative description of MIS) and Jensen’s
inequality (motivated by Tian’s α-type estimate): for any α > 0,

C (α) > log

∫
X×D

eα(Φ̂−Φ)Ω
√
−1dt ∧ dt̄

≥ α

∫
X

(ϕ̂(s)− ϕ(s))(ddcϕ(s))n −HΩ(ϕ(s))− s

≥ Cα · (E(ϕ̂(s))− E(ϕ(s)))−H(ϕ(s))− s.

Divide both sides by s and letting s → +∞ to get
E′∞(Φ̂) = E′∞(Φ), which by linearity of E implies E(ϕ̂(s)) ≡ E(ϕ)
and consequently by Dinew’s domination principle gives ϕ̂ ≡ ϕ.
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Slopes of twisted energy

Theorem (Thm B, L. , Berman-Boucksom-Jonsson)

If a maximal geodesic ray Φ is approximated by {Φm} associated
to test configurations, then

lim
m→+∞

(E−Ric(Ω))′∞(Φm) = (E−Ric)′∞(Φ).

As a consequence, we have:

(E−Ric(Ω))′∞(Φ) = (EKX )NA(ΦNA).

The same statement holds for J and JT.

The proof uses the following estimate from BBEGZ:∫
X

(ϕ2 − ϕ1)((ddcϕ3)n − (ddcϕ4)n)

≤ I(ϕ1, ϕ2)1/2n · I(ϕ3, ϕ4)1/2n max{I(ϕi )}1−21−n
.
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Slopes of entropy

For any φ ∈ E1,NA, define:

HNA(φ) =

∫
XNA

AX (v)MANA(φ).

If φ = φ(X ,L), then HNA(φ) = K log
X/XC

· L̄·n.

Theorem (Thm C, L. , ’20)

For any (maximal) geodesic ray Φ, we have:

H′∞(Φ) ≥ HNA(ΦNA), M′∞(Φ) ≥MNA(ΦNA).

The key is to use the non-Archimedean identity for entropy:

HNA(φ) = sup

{∫
XNA

f
K log
Y/XC

MANA(φ);Y an SNC model

}
,

Jensen’s inequality and an asymptotic lemma of Boucksom-Hisamoto-Jonsson.
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Two conjectures

Conjecture (L. , ’20)

If Φ is maximal, then H′∞(Φ) = HNA(ΦNA).

This is implied by

Conjecture (Boucksom-Jonsson)

For any φ ∈ E1,NA, there exist φm ∈ HNA s.t. φm converges to φ
in the strong topology and

HNA(φ) = lim
m→+∞

HNA(φm).

Difficulty: As in the Archimedean case, HNA is only
lower-semi-continuous, not continuous, under the strong
convergence. One needs some nice smoothing process that
preserves the non-Archimedean entropy. We give some partial
smoothing in the following theorem.
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Approximation of non-Archimedean entropy

Theorem (Thm D, L. )

For any φ ∈ E1,NA, there exist models (Xm,Lm) such that
φm = φ(Xm,Lm) converges to φ in the strong topology and

MNA(φ) = lim
m→+∞

MNA(φm).

Step 1: ∀φ ∈ E1,NA, ∃φm ∈ E1,NA ∩ C 0(LNA) s.t. φm
strongly−→ φ,

MNA(φm)→MNA(φ) and MANA(φm) is supported on a dual
complex ∆Y of an SNC model (Y,LY) of (X , L).
Step 2: ∀φ ∈ E1,NA with MANA(φ) supported on ∆Y ,

∃φk ∈ E1,NA ∩ C 0(LNA) s.t. φk
strongly−→ φ, MNA(φk)→MNA(φ)

and MNA(φk) is a Dirac-type measure supported on ∆Y .
Step 3: Boucksom-Favre-Jonsson showed that solution
(MANA)−1(ν) for Dirac type ν is φ(Y,LY ) for some R-line bundle
LY . A perturbation makes LY a Q-line bundle.
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Synthesis: proof of existence result

Proof by contradiction.
Step 1: If M is not G-coercive, then ∃ destabilizing ray Φ s.t.

M′∞(Φ) ≤ 0, J′∞T (Φ) = 1.

Step 2: By Thm A, Φ is maximal. By Thm B, with φ = ΦNA,

E′∞(Φ) = ENA(φ), (E−Ric(Ω))′∞(Φ) = (EKX )NA(φ),

Step 3: By Thm C, H′∞(Φ) ≥ HNA(φ).
Step 4: By Thm D, there exist models (Xm,Lm):

lim
m→+∞

MNA(φm) = MNA(φ), with φm = φ(Xm,Lm).

Step 5: Contradiction:

0 ≥ M′∞(Φ) ≥MNA(φ) = lim
m→+∞

MNA(φm)

≥stability lim
m→+∞

JNA
T (φm) = JNA

T (φ) = 1.
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Toric case

A toric manifold X n is a projective manifold with an effective
T ∼= (C∗)r action with an open dense orbit.

Ample toric line bundle ⇐⇒ lattice (moment) polytope ∆ ⊂ Zn.

(C∗)r -equivariant test configurations ⇐⇒ convex piecewise linear
rational functions on ∆.

(C∗)r -equivariant models ⇐⇒ piecewise linear rational functions
fL on ∆, and

φL = lower convex envelope of fL, and is convex piecewise linear
rational and hence comes from a test configuration.
This corresponds to the algebraic fact: toric divisors on toric
varieties admit Zariski decomposition.

So we get the toric YTD conjecture for all polarized toric
manifolds.

Proof of main results



YTD in Kähler-Einstein case: use of D = −E + L

Proof by contradiction.
Step 1: If M and D are not G-coercive, then ∃ geodesic Φ s.t.

D′∞(Φ) ≤ 0, J′∞T (Φ) = 1.

Step 2: By Thm A, Φ is maximal and hence with φ = ΦNA,

E′∞(Φ) = ENA(φ).

Step 3: Berman-Boucksom-Jonsson showed L′∞(Φ) = LNA(φ).
Step 4: By Multiplier Approximation, there exist TCs (Xm,Lm):

lim
m→+∞

DNA(φm) = DNA(φ), with φm = φ(Xm,Lm).

Step 5: Contradiction:

0 ≥ D′∞(Φ) = DNA(φ) = lim
m→+∞

DNA(φm)

≥stability lim
m→+∞

JNA
T (φm) = JNA

T (φ) = 1.
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Thanks for your attention!
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