Geodesic rays and stability in the cscK problem

Chi Li

Department of Mathematics, Purdue University
BICMR on-line seminar, April 15, 2020
（1）Introduction and main results
（2）Variational point of view
（3）Non－Archimedean geometry
（4）Proof of main results

Riemann surface: surface with a complex structure:

Topology	Metric	Curvature
$\mathbb{S}^{2}=\mathbb{C P}^{1}$	spherical	1
$\mathbb{T}^{2}=\mathbb{C} / \mathbb{Z}^{2}$	flat	0
$\Sigma_{g}=\mathbb{B}^{1} / \pi_{1}\left(\Sigma_{g}\right)$	hyperbolic	-1

Σ_{g} closed oriented surface of genus $g \geq 2$.
$\mathbb{B}^{1}=\{z \in \mathbb{C} ;|z|<1\}$.
Generalization for higher dimensional complex projective manifolds?
X : complex manifold, $\left\{\left(U_{\alpha}, z_{1}, \ldots, z_{n}\right)\right\}$.
Kähler form: a smooth closed positive (1,1)-form:

$$
\omega=\frac{\sqrt{-1}}{2 \pi} \sum_{i, j=1}^{n} g_{i \bar{j}} d z^{i} \wedge d \bar{z}^{j}, \quad\left(g_{i \bar{j}}\right)>0
$$

$d \omega=0 \Longrightarrow$ Kähler class $[\omega] \in H^{2}(X, \mathbb{R}) \cap H_{\bar{\partial}}^{1,1}(X, \mathbb{C})$.
Local $\partial \bar{\partial}$-Lemma: \exists local potentials $\varphi_{0}=\left\{\left(\varphi_{0}\right)_{\alpha} \in C^{\infty}\left(U_{\alpha}\right)\right\}$

$$
\omega_{0}=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \varphi_{0}=: \frac{\sqrt{-1}}{2 \pi} \frac{\partial^{2} \varphi_{0}}{\partial z_{i} \partial \bar{z}_{j}} d z_{i} \wedge d \bar{z}_{j}=d d^{c} \varphi_{0}
$$

Global $\partial \bar{\partial}$-Lemma: any Kähler form in $[\omega]$ can be written as

$$
d d^{c} \varphi:=\omega_{0}+\sqrt{-1} \partial \bar{\partial} u=\sqrt{-1} \sum_{i, j}\left(\left(\varphi_{0}\right)_{i \bar{j}}+u_{i \bar{j}}\right) d z^{i} \wedge d \bar{z}^{j}
$$

where $\varphi=\varphi_{0}+u$ is locally defined, while $u=\varphi-\varphi_{0}$ and $d d^{c} \varphi$ are globally defined.

Constant scalar curvature Kähler (cscK) metrics

Ricci curvature:

$$
R_{i \bar{j}}:=\operatorname{Ric}\left(d d^{c} \varphi\right)_{i \bar{j}}=-\frac{\partial^{2}}{\partial z_{i} \partial \bar{z}_{j}} \log \operatorname{det}\left(\varphi_{k \bar{l}}\right) .
$$

Scalar curvature:

$$
\begin{aligned}
S\left(d d^{c} \varphi\right) & =g^{i \bar{j}} R_{i \bar{j}} \\
& =-g^{i \bar{j}} \frac{\partial}{\partial z_{i} \partial \bar{z}_{j}} \log \operatorname{det}\left(\varphi_{k \bar{l}}\right) .
\end{aligned}
$$

cscK equation is a 4-th order highly nonlinear equation:

$$
S\left(d d^{c} \varphi\right)=\underline{S}
$$

\underline{S} is a topological constant:

$$
\underline{S}=\frac{n\left\langle c_{1}(X) \wedge[\omega]^{n-1}, X\right\rangle}{\left\langle[\omega]^{n}, X\right\rangle}
$$

Kähler metric as curvature forms

If $[\omega] \in H^{1,1}(X, \mathbb{C}) \cap H^{2}(X, \mathbb{Z})$, then $[\omega]=c_{1}(L)$ for an ample holomorphic line bundle L over X and $\omega=d d^{c} \varphi$ for a Hermitian metric $e^{-\varphi}$ on L.
Holomorphic line bundle: transition functions $f_{\alpha \beta} \in \mathcal{O}\left(U_{\alpha} \cap U_{\beta}\right)$.

$$
L=\left(\bigsqcup_{\alpha} U_{\alpha} \times \mathbb{C}\right) /\left\{s_{\alpha}=f_{\alpha \beta} s_{\beta}\right\}
$$

Hermitian metrics: $e^{-\varphi}:=\left\{e^{-\varphi_{\alpha}}\right\}$ Hermitian metric on L :

$$
e^{-\varphi_{\alpha}}=\left|f_{\alpha \beta}\right|^{2} e^{-\varphi_{\beta}}
$$

$\partial \bar{\partial}$-lemma: Fix any reference metric $e^{-\varphi_{0}}$, then $\exists u \in C^{\infty}(X)$ s.t.

$$
e^{-\varphi}=e^{-\varphi_{0}} e^{-u}
$$

Chern curvature

$$
d d^{c} \varphi=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \varphi_{\alpha}
$$

Yau-Tian-Donaldson (YTD) conjecture

Conjecture (YTD conjecture)

(X, L) admits a cscK metric if and only if (X, L) is Aut $(X, L)_{0}$-uniformly K-stable for test configurations.

The only if direction of this Conjecture is known to be true. Example:
If $L=-K_{X}$ ample, then X is Fano and $\csc K=$ Kähler-Einstein.
In this case the above YTD conjecture is equivalent to the results of Tian, Chen-Donaldson-Sun, Berman. The existence part depends on Cheeger-Colding-Tian theory and partial C^{0}-estimates. Different variational approach, based on pluripotential theory and non-Archimedean geometry, works also for singular Fano varieties and has been successfully carried out by Berman-Boucksom-Jonsson, L. -Tian-Wang, Hisamoto and L. . Moreover the K-stability condition for Fano varieties are in many cases checkable.

Main results

Theorem (L. '20)

Let \mathbb{G} be a reductive subgroup of $\operatorname{Aut}(X, L)_{0}$. If (X, L) is \mathbb{G}-uniformly K-stable for models (or for filtrations), then (X, L) admits a cscK metric.

We have implications and conjecture they are all equivalent:
Aut $(X, L)_{0}$-uniformly K -stable for models $\Longrightarrow \operatorname{cscK}$
$\Longrightarrow \operatorname{Aut}(X, L)_{0}$-uniformly K -stable for test configurations
Applications: reproving the toric YTD conjecture (without Donaldson's toric analysis):

Theorem (Donaldson, Zhou-Zhu, Chen-Li-Sheng, Hisamoto, Chen-Cheng, L.)

A polarized toric manifold (X, L) admits a cscK metric if and only if (X, L) is $\left(\mathbb{C}^{*}\right)^{r}$-uniformly K-stable.

Mabuchi functional (K-energy): Chen-Tian's formula:

$$
\begin{aligned}
\mathbf{M}(\varphi) & =-\int_{0}^{1} d t \int_{X} \dot{\varphi} \cdot(S(\varphi(t))-\underline{S})\left(d d^{c} \varphi(t)\right)^{n} \\
& =\mathbf{H}(\varphi)-\mathbf{H}\left(\varphi_{0}\right)+\mathbf{E}^{-\operatorname{Ric}(\Omega)}(\varphi)+\frac{\underline{S}}{n+1} \mathbf{E}(\varphi)
\end{aligned}
$$

Entropy, twisted energy and Monge-Ampère energy:

$$
\begin{aligned}
\mathbf{H}(\varphi) & =\int_{X} \log \frac{\left(d d^{c} \varphi\right)^{n}}{\Omega}\left(d d^{c} \varphi\right)^{n} . \\
\frac{d}{d t} \mathbf{E}^{-R i c(\Omega)}(\varphi) & =-n \int_{X} \dot{\varphi} \operatorname{Ric}(\Omega) \wedge\left(d d^{c} \varphi\right)^{n-1} . \\
\frac{d}{d t} \mathbf{E}(\varphi) & =\int_{X} \dot{\varphi}\left(d d^{c} \varphi\right)^{n} .
\end{aligned}
$$

Space of smooth Kähler metrics:

$$
\mathcal{H}=\left\{\varphi=\varphi_{0}+u ; u \in C^{\infty}(X), \omega_{0}+d d^{c} u>0\right\}
$$

Finite energy metrics as Completion of \mathcal{H} (Cegrell, Guedj-Zeriahi)

$$
\begin{aligned}
& \mathcal{E}^{1}=\{\varphi \in \operatorname{PSH}(X,[\omega]) ; \\
&\mathbf{E}(\varphi):=\inf \{\mathbf{E}(\tilde{\varphi}) ; \tilde{\varphi} \geq \varphi, \tilde{\varphi} \in \mathcal{H}\}>-\infty\} .
\end{aligned}
$$

Strong topology on $\mathcal{E}^{1}: \varphi_{m} \rightarrow \varphi$ strongly if $\varphi_{m} \rightarrow \varphi$ in $L^{1}\left(\omega^{n}\right)$ and $\mathbf{E}\left(\varphi_{m}\right) \rightarrow \mathbf{E}(\varphi)$.
All 3-parts in \mathbf{M} are defined on \mathcal{E}^{1}. There is a norm-like energy:

$$
\begin{aligned}
\mathbf{J}(\varphi) & =\int_{X}\left(\varphi-\varphi_{0}\right)\left(d d^{c} \varphi\right)^{n}-\mathbf{E}(\varphi) \\
& =\sum_{i=0}^{n-1} \frac{n-i}{n+1} \frac{\sqrt{-1}}{2 \pi} \int_{X} \partial u \wedge \bar{\partial} u \wedge \omega_{u}^{i} \wedge \omega^{n-1-i} \geq 0
\end{aligned}
$$

Geodesic rays

Definition

Given $\varphi_{1}, \varphi_{2} \in \mathcal{E}^{1}$, a geodesic segment joining φ_{1}, φ_{2} is:

$$
\Phi=\sup \left\{\tilde{\Phi} \in \operatorname{PSH}\left(X \times\left[s_{1}, s_{2}\right] \times S^{1}, p_{1}^{*} L\right) ; \tilde{\Phi}\left(\cdot, s_{i}\right) \leq \varphi_{i}, i=1,2\right\}
$$

A geodesic ray emanating from φ_{0} is a map $\Phi: \mathbb{R}_{\geq 0} \rightarrow \mathcal{E}^{1}$ s.t. $\forall s_{1}, s_{2} \in \mathbb{R}_{\geq 0},\left.\Phi\right|_{\left[s_{1}, s_{2}\right]}$ is the geodesic segment joining $\varphi\left(s_{1}\right)$ and $\varphi\left(s_{2}\right)$, and $\Phi(\cdot, 0)=\varphi_{0}$.

- Geodesics originates from Mabuchi's L^{2}-metric on \mathcal{H} and satisfies the Homogeneous Complex Monge-Ampère (HCMA) equation in pluripotential sense (Semmes, Donaldson):

$$
(\sqrt{-1} \partial \bar{\partial} \Phi)^{n+1}=0
$$

- $\mathbf{E}(\varphi(s))$ is linear with respect to s.
- $\sup \left(\varphi(s)-\varphi_{0}\right)$ is linear with respect to s.

CscK metrics are minimizers of Mabuchi functional

Theorem (Chen-Tian, Berman-Berndtsson, Berman-Darvas-Lu)

\mathbf{M} is convex along geodesics in \mathcal{E}^{1}. It is linear if and only if the geodesic is generated by holomorphic vector fields.

Consequences of convexity:

Theorem (Berman-Berndtsson, Berman-Darvas-Lu)

CscK metrics obtain the minimum of \mathbf{M} over \mathcal{E}^{1}. Moreover (smooth) cscK metrics are unique up to $\operatorname{Aut}(X,[\omega])_{0}$.

This reproves and generalizes previous results of Chen-Tian, Donaldson and Mabuchi.

Variational criterion

\mathbb{G} : a reductive Lie group, $\mathbb{G}=\mathbb{K}^{\mathbb{C}}$ and $\mathbb{T} \cong\left(\mathbb{C}^{*}\right)^{r}$ the center of \mathbb{G}.

Definition (Tian, refined by Darvas-Rubinstein and Hisamoto)

\mathbf{M} is \mathbb{G}-coercive if there exists $\gamma>0$ such that for any $\varphi \in \mathcal{H}^{\mathbb{K}}$,

$$
\mathbf{M}(\varphi) \geq \gamma \cdot \mathbf{J}_{\mathbb{T}}(\varphi)
$$

where $\mathbf{J}_{\mathbb{T}}(\varphi):=\inf _{\sigma \in \mathbb{T}} \mathbf{J}\left(\sigma^{*} \varphi\right)$.
We have hard results:

Theorem (Chen-Cheng, Darvas-Rubinstein, Berman-Darvas-Lu)

Tian's properness conjecture is true: there exists a cscK metric in $(X,[\omega])$ if and only if \mathbf{M} is $\operatorname{Aut}(X,[\omega])_{0}$-coercive.

Hisamoto, L. : $\operatorname{Aut}(X,[\omega])_{0}$ can be replaced by any reductive \mathbb{G} that contains a maximal torus of $\operatorname{Aut}(X,[\omega])_{0}$.

Criterion via destabilizing geodesic rays

For a geodesic ray Φ and a functional \mathbf{F} defined over \mathcal{E}^{1}, set:

$$
\mathbf{F}^{\prime \infty}(\Phi)=\lim _{s \rightarrow+\infty} \frac{\mathbf{F}(\varphi(s))}{s}
$$

The limit exists for all $\mathbf{F} \in\left\{\mathbf{E}, \mathbf{E}^{-R i c(\Omega)}, \mathbf{H}, \mathbf{M}, \mathbf{J}, \mathbf{J}_{\mathbb{T}}\right\}$.
Based on compactness result about strong topology in Berman-Boucksom-Eyssidieux-Guedj-Zeriahi (BBEGZ), destabilizing sequence produces destabilizing a geodesic ray:

Theorem (Darvas-He, Chen-Cheng, Berman-Boucksom-Jonsson)
\mathbf{M} is \mathbb{G}-coercive iff there exists $\gamma>0$ s.t. for any geodesic ray Φ,

$$
\mathbf{M}^{\prime \infty}(\Phi) \geq \gamma \cdot \mathbf{J}_{\mathbb{T}}^{\prime \infty}(\Phi)
$$

Contact with algebraic geometry: Test configurations (Tian, Donaldson)

A test configuration $(\mathrm{TC})(\mathcal{X}, \mathcal{L})$ is a \mathbb{C}^{*}-equivariant degeneration of (X, L) :
(1) $\pi: \mathcal{X} \rightarrow \mathbb{C}:$ a \mathbb{C}^{*}-equivariant family of projective varieties;
(2) $\mathcal{L} \rightarrow \mathcal{X}$: a \mathbb{C}^{*}-equiv. semiample holomorphic \mathbb{Q}-line bundle;
(3) $\eta:(\mathcal{X}, \mathcal{L}) \times_{\mathbb{C}} \mathbb{C}^{*} \cong(X, L) \times \mathbb{C}^{*}$ 。

Trivial test configuration: $\left(X_{\mathbb{C}}, L_{\mathbb{C}}\right):=(X, L) \times \mathbb{C}$.
$(\mathcal{X}, \mathcal{L})$ is dominating if there is a \mathbb{C}^{*}-equivariant birational morphism $\rho: \mathcal{X} \rightarrow X \times \mathbb{C}$.

Under the isomorphism η, psh metrics on $\left.\mathcal{L}\right|_{\pi^{-1}\left(\mathbb{C}^{*}\right)}$ are considered as subgeodesic rays on (X, L).

Geodesic rays from test configurations

For any $\mathrm{TC}(\mathcal{X}, \mathcal{L})$, there are many smooth subgeodesic ray which extend to be a smooth psh metrics on \mathcal{L}.

Theorem (Phong-Sturm)

For any test configuration, there exists a unique geodesic ray Φ emanating from φ_{0} s.t. Φ extends to a bounded psh metric on \mathcal{L}.
Φ is obtained by solving the HCMA on a resolution of \mathcal{X} :

$$
\left(\mu^{*}\left(d d^{c} \tilde{\Phi}\right)+U\right)^{n+1}=0 ;\left.\quad U\right|_{X \times S^{1}}=0
$$

where $\tilde{\Phi}$ is any smooth positively curved Hermitian metric on \mathcal{L}. In general the solution $\Phi:=\tilde{\Phi}+U$ is at most $C^{1,1}$ (Phong-Sturm, Chu-Tosatti-Weinkove).

Mabuchi slopes along (sub)geodesic rays on TCs

For any $\operatorname{TC}(\mathcal{X}, \mathcal{L})$, set:

$$
\begin{aligned}
\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) & =K_{\overline{\mathcal{X}} / \mathbb{P}^{1}}^{\log } \cdot \overline{\mathcal{L}}^{\cdot n}+\frac{\underline{S}}{n+1} \overline{\mathcal{L}}^{\cdot n+1} \\
\mathbf{J}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) & =\overline{\mathcal{L}} \cdot \mathcal{L}_{\mathbb{P}^{1}}^{n}-\frac{\overline{\mathcal{L}}^{\cdot n+1}}{n+1}
\end{aligned}
$$

Theorem (Tian, Boucksom-Hisamoto-Jonsson)

For any smooth psh metric Φ on \mathcal{L}, we have the slope formula:

$$
\mathbf{M}^{\prime \infty}(\Phi)=\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})=\frac{1}{d} \mathrm{CM}\left((\mathcal{X}, \mathcal{L}) \times_{\mathbb{C}, t \mapsto t^{d}} \mathbb{C}\right)
$$

Theorem (L. '20 (Xia proved \leq))
If Φ is the geodesic ray associated to $(\mathcal{X}, \mathcal{L})$, then:

$$
\mathbf{M}^{\prime \infty}(\Phi)=\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})
$$

\mathbb{G}-uniformly K-stable

Proposition (Hisamoto)

For any \mathbb{G}-equivariant test configuration $(\mathcal{X}, \mathcal{L})$,

$$
\mathbf{J}_{\mathbb{T}}^{\prime \infty}(\Phi)=\mathbf{J}_{\mathbb{T}}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}):=\inf _{\xi \in N_{\mathbb{R}}} \mathbf{J}^{\mathrm{NA}}\left(\mathcal{X}_{\xi}, \mathcal{L}_{\xi}\right)
$$

Definition (Tian, Donaldson, Székelyhidi, Dervan, BHJ, Hisamoto)

(X, L) is \mathbb{G}-uniformly K-stable if there exists $\gamma>0$ such that for any \mathbb{G}-equivariant test configuration $(\mathcal{X}, \mathcal{L})$,

$$
\begin{equation*}
\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) \geq \gamma \cdot \mathbf{J}_{\mathbb{T}}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) \tag{1}
\end{equation*}
$$

Proposition (Hisamoto for $\operatorname{Aut}(X, L)_{0}, L$. for general $\left.\mathbb{G}\right)$

Assume that (X, L) admits a cscK metric. If \mathbb{G} contains a maximal torus of $\operatorname{Aut}(X, L)_{0}$, then (X, L) is \mathbb{G}-uniformly K-stable.

Berkovich's analytic space

Let X be a projective variety defined over \mathbb{C}.

- If \mathbb{C} is endowed with the standard (Archimedean) absolute valuation, then $X^{\text {an }}$ is the usual complex analytic manifold.
- If \mathbb{C} is given the trivial valuation, then $\left(X^{\text {an }}, L^{\text {an }}\right)$ is the non-Archimedean Berkovich space. The set of divisorial valuations $X_{\mathbb{Q}}^{\text {div }}$ is dense in $X^{\mathrm{NA}}:=X^{\text {an }}$. A metric ϕ on $L^{\text {NA }}:=L^{\text {an }}$ is represented by the function $\phi-\phi_{\text {triv }}$ on $X_{\mathbb{Q}}^{\text {div }}$.
Each (dominating) TC $(\mathcal{X}, \mathcal{L})$ defines a smooth NA metric: $\forall v \in X_{\mathbb{Q}}^{\text {div }}$, if $G(v) \in(X \times \mathbb{C})_{\mathbb{Q}}^{\text {div }}$ is the Gauss extension (i.e. $G(v)$ is \mathbb{C}^{*}-invariant extension of v satisfying $G(v)(t)=1$), we have

$$
f_{\mathcal{L}}(v):=f_{(\mathcal{X}, \mathcal{L})}(v)=G(v)\left(\mathcal{L}-\rho^{*} L_{\mathbb{C}}\right)
$$

Smooth NA psh metrics \Leftrightarrow equivalence class of test configurations

$$
\mathcal{H}^{\mathrm{NA}}(L)=\left\{\phi_{(\mathcal{X}, \mathcal{L})}:=\phi_{\text {triv }}+f_{\mathcal{L}} ;(\mathcal{X}, \mathcal{L}) \text { is a test configuration }\right\} .
$$

Non-Archimedean $\mathcal{E}^{1, N A}$ (by Boucksom-Favre-Jonsson)

For any $\phi=\phi_{(\mathcal{X}, \mathcal{L})} \in \mathcal{H}^{\mathrm{NA}}$, set:

$$
\mathbf{E}^{\mathrm{NA}}(\phi):=\frac{\overline{\mathcal{L}}^{\cdot n+1}}{n+1}
$$

Non-Archimedean version of PSH/finite energy metrics:
$\operatorname{PSH}^{\mathrm{NA}}(L)=\left\{\phi: X_{\mathbb{Q}}^{\text {div }} \rightarrow \mathbb{R} \cup\{-\infty\} ; \exists\right.$ a decreasing sequence

$$
\left.\phi_{\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)} \in \mathcal{H}^{\text {NA }} \text { such that } \phi=\lim _{m \rightarrow+\infty} \phi_{\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)}\right\}
$$

$$
\mathcal{E}^{1, \mathrm{NA}}=\left\{\phi \in \mathrm{PSH}^{\mathrm{NA}}\right.
$$

$$
\left.\mathbf{E}^{\mathrm{NA}}(\phi):=\inf \left\{\mathbf{E}^{\mathrm{NA}}(\tilde{\phi}) ; \tilde{\phi} \geq \phi\right\}>-\infty\right\}
$$

Strong topology: $\phi_{m} \rightarrow \phi$ strongly if converges pointwise and $\mathbf{E}^{\mathrm{NA}}\left(\phi_{m}\right) \rightarrow \mathbf{E}^{\mathrm{NA}}(\phi)$.
All Archimedean functionals before can be defined on $\mathcal{E}^{1, \mathrm{NA}}$.

Theorem (Boucksom-Favre-Jonsson, Boucksom-Jonsson)

\exists operator $\mathrm{MA}^{\mathrm{NA}}: \mathcal{E}^{1} \rightarrow \mathcal{M}^{1, \mathrm{NA}}$ (finite energy radon measures):
(1) For any $T C(\mathcal{X}, \mathcal{L})$, one recovers Chambert-Loir's measure:

$$
\begin{equation*}
\operatorname{MA}^{\mathrm{NA}}\left(\phi_{(\mathcal{X}, \mathcal{L})}\right)=\sum_{j} b_{j}\left(\left.\mathcal{L}\right|_{E_{j}}\right)^{\cdot n} \delta_{x_{j}}, \tag{2}
\end{equation*}
$$

where $x_{j}=b_{j}^{-1} r\left(\operatorname{ord}_{E_{j}}\right) \in X_{\mathbb{Q}}^{\text {div }}$ with $\mathcal{X}_{0}=\sum_{j} b_{j} E_{j}$.
(2) The Monge-Ampère operator defines a homeomorphism

$$
\begin{equation*}
\mathrm{MA}^{\mathrm{NA}}: \mathcal{E}^{1, \mathrm{NA}}(L) / \mathbb{R} \rightarrow \mathcal{M}^{1, \mathrm{NA}} \tag{3}
\end{equation*}
$$

w.r.t. the strong topology. Moreover, if ν is a Radon measure supported on a dual complex $\Delta_{\mathcal{X}}$ for a SNC model \mathcal{X}, then $\left(\mathrm{MA}^{\mathrm{NA}}\right)^{-1}(\nu)$ is continuous.

Non-Archimedean metrics from geodesic rays

A subgeodesic ray $\Phi=\{\varphi(s)\}_{s \geq 0}$ is of linear growth if

$$
\sup _{s>0} \frac{\sup \left(\varphi(s)-\varphi_{0}\right)}{s}<+\infty .
$$

Subgeodesic rays of linear growth define non-Archimedean metrics:

$$
\Phi^{\mathrm{NA}}(v)=-G(v)(\Phi), \quad \forall v \in X_{\mathbb{Q}}^{\text {div }}
$$

$\Phi^{\mathrm{NA}} \in \mathcal{E}^{1, \mathrm{NA}}$ as a decreasing limit of $\phi_{m} \in \mathcal{H}^{\mathrm{NA}}$:
(1) Consider the multiplier ideal sheaf (MIS) over $X \times \mathbb{C}$:

$$
\mathcal{J}(m \Phi)(\mathcal{U})=\left\{f \in \mathcal{O}(\mathcal{U}) ; \int_{\mathcal{U}}|f|^{2} e^{-m \Phi}<+\infty\right\} .
$$

(2) $\mu_{m}: \mathcal{X}_{m}=B I_{\mathcal{J}(m \Phi)} X_{\mathbb{C}} \rightarrow X_{\mathbb{C}}, \mathcal{L}_{m}=\mu_{m}^{*} L_{\mathbb{C}}-\frac{1}{m+m_{0}} E_{m}$.

- Using the Nadel vanishing and global generation property of MIS, $\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)$ is a test configuration of (X, L)
- Using valuative description of MIS (Boucksom-Favre-Jonsson), $\phi_{m}:=\phi_{\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)}$ decreases to ϕ.

Maximal geodesic rays

Definition (Berman-Boucksom-Jonsson (BBJ))

A geodesic ray Φ is maximal if for any subgeodesic ray $\tilde{\Phi}$ satisfying $\tilde{\Phi}_{\mathrm{NA}} \leq \Phi_{\mathrm{NA}}$, we have $\tilde{\Phi} \leq \Phi$.

Theorem (Berman-Boucksom-Jonsson)

There is a one-to-one correspondence between $\mathcal{E}^{1, N A}$ and the set of maximal geodesic rays. For any maximal geodesic ray Φ, we have:

$$
\mathbf{E}^{\prime \infty}(\Phi)=\mathbf{E}^{\mathrm{NA}}\left(\Phi_{\mathrm{NA}}\right)
$$

- Not every geodesic ray is maximal (examples of Darvas, BBJ).
- Maximal geodesic rays are exactly those that are algebraically approximable, i.e. approximable by geodesic rays associated to test configurations. Moreover for such approximations:

$$
\lim _{m \rightarrow+\infty} \mathbf{E}^{\prime \infty}\left(\Phi_{m}\right)=\mathbf{E}^{\prime \infty}(\Phi)
$$

Non-Archimedean metrics from Models

In the definition of a test configuration $(\mathcal{X}, \mathcal{L})$, if we don't require \mathcal{L} to be semiample, then we say that $(\mathcal{X}, \mathcal{L})$ is a model of (X, L). Let \mathfrak{b}_{m} be the relative base ideal of $m \mathcal{L}$ and set

$$
\mathcal{X}_{m}=\mathrm{Bl}_{\mathfrak{b}_{m}} \mathcal{X} \xrightarrow{\mu_{m}} \mathcal{X}, \quad \mathcal{L}_{m}=\mu_{m}^{*} \mathcal{L}-\frac{1}{m} E_{m}
$$

We associate a model psh metric:

$$
\phi_{\mathcal{L}}:=\phi_{(\mathcal{X}, \mathcal{L})}:=\lim _{m \rightarrow+\infty} \phi_{\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)} .
$$

Theorem-Definition (Movable Intersection Formula, L. '20)
For $\phi=\phi_{(\mathcal{X}, \mathcal{L})}$, with $\mathcal{L}_{c}=\mathcal{L}+c \mathcal{X}_{0}, c \gg 1$,

$$
\mathbf{M}^{\mathrm{NA}}(\phi):=\left\langle\overline{\mathcal{L}}_{c}^{n}\right\rangle \cdot\left(K_{\overline{\mathcal{X}} / \mathbb{P}^{1}}^{\log }+\frac{\underline{S}}{n+1} \overline{\mathcal{L}}_{c}\right)
$$

where $\langle\cdot\rangle$ is the movable intersection product of big line bundles studied in Boucksom-Demailly-Pǎun-Peternell.

K-stability for models

Model psh metric by using associated filtration $\mathcal{F} R_{\bullet}=\left\{\mathcal{F}^{\lambda} R_{m}\right\}:$

$$
\mathcal{F}^{\lambda} H^{0}(X, m L)=\left\{s \in H^{0}(X, m L) ; t^{-\lceil\lambda]} \bar{s} \in H^{0}(\mathcal{X}, m \mathcal{L})\right\} .
$$

To any filtration $\mathcal{F} R_{\bullet}$, one can associate a maximal geodesic ray (Ross-WittNyström) and a lower regularizable NA psh metric
(Boucksom-Jonsson, Székelyhidi).
$\phi_{\mathcal{L}}$ is also a non-Archimedean envelope which is always continuous:

$$
\phi_{\mathcal{L}}=\sup \left\{\phi \in \operatorname{PSH}^{\mathrm{NA}}(L) ; \phi-\phi_{\text {triv }} \leq f_{\mathcal{L}}\right\}
$$

Definition (L.)

(X, L) is \mathbb{G}-uniformly K-stable for models if $\exists \gamma>0$ such that for any model $(\mathcal{X}, \mathcal{L})$,

$$
\mathbf{M}^{\mathrm{NA}}\left(\phi_{(\mathcal{X}, \mathcal{L})}\right) \geq \gamma \cdot \mathbf{J}_{\mathbb{T}}^{\mathrm{NA}}\left(\phi_{(\mathcal{X}, \mathcal{L})}\right)
$$

Key result: destabilizing geodesic rays are maximal

Theorem (Thm A, L. , '20)

A geodesic ray Φ satisfies $\mathbf{M}^{\prime \infty}(\Phi)<+\infty$ is necessarily maximal.
The proof uses two key ingredients: equisingularity of multiplier approximation (via valuative description of MIS) and Jensen's inequality (motivated by Tian's α-type estimate): for any $\alpha>0$,

$$
\begin{aligned}
C(\alpha) & >\log \int_{X \times \mathbb{D}} e^{\alpha(\hat{\Phi}-\Phi)} \Omega \sqrt{-1} d t \wedge d \bar{t} \\
& \geq \alpha \int_{X}(\hat{\varphi}(s)-\varphi(s))\left(d d^{c} \varphi(s)\right)^{n}-\mathbf{H}_{\Omega}(\varphi(s))-s \\
& \geq C \alpha \cdot(\mathbf{E}(\hat{\varphi}(s))-\mathbf{E}(\varphi(s)))-\mathbf{H}(\varphi(s))-s .
\end{aligned}
$$

Divide both sides by s and letting $s \rightarrow+\infty$ to get $\mathbf{E}^{\prime \infty}(\hat{\Phi})=\mathbf{E}^{\prime \infty}(\Phi)$, which by linearity of \mathbf{E} implies $\mathbf{E}(\hat{\varphi}(s)) \equiv \mathbf{E}(\varphi)$ and consequently by Dinew's domination principle gives $\hat{\varphi} \equiv \varphi$.

Theorem (Thm B, L. , Berman-Boucksom-Jonsson)

If a maximal geodesic ray Φ is approximated by $\left\{\Phi_{m}\right\}$ associated to test configurations, then

$$
\lim _{m \rightarrow+\infty}\left(\mathbf{E}^{-R i c(\Omega)}\right)^{\prime \infty}\left(\Phi_{m}\right)=\left(\mathbf{E}^{-R i c}\right)^{\prime \infty}(\Phi)
$$

As a consequence, we have:

$$
\left(\mathbf{E}^{-R i c(\Omega)}\right)^{\prime \infty}(\Phi)=\left(\mathbf{E}^{K_{X}}\right)^{\mathrm{NA}}\left(\Phi_{\mathrm{NA}}\right)
$$

The same statement holds for \mathbf{J} and $\mathbf{J}_{\mathbb{T}}$.
The proof uses the following estimate from BBEGZ:

$$
\begin{aligned}
\int_{X}\left(\varphi_{2}\right. & \left.-\varphi_{1}\right)\left(\left(d d^{c} \varphi_{3}\right)^{n}-\left(d d^{c} \varphi_{4}\right)^{n}\right) \\
& \leq \mathbf{I}\left(\varphi_{1}, \varphi_{2}\right)^{1 / 2^{n}} \cdot \mathbf{I}\left(\varphi_{3}, \varphi_{4}\right)^{1 / 2^{n}} \max \left\{\mathbf{I}\left(\varphi_{i}\right)\right\}^{1-2^{1-n}}
\end{aligned}
$$

Slopes of entropy

For any $\phi \in \mathcal{E}^{1, \text { NA }}$, define:

$$
\mathbf{H}^{\mathrm{NA}}(\phi)=\int_{X^{\mathrm{NA}}} A_{X}(v) \mathrm{MA}^{\mathrm{NA}}(\phi) .
$$

If $\phi=\phi_{(\mathcal{X}, \mathcal{L})}$, then $\mathbf{H}^{\mathrm{NA}}(\phi)=K_{\mathcal{X} / X_{\mathbb{C}}}^{\log } \cdot \overline{\mathcal{L}}^{\cdot n}$.

Theorem (Thm C, L. , '20)

For any (maximal) geodesic ray Φ, we have:

$$
\mathbf{H}^{\prime \infty}(\Phi) \geq \mathbf{H}^{\mathrm{NA}}\left(\Phi_{\mathrm{NA}}\right), \quad \mathbf{M}^{\prime \infty}(\Phi) \geq \mathbf{M}^{\mathrm{NA}}\left(\Phi_{\mathrm{NA}}\right)
$$

The key is to use the non-Archimedean identity for entropy:

$$
\mathbf{H}^{\mathrm{NA}}(\phi)=\sup \left\{\int_{X^{\mathrm{NA}}} f_{K_{\mathcal{Y} / X_{\mathbb{C}}}^{\log }} \mathrm{MA}^{\mathrm{NA}}(\phi) ; \mathcal{Y} \text { an SNC model }\right\},
$$

Jensen's inequality and an asymptotic lemma of Boucksom-Hisamoto-Jonsson.

Conjecture (L. , '20)

If Φ is maximal, then $\mathbf{H}^{\prime \infty}(\Phi)=\mathbf{H}^{\mathrm{NA}}\left(\Phi_{\mathrm{NA}}\right)$.
This is implied by

Conjecture (Boucksom-Jonsson)

For any $\phi \in \mathcal{E}^{1, \mathrm{NA}}$, there exist $\phi_{m} \in \mathcal{H}^{\mathrm{NA}}$ s.t. ϕ_{m} converges to ϕ in the strong topology and

$$
\mathbf{H}^{\mathrm{NA}}(\phi)=\lim _{m \rightarrow+\infty} \mathbf{H}^{\mathrm{NA}}\left(\phi_{m}\right) .
$$

Difficulty: As in the Archimedean case, \mathbf{H}^{NA} is only lower-semi-continuous, not continuous, under the strong convergence. One needs some nice smoothing process that preserves the non-Archimedean entropy. We give some partial smoothing in the following theorem.

Approximation of non-Archimedean entropy

Theorem (Thm D, L.)

For any $\phi \in \mathcal{E}^{1, \mathrm{NA}}$, there exist models $\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)$ such that $\phi_{m}=\phi_{\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)}$ converges to ϕ in the strong topology and

$$
\mathbf{M}^{\mathrm{NA}}(\phi)=\lim _{m \rightarrow+\infty} \mathbf{M}^{\mathrm{NA}}\left(\phi_{m}\right)
$$

Step 1: $\forall \phi \in \mathcal{E}^{1, \mathrm{NA}}, \exists \phi_{m} \in \mathcal{E}^{1, \mathrm{NA}} \cap C^{0}\left(L^{\mathrm{NA}}\right)$ s.t. $\phi_{m} \xrightarrow{\text { strongly }} \phi$, $\mathbf{M}^{\mathrm{NA}}\left(\phi_{m}\right) \rightarrow \mathbf{M}^{\mathrm{NA}}(\phi)$ and $\mathrm{MA}^{\mathrm{NA}}\left(\phi_{m}\right)$ is supported on a dual complex $\Delta_{\mathcal{Y}}$ of an SNC model $\left(\mathcal{Y}, \mathcal{L}_{\mathcal{Y}}\right)$ of (X, L). Step 2: $\forall \phi \in \mathcal{E}^{1, \mathrm{NA}}$ with $\mathrm{MA}^{\mathrm{NA}}(\phi)$ supported on $\Delta_{\mathcal{Y}}$, $\exists \phi_{k} \in \mathcal{E}^{1, \mathrm{NA}} \cap C^{0}\left(L^{\mathrm{NA}}\right)$ s.t. $\phi_{k} \xrightarrow{\text { strongly }} \phi, \mathbf{M}^{\mathrm{NA}}\left(\phi_{k}\right) \rightarrow \mathbf{M}^{\mathrm{NA}}(\phi)$ and $\mathbf{M}^{\mathrm{NA}}\left(\phi_{k}\right)$ is a Dirac-type measure supported on $\Delta_{\mathcal{Y}}$. Step 3: Boucksom-Favre-Jonsson showed that solution $\left(\mathrm{MA}^{\mathrm{NA}}\right)^{-1}(\nu)$ for Dirac type ν is $\phi_{\left(\mathcal{Y}, \mathcal{L}_{\mathcal{Y}}\right)}$ for some \mathbb{R}-line bundle $\mathcal{L}_{\mathcal{Y}}$. A perturbation makes $\mathcal{L}_{\mathcal{Y}}$ a \mathbb{Q}-line bundle.

Proof by contradiction.
Step 1: If \mathbf{M} is not \mathbb{G}-coercive, then \exists destabilizing ray Φ s.t.

$$
\mathbf{M}^{\prime \infty}(\Phi) \leq 0, \quad \mathbf{J}_{\mathbb{T}}^{\prime \infty}(\Phi)=1
$$

Step 2: By Thm A, Φ is maximal. By Thm B, with $\phi=\Phi_{\text {NA }}$,

$$
\mathbf{E}^{\prime \infty}(\Phi)=\mathbf{E}^{\mathrm{NA}}(\phi), \quad\left(\mathbf{E}^{-\operatorname{Ric}(\Omega)}\right)^{\prime \infty}(\Phi)=\left(\mathbf{E}^{K_{X}}\right)^{\mathrm{NA}}(\phi)
$$

Step 3: By Thm C, $\mathbf{H}^{\prime \infty}(\Phi) \geq \mathbf{H}^{\mathrm{NA}}(\phi)$.
Step 4: By Thm D, there exist models $\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)$:

$$
\lim _{m \rightarrow+\infty} \mathbf{M}^{\mathrm{NA}}\left(\phi_{m}\right)=\mathbf{M}^{\mathrm{NA}}(\phi), \text { with } \phi_{m}=\phi_{\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)}
$$

Step 5: Contradiction:

$$
\begin{aligned}
& 0 \quad \geq \quad \mathbf{M}^{\prime \infty}(\Phi) \geq \mathbf{M}^{\mathrm{NA}}(\phi)=\lim _{m \rightarrow+\infty} \mathbf{M}^{\mathrm{NA}}\left(\phi_{m}\right) \\
& \\
& \\
& \geq_{\text {stability }} \\
& \lim _{m \rightarrow+\infty} \mathbf{J}_{\mathbb{T}}^{\mathrm{NA}}\left(\phi_{m}\right)=\mathbf{J}_{\mathbb{T}}^{\mathrm{NA}}(\phi)=1 .
\end{aligned}
$$

A toric manifold X^{n} is a projective manifold with an effective $\mathbb{T} \cong\left(\mathbb{C}^{*}\right)^{r}$ action with an open dense orbit.

Ample toric line bundle \Longleftrightarrow lattice (moment) polytope $\Delta \subset \mathbb{Z}^{n}$.
$\left(\mathbb{C}^{*}\right)^{r}$-equivariant test configurations \Longleftrightarrow convex piecewise linear rational functions on Δ.
($\left.\mathbb{C}^{*}\right)^{r}$-equivariant models \Longleftrightarrow piecewise linear rational functions $f_{\mathcal{L}}$ on Δ, and
$\phi_{\mathcal{L}}=$ lower convex envelope of $f_{\mathcal{L}}$, and is convex piecewise linear rational and hence comes from a test configuration.
This corresponds to the algebraic fact: toric divisors on toric varieties admit Zariski decomposition.

So we get the toric YTD conjecture for all polarized toric manifolds.

Proof by contradiction.
Step 1: If \mathbf{M} and \mathbf{D} are not \mathbb{G}-coercive, then \exists geodesic Φ s.t.

$$
\mathbf{D}^{\prime \infty}(\Phi) \leq 0, \quad \mathbf{J}_{\mathbb{T}}^{\prime \infty}(\Phi)=1
$$

Step 2: By Thm A, Φ is maximal and hence with $\phi=\Phi_{\mathrm{NA}}$,

$$
\mathbf{E}^{\prime \infty}(\Phi)=\mathbf{E}^{\mathrm{NA}}(\phi)
$$

Step 3: Berman-Boucksom-Jonsson showed $\mathbf{L}^{\prime \infty}(\Phi)=\mathbf{L}^{\mathrm{NA}}(\phi)$.
Step 4: By Multiplier Approximation, there exist TCs $\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)$:

$$
\lim _{m \rightarrow+\infty} \mathbf{D}^{\mathrm{NA}}\left(\phi_{m}\right)=\mathbf{D}^{\mathrm{NA}}(\phi), \text { with } \phi_{m}=\phi_{\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)}
$$

Step 5: Contradiction:

$$
\begin{aligned}
& 0 \quad \geq \quad \mathbf{D}^{\prime \infty}(\Phi)=\mathbf{D}^{\mathrm{NA}}(\phi)=\lim _{m \rightarrow+\infty} \mathbf{D}^{\mathrm{NA}}\left(\phi_{m}\right) \\
& \\
& \geq \text { stability } \lim _{m \rightarrow+\infty} \mathbf{J}_{\mathbb{T}}^{\mathrm{NA}}\left(\phi_{m}\right)=\mathbf{J}_{\mathbb{T}}^{\mathrm{NA}}(\phi)=1 .
\end{aligned}
$$

Thanks for your attention!

