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Abstract. Let (X,D) be a polarized log variety with an effective holomorphic torus action,
and Θ be a closed positive torus invariant (1, 1)-current. For any smooth positive function g
defined on the moment polytope of the torus action, we study the Monge-Ampère equations
that correspond to generalized and twisted Kähler-Ricci g-solitons. We prove a version of Yau-
Tian-Donaldson (YTD) conjecture for these general equations, showing that the existence of
solutions is always equivalent to an equivariantly uniform Θ-twisted g-Ding-stability. When Θ is
a current associated to a torus invariant linear system, we further show that equivariant special
test configurations suffice for testing the stability. Our results allow arbitrary klt singularities
and generalize most of previous results on (uniform) YTD conjecture for (twisted) Kähler-
Ricci/Mabuchi solitons or Kähler-Einstein metrics.
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1. Introduction and main results

In this paper, we will use the variational approach to study generalized and twisted Kähler-
Ricci soliton equations on log Fano varieties, which generalize the usual (twisted) Kähler-Ricci
soliton equations on Fano manifolds which we first recall. Let X be a smooth Fano manifold and
let Θ be a closed and positive (1, 1)-current. By a twisted Kähler-Ricci soliton (see [82, 90, 25]),

we mean a Hermitian metric e−ϕ on −KX such that ddcϕ =
√
−1

2π
∂∂̄ϕ is a Kähler metric and

satisfies the equation:

(1.1) Ric(ddcϕ) = ddcϕ+ Lξddcϕ+ Θ,

where ξ is a holomorphic vector field and Lξ denotes the Lie derivative. Based on the works
in [22, 28], we know that the solvability of this equation is equivalent to appropriate coercivity
condition of associated energy functionals. It is also possible to show the corresponding version
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of Yau-Tian-Donaldson conjecture which states that the solvability is equivalent to appropriate
(twisted) K/Ding-stability of the data (X, ξ,Θ). By now there is a long list of such results under
different conditions of (X, ξ,Θ). We refer to [77, 3, 79, 21, 80, 24, 9, 46, 59] for the Kähler-
Einstein case (i.e. ξ = Θ = 0), [33, 25, 9, 37, 73, 58, 81] for the twisted/conical Kähler-Einstein
case (i.e. ξ = 0) and to [13, 25] for the general Kähler-Ricci soliton case. Moreover, recently
there have been many parallel studies on Mabuchi-soliton metrics (see [66, 67, 87, 88, 46, 62] and
references therein). Recall that a Kähler metric ddcϕ ∈ c1(X) is a Mabuchi soliton ([66, 67])
on (X, ξ) (with ξ holomorphic) if it satisfies the equation:

(1.2) ∂̄

(
e−ϕ

(ddcϕ)n

)
= ιξ(ddcϕ).

Our main purpose in this paper is to generalize these results to a much more general setting.
First, we will work with any log pair (X,D) allowing arbitrary (klt) singularities. Second,
we will use the set-up of Berman-Witt-Nyström in [13] by considering more general complex
Monge-Ampère equation of the following form:

(1.3) g(mϕ)
(ddcϕ)n

n!
= e−ϕ−ψ,

where mϕ is the moment map associated to an effective torus action, g is any positive smooth
function defined on the associated moment polytope mϕ(X). We will explain more of notations
shortly. As is well known, (1.3) reduces to (1.1) when log g is affine, (X,D) = (X, ∅) and
Θ = ddcψ. In particular, when g is a positive constant, we get the twisted Kähler-Einstein
equation. Moreover, when g is affine, then we get the Mabuchi-soliton equation (1.2).

Our method is based on the variational approach, which applies well to both smooth and
singular varieties. Indeed, the variational approach to solve complex Monge-Ampère equations
on possibly singular varieties were developed in recent years, especially in the works of [7, 6, 13].
Based such variational approach and the study of the space of Kähler metrics, Tian’s properness
conjecture has been resolved in [28, 27, 32]. Moreover the variation approach to YTD conjecture
via pluripotential theory and non-Archimedean geometry have been successfully carried out in
[9, 58, 46, 59].

As we will show in this paper, by working harder to generalize the techniques from these
works, we can indeed achieve a version of the Yau-Tian-Donaldson conjecture for more general
equation (1.3) which gives sufficient and necessary algebrao-geometric conditions for the exis-
tence of solutions. We will also show that the MMP process developed in [57, 8, 38, 11] works
equally well for the more general equation (1.3), which allows us to test generalized-twisted
K/Ding-stability using only special test configurations.

To state our results, we introduce some notations. Let X be a projective variety of dimension
n, D an effective divisor such that KX+D is Q-Cartier. Let Θ be a closed positive (1, 1)-current
which is the curvature of a possibly singular Hermitian metric e−ψ on a Q-line bundle B. We
assume that L = −(KX +D)−B is ample.

Remark 1.1. By incorporating the divisorial part of Θ into D, we can usually assume that in
the Siu-decomposition of Θ, there is no divisorial part.

Let ω0 be a smooth Kähler metric on L, as the curvature of a Hermitian metric e−ϕ0 on L,
i.e. ω0 = ddcϕ0. Then e−ϕ0−ψ is a Hermitian metric on −KX −D and we get a globally defined
measure on X (see [6]):

(1.4) dµ0 = e−ϕ0−ψ = |s|2/me−ϕ0−ψ(
√
−1

mn2

s∗ ∧ s̄∗)1/m,
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where s is any no-where zero local holomorphic section of m(−KX − D) over an open set for
some sufficiently divisible m, and s∗ is the dual to s.

Let T ∼= (S1)r be a real torus of dimension r with the complexification TC ∼= (C∗)r. We
assume that TC acts effectively and holomorphically on X, preserving the divisor D. Moreover,
we assume the TC action lifts to an action on the Q-line bundle B, which means it lifts to act
on the line bundle mB for some m ∈ N, and e−ψ is a T -invariant Hermitian metric so that Θ is
also T -invariant. Note that since TC naturally acts on KX +D, it is equivalent to require that
TC lifts to an action on the ample Q-line bundle L = −(KX +D)−B.

For any Kähler form ddcϕ ∈ c1(L), there is an associated moment map

mϕ : X → Rr.(1.5)

Let P ⊂ Rr be the image of mϕ, which is known to be a convex polytope and independent
of the choice of ddcϕ. Let g be any smooth positive function defined on P . For any x ∈ X, for
simplicity, we set gϕ(x) := g(mϕ(x)). Then we can re-write the equation (1.3) as

(1.6) gϕ
(ddcϕ)n

n!
= e−(ϕ−ϕ0)dµ0.

By [13] (see section 2 for an alternative way of definition), for any ϕ ∈ E1
T (X,L), the left-

hand-side of (1.6) is a well-defined Radon measure and the equation can be considered in the
pluripotential sense. When ϕ is sufficiently smooth, one can easily see that, over Xsm, the
equation (1.6) is equivalent to

(1.7) Ricϕ := Ric(ddcϕ) = ddcϕ+ [D] + Θ + ddc log gϕ,

where [D] is the current of integration along the divisor Dsm.

Definition 1.2. We say X := (X,D + Θ, T ) admits a Kähler-Ricci g-soliton (or simply KR
g-soliton) if there exists a solution ϕ in the finite energy space E1

T (X,L) (see Definition 2.30)
to the equation (1.6).

In order to get a good existence theory using variational approach and pluripotential theory,
we need to require some control of the measure dµ0. To express this, we choose a T -equivariant
log resolution of singularities ρ : X̃ → X such that ρ−1(D + Xsing) is supported on a simple
normal crossing divisor. We can then write down the ramification formula:

(1.8) KY +D′ = ρ∗(KX +D) +
∑
i

aiEi,

where D′ = ρ−1
∗ D is the strict transform of D and Ei are exceptional divisors of ρ. Choose

a smooth volume form Ω on X̃. Then for any local holomorphic chart {Uα, zj}, there exists

nowhere zero smooth functions f(z) and local psh function ψ̃α = ρ∗ψ, such that

(1.9) ρ∗dµ0 =
∏
i

|zi|2aie−ψ̃αf(z)Ω.

Following [6, 9], we define:

Definition 1.3. We say that (X,D+Θ) is klt if the in the above representation
∏

i |zi|2aie−ψα ∈
Lp(Uα,Ω) for some p > 1.

By slightly generalizing the previous work, we show that solutions to (1.6) are critical points
of two functionals D = Dg,Θ and M = Mg,Θ (see (2.45) and (2.46)) defined on the space
E1
T (X,L) of T -invariant finite energy potentials. As in the usual Kähler-Einstein case, we first

derive an analytic criterion for the existence of solutions to equation (1.6).



4 JIYUAN HAN AND CHI LI

Let Aut(X,D) be the automorphism of (X,D) and aut(X,D) be its Lie algebra. Let t (resp.
tC) be the Lie algebra of T (resp. TC)

Definition 1.4. Let (X,D,Θ) be the same as above. We define:

(1.10) autT (X,D,Θ) = {ξ ∈ aut(X,D); ιξΘ = 0, [ξ, c] = 0,∀c ∈ tC} .
Let AutT (X,D,Θ) be the connected subgroup of Aut(X,D) generated by autT (X,D,Θ).

Remark 1.5. If Θ = 0, i.e. [Θ] = 0, then TC ⊆ AutT (X,D) := AutT (X,D, 0). If Θ is Kähler
then AutT (X,D,Θ) is trivial.

Then we have:

Theorem 1.6. Let X := (X,D + Θ, T ) be the data as specified above. Assume that G is a
reductive subgroup of AutT (X,D,Θ). If D is G-coercive over E1

T×K (see Definition 3.3), then
X admits a KR g-soliton.

Conversely, if X admits a KR g-soliton, then AutT (X,D,Θ) is reductive, and for any re-
ductive subgroup G of AutT (X,D,Θ) that contains a maximal torus of AutT (X,D,Θ), D is
G-coercive over E1

T×K.

Our second main result is on the Yau-Tian-Donaldson type conjecture for the general equation
(1.6).

Theorem 1.7. Let X be as above and G be a reductive subgroup of AutT (X,D,Θ).
If X is G-uniformly g-Ding-stable over (TC×G)-equivariant test configurations, then X admits

a KR g-soliton.
Conversely if X admits a KR g-soliton and G contains a maximal torus of AutT (X,D,Θ),

then X is G-uniformly g-Ding-stable over (TC ×G)-equivariant test configurations.
Moreover, when Θ is a generic current associated to a T -invariant linear system (see Lemma

(7.6)), it is enough to test the G-uniform g-Ding-stability over (TC×G)-equivariant special test
configurations.

Remark 1.8. We point out that the above results work for all log varieties with klt singularities.
When X and Θ are smooth, it might be possible to generalize the metric techniques (including
Cheeger-Colding-Tian theory and partial C0-estimates) in [85, 51, 76, 25, 81, 64, 73] to prove
similar results, although F. Wang pointed out to us some difficulty in such approach for non-KR
soliton cases.

It is standard to get more regularity for the solution to (1.6) (see Proposition 3.7). On the
other hand, if we just consider weak finite energy solutions, it is possible to allow g ∈ C0(P )
for Theorem 1.6, and Theorem 1.7 (at least when X is smooth) to hold true.

As mentioned above, the proof of our results depend on generalizing and unifying the tech-
niques in previous works. There are however various new ingredients in our arguments. For
example, we get the generalized Mabuchi functional and its generalized Chen-Tian formula for
all smooth g and for all Kähler classes (see 4.2). Moreover we would like to emphasize two key
observations that make our arguments to work successfully as in the usual Kähler-Einstein case.
The first is that the difficulty in dealing the g-soliton equation and the difficulty caused by the
twisting D+Θ are de-coupled, at least when we use the Ding-functional/stability. This could be
seen from the formula for the Archimedean/non-Archimedean Ding functional (see (2.45) and
(5.19)). The second is that the well-known construction in the study of equivariant de-Rham
cohomology together with the Stone-Weierstrass theorem can be applied in our calculations for
various Archimedean/non-Archimedean functionals.
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We end this introduction with an outline of the paper. In the next section, we will write
down various functionals needed in the variational study of the equation (1.6), and study their
relations. In section 3, we prove the analytic criterion for the existence of solutions to (1.6).
In section 4, we prove the technical result that the generalized Mabuchi functional is convex
along geodesic rays in the space of T -invariant metrics. In section 5, we introduce various
non-Archimedean functionals and show the valuative criterion for the G-uniform stability. In
section 6, we prove the Yau-Tian-Donaldson conjecture for the equation (1.6). In section 7, we
point out that the stability can be tested over special test configurations when Θ is associated
from a T -invariant linear subsystem. In section 8, we point out some immediate examples for
which our results apply.

1.1. Acknowledgements. J. Han would like to thank Jeff Viaclovsky for his teaching and
support over many years. C. Li is partially supported by NSF (Grant No. DMS-1810867)
and an Alfred P. Sloan research fellowship, and he would like to thank Yuchen Liu for helpful
discussions about equivariant K-stability. We would like to thank Feng Wang and Bin Zhou
for helpful comments. We would like to thank E. Inoue for pointing to us his related work [49]
and the earlier work of A. Lahdili [53], and T. Delcroix for bringing the work in [30] to our
attention.

2. Functionals and their dualities

In this section, we will first review a result in [13] which defines the Radon measure gϕ(ddcϕ)n

for all T -invariant L-psh Hermitian metrics. We will give an alternative definition of these
measures which are more adapted to our discussion. After that, we will define the functional
Eg,Jg, Ig which are generalized versions of the usual functionals E,J, I. Then we will define the
generalized Ding functional D and generalized Mabuchi functional M by essentially generalizing
some definitions from [83]. We will show that D and M are convex along weak geodesics. At
last, we will show that the duality formalism in [7, 6] also apply to our functionals here.

2.1. g-Monge-Ampère measure. In this subsection, we will work on manifold X̃ together

with a smooth semi-positive closed (1,1)-form ω0 = ddcϕ0 =
√
−1

2π
∂∂̄ϕ0.

Define the space of T -invariant psh metrics on L as:
(2.1)
PshT (X̃, L) = {ϕ = ϕ0 + u;u ∈ L1

loc, and locally ϕ is a T -invariant plurisubharmonic function}

and smooth T -invariant semipositive potentials as:

(2.2) HT (X̃, L) = {ϕ = ϕ0 + u ∈ PshT (X̃, L);u ∈ C∞(X̃,R)}.

We will use ω = ω0 = ddcϕ0 =
√
−1

2π
∂∂̄ϕ0, ddcϕ = ddc(ϕ0 + u).

For each 1 ≤ α ≤ r, assume that ξα is the holomorphic (1, 0)-vector field generating the
action of the α-th factor of TC ∼= (C∗)r and let θα = θα(ϕ) ∈ C∞(X̃,R) be the associated
Hamiltonian function for any ddcϕ. Then we have:

(2.3) ιξαddcϕ =

√
−1

2π
∂̄θα(ϕ).

We have the formula θα(ϕ) = θα(ϕ0) + ξα(ϕ − ϕ0) and the moment map mϕ : X̃ → Rr and
moment polytope are then given by:

(2.4) mϕ(x) = (θ1(ϕ)(x), . . . , θr(ϕ)(x)), P = mϕ(X̃).
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For any smooth function g on P , set

(2.5) gϕ = g(θ1(ϕ), . . . , θr(ϕ)).

When g > 0, we will often use the function:

(2.6) f = log g (defined on P), fϕ = log gϕ (defined on X̃).

So we have the formula:√
−1

2π
∂̄gϕ =

√
−1

2π

∑
α

∂g

∂θα
∂̄θα =

∑
α

gαιξα(ddcϕ) = ιVg,ϕddcϕ,

where we denoted

(2.7) gα = Dαg =
∂g

∂θα
, Vg,ϕ :=

∑
α

gα(mϕ(x)) · ξα.

Note that Vg,ϕ is not necessarily holomorphic. Similarly, for the smooth function f = log g on
P , we set fϕ = f(mϕ) and

(2.8) Vf,ϕ =
∑
α

∂f

∂θα
· ξα =

∑
α

fαξα

which satisfy the identity:

(2.9)

√
−1

2π
∂̄fϕ = ιVf,ϕddcϕ,

It is well-known that both the moment polytope P = Im(mϕ) and the Duistermaat-Heckmann

measure DHT (X,L) = (mϕ)∗
(ddcϕ)n

n!
are independent of the choice of ϕ (see [13, Proposition

4.1]). As a consequence, the following integral gives the weighted volume that we will use in
the following discussion.

(2.10)

∫
X

gϕ
(ddcϕ)n

n!
=

∫
P

g(y)DHT (X,L) := Vg.

Note that V1 = c1(L)·n

n!
. For general g > 0 on P , by multiplying g by a positive constant, we

can usually assume the normalization to simplify the notations in our following discussion:

(2.11) Vg = 1,

∫
X

dµ0 = 1.

For any interval I ⊂ R, set ΣI = {s+
√
−1b; s ∈ I, b ∈ R} ⊂ C.

Lemma 2.1. Let I ⊂ R be any interval and Φ = {ϕ(s)} : s ∈ I → ϕ(s) ∈ HT (X̃, L) be a
differentiable map. Consider Φ as a Hermitian metric on p∗2L where p2 : ΣI × X̃ → X̃ is the
natural projection. For any smooth function f on P , we have the identity:

(2.12) ιVf,ϕ(ddcΦ) =

√
−1

2π
∂̄fΦ,

where fΦ is a function on ΣI × X̃ defined as:

(2.13) fΦ(s+
√
−1b, x) = fϕ(s)(x).

Moreover we have the identity:

(2.14)
d

ds
fϕ = Vf,ϕ

(
∂ϕ

∂s

)
.
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Proof. Recall that we have fϕ(s)(x) = f(θα(ϕ)) and θα(ϕ) = θα(ϕ0) + ξα(ϕ − ϕ0). Set ϕ̇ = ∂ϕ
∂s

and t = s+
√
−1b. We get:

√
−1

2π
∂̄fΦ =

√
−1

2π

∑
α

fα
(
∂̄X̃θα(ϕ) + ξα(ϕ̇)dt̄

)
=

∑
α

fαιξα

(
ddcϕ+

√
−1

2π
∂ϕ̇ ∧ dt̄

)
=

∑
α

fαιξα(ddcΦ) = ιVf,ϕddcΦ.

�

We have the following result proved by Berman-Witt-Nyström.

Proposition 2.2 ([13]). Let g = g(y) be a continuous positive function on the moment polytope

P . For any ϕ ∈ PshT (X̃, L), MAg(ϕ) := g(mϕ) (ddcϕ)n

n!
is a well-defined a Radon measure.

The proof in [13] used Kiselman’s partial Legendre transform and approximation by series
of step functions. We now present an alternative construction of the above measure by using
a more direct fibration construction, which is more adapted to our following discussion, in
particular to defining the non-Archimedean functions in Section 5.

Proof. By Stone-Weierstrauss theorem, the continuous function g on P ⊂ Rr can be approx-
imated by polynomials gi, and |g(y) − gi(y)| → 0 for any y = (y1, · · · , yr) ∈ P , as i → ∞.
For u ∈ PshT (X̃, ω0), set uM = max(u,−M). Let ϕM = ϕ0 + uM . For each ϕM , there
exists a decreasing sequence uM,j ∈ HT (X̃, ω0), such that uM,j ↘ uM in the weak topology
as j → ∞. We will first define MAgi(ϕM,j), and then show that MAgi(ϕM,j) converges as
j →∞,M →∞, i→∞, and define MAg(ϕ) as the limit.

Assume that ξ generates an effective TC-action where TC ' (C∗)r. Set NT
Z = Hom(C∗, TC),

MT
Z = Hom(TC,C∗), NT

R = NT
Z ⊗Z R, MT

R = MT
Z ⊗Z R. Fix a Z-basis {e1, . . . , er} of NT

Z and
write ξ =

∑r
i=1 aiei such that {ai; i = 1, . . . , r} are Q-linearly independent.

First we will assume g is a polynomial and show that MAg is a well-defined Radon measure.
Without the loss of generality, we can furthermore assume g is a monomial

∏r
α=1 y

kα
α , kα ∈

N, y ∈ P . We will also assume ϕ is smooth at first, and then work on the general ϕ by using
the approximation as stated above. When ϕ is smooth, the moment map mϕ : X → P ⊂ MR
is well-defined, and is determined up to a translation. Set θα = θeα(ϕ) = 〈mϕ, eα〉. By adding a
translation to mϕ0 , we can assume θα(ϕ0) are all positive. Consequently, θα(ϕ) are all positive,
since the polytope P is invariant when ϕ0 is changed by adding a potential function. Then
0 < aα < θα < bα for positive bound aα, bα. gϕ =

∏r
α=1 θ

kα
α (ϕ).

For any ~k = (k1, . . . , kr) ∈ Nr, we set:

(2.15) S[~k] = S2k1+1 × · · · × S2kr+1.

S[~k] is a natural (S1)r-principal bundle with the action given by:

(2.16) (eia1 , · · · , eiar) · (z(1), · · · , z(r)) = (eia1z(1), . . . , eiarz(r)).

where z(α) = (z
(α)
0 , . . . , z

(α)
kα

) and we use the identification S2kα+1 = {z(α) ∈ Ck1+1; |z(α)| = 1}.
Since (S1)r-acts on (X̃, L), we have the associated fibre bundle (X̃ [~k], L[~k]) := (X̃, L)×(S1)r S[~k].
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Then we have the diagram:

(2.17)

X̃ X̃ × S[~k] S[~k]

X̃/S1 X̃ [~k] P[~k],

β̃[~k]

(γ′)[~k]

π̃[~k]

γ[~k] (γ′′)[~k]

β[~k]
π[~k]

where each fiber of π[~k] is isomorphic to X̃.

For the Hermitian metric eϕ on L, there exists a corresponding Hermitian metric eϕ
[~k]

on

L[~k]. And ϕ[~k] − ϕ
[~k]
0 = γ

[~k]
∗ (β[~k])∗(ϕ − ϕ0). The equivariant cohomology associated to the

group U(1) is described in [1, Section 4]. For the group U(1), there exists a Weyl group
W = R[ζ, v], where ζ represents the angular 1-form of U(1) associated with a degree 1; v is a
free variable associated with a degree 2. A derivative D is also defined on W , which satisfies
Dζ = v,Dv = 0. Then (W,D) forms the de Rham model of EU(1) ' S∞, and H∗(W,D) ' R.
The S1-invariant elements in W , i.e, R[v], coupled with the derivative D, forms the de Rham
model of BU(1) ' P∞, and H∗(R[v], D) ' R[v]. From the embedding S2k+1 → S∞, we can
see (R[ζ, v]/(vk+1), D) forms the de Rham model for S2k+1, where ζ ∧ vk is the generator of
H2k+1(S2k+1,R). Similarly, we have the embedding Pk → P∞, and (R[v]/(vk), D) forms the de
Rham model of Pk (in real coefficient).

Following the idea of the model of U(1), the ring

(2.18) Ω∗T (X̃) = {a ∈ Ω∗(X̃) : LV a = 0 for V ∈ Rr}
is defined, and there exists an isomorphism

(2.19) H{Ω∗T (X̃)[v1, · · · , vr], dtwist} ' H∗T (X̃),

where v1, · · · , vr are free variables, and for any a ∈ Ω∗T (X̃), dtwista = da +
∑r

α=1(ιξαa)vα. This
implies an isomorphism

(2.20) H{Ω∗T (X̃)[v1/(v1)k1+1, · · · , vr/(vr)kr+1]} ' H∗(X̃ [~k]).

We will construct the metric ddcϕ
[~k]
j in the following, which will fit with the equivariant

cohomology picture above. Since we are going to work on complex field, it is more convenient
to consider the following diagram:

(2.21)

C∗ L× (Ck1 \ {0})× · · · × (Ckr \ {0}) L[~k]

C∗ X̃ × (Ck1 \ {0})× · · · × (Ckr \ {0}) X̃ [~k],

We will use the coordinate (x, s, (z1
0 , · · · , z1

k1
), · · · , (zr0, · · · , zrkr)) for points in L× (Ck1 \ {0})×

· · ·×(Ckr\{0}). The action of t = (t1, · · · , tr) ∈ NT
R on L×(Ck1\{0})×· · ·×(Ckr\{0}) is applied

by t→ (σ∗t x, σ
∗
t s, (t1z

1
0 , · · · , t1z1

k1
), · · · , (trzr0, · · · , trzrkr)). Then (x, s, [z1

0 , · · · , z1
k1

], · · · , [zr0, · · · , zrkr ])
and (σ∗t x, σ

∗
t s, [z

1
0 , · · · , z1

k1
], · · · , [zr0, · · · , zrkr ]) are the same point in L[~k].

We will consider a neighborhood of a fiber X̃ → X̃ [~k] → P[~k]. ϕ[~k] = σ∗tϕ can be considered

as a section of L[~k]. Then we have

(2.22) d(ϕ[~k]) = dx(σ
∗
tϕ) + dt(σ

∗
tϕ) = dx(σ

∗
tϕ) +

r∑
α=1

Lξα(ϕ)Aα,
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where dx means the differentiation along x direction, Lξα(ϕ) = θα, Aα ∈ T ∗X̃ [~k] is a connection
of the line bundle, and dtA

α = ddcϕFS
α , where ϕFS

α is the pullback of the Fubini-Study metric
from Pkα . Furthermore,

ddc(ϕ[~k]) = ddcϕ−
r∑

α=1

dx(θα) ∧ Aα + dx(θα) ∧ Aα +
r∑

α=1

θαddcϕFS
α

= ddcϕ+
r∑

α=1

θαddcϕFS
α .

(2.23)

Note that by our normalization of mϕ, each θα is positive, so ddcϕ[~k] is indeed a metric on X̃ [~k].

As shown in the formula, (ddcϕ)[~k] can be decomposed into two parts: ddcϕ is the projection
along fiber X̃, and

∑r
α=1 θαddcϕFS

α is the projection perpendicular to the fiber direction. And
from the construction above, we can see

ϕ[~k] − ϕ[~k]
0 = (ϕ− ϕ0)[~k]

ddc(ϕ− ϕ0)[~k] = ddc(ϕ− ϕ0) +
r∑

α=1

(θα(ϕ)− θα(ϕ0))ddcϕFS
α .

(2.24)

For any continuous function w(x) on X̃,∫
X̃

wMAg(ϕ) =

∫
X̃

wgϕ
(ddcϕ)n

n!

=

∫
P[~k]

(

∫
X̃

w[~k]

r∏
α=1

θkαα
(ddcϕ)n

n!
) ∧ (ddcϕFS

1 )k1

k1!
· · · ∧ (ddcϕFS

r )kr

kr!

=

∫
X̃[~k]

w[~k] (ddcϕ[~k])n+k

(n+ k)!
.

(2.25)

Now consider the general ϕ ∈ PshT (X̃, ω0). The regularization of ϕM induces a decreasing

sequence of smooth metrics ϕ
[~k]
M,j. Then the sequence converges to a limit ϕ

[~k]
M , which is a sin-

gular metric on X̃ [~k]. Since the Monge-Ampère measure converges along a decreasing sequence,

we have (ddcϕ
[~k]
M )n+k = limj→∞(ddcϕ

[~k]
M,j)

n+k. Similarly, as M →∞, ϕM is also a decreasing se-

quence. Then the limit ϕ[~k] is a singular metric, and define (ddcϕ[~k])n+k = limM→∞(ddcϕ
[~k]
M )n+k.

For any T -invariant test function w(x) ∈ C∞(X̃),

(2.26)

∫
X̃

wMAg(ϕ) = lim
M→∞

lim
j→∞

∫
X[~k]

w[~k]
(ddcϕ

[~k]
M,j)

n+k

(n+ k)!
.

For any test function w, we set wT =
∫
T
w(σ · x)dσ where dσ is the unit volume Haar measure

on T . Then we define:

(2.27)

∫
X̃

wMAg(ϕ) =

∫
X̃

wTMAg(ϕ).

Then MAg is well-defined for any monomial and hence any polynomial g.
Now consider the general continuous function g. For any ε > 0, there exists an i0 > 0,

such that for i > i0, |g − gi| < ε. Let i, i′ be any two indices larger than i0. For any test



10 JIYUAN HAN AND CHI LI

function w(x), there exist M > 0, j > 0, such that |
∫
X̃
w(x)(MAgi(ϕM,j) − MAgi(ϕ))| < ε,

|
∫
X̃
w(x)(MAgi′

(ϕM,j)−MAgi′
(ϕ))| < ε. Then

|
∫
X̃

w(x)(MAgi(ϕ)−MAgi′
(ϕ))| ≤ |

∫
X

w(x)(MAgi(ϕ)−MAgi(ϕM,j))|+

|
∫
X̃

w(x)(MAgi′
(ϕ)−MAgi′

(ϕM,j))|+ |
∫
X̃

w(x)(MAgi(ϕM,j)−MAgi′
(ϕM,j))|

≤ 2ε+ |
∫
X̃

w(gi,ϕM,j − gi′,ϕM,j)
(ddcϕM,j)

n

n!
|

≤ 2ε+ 2ε

∫
X̃

|w|(ddcϕM,j)
n

n!
.

By the estimate above, MAgi(ϕM,j) converges, as j →∞,M →∞, i→∞. Henceforth we can
see

(2.28) MAg(ϕ) = lim
i→∞

lim
M→∞

lim
j→∞

MAgi(ϕM,j)

is a well-defined Radon measure by Riesz representation theorem. �

2.2. Finite energy space. By pushing down the measure defined in the previous subsection
from X̃ to X, we have the definition of MAg as a Radon measure on X. The normalization
(2.11) corresponds to assuming that MAg, dµ0 are probablity measures on X (i.e. Vg = 1 in
(2.10)). We can define the following finite energy space (see (2.10))

ET := ET (X,L) =

{
ϕ ∈ PshT (X,L) :

∫
X

gϕ
(ddcϕ)n

n!
= Vg

}
.(2.29)

Remark 2.3. ET is the subspace of PshT (X,ω0) that MAg(ϕ) does not charge pluripolar
subset {u = −∞}. Since there exists C > 0 that depends only on g such that |gϕ| < C for

all ϕ ∈ HT (X,L), MAg(ϕ) is absolutely continuous with respect to (ddcϕ)n

n!
. By approximation,

this holds for any ϕ ∈ PshT (X,L). As a result, ET ∼= {ϕ ∈ PshT (X,L) :
∫
X

(ddcϕ)n

n!
= V1}.

We will also define

(2.30) E1
T := E1

T (X,L) =

{
ϕ ∈ ET :

∫
X

(ϕ− ϕ0)MAg(ϕ) > −∞
}
.

For ϕ ∈ E1
T (X,L), ϕ = ϕ0 + u, set ϕt = ϕ0 + tu and define:

Eg(ϕ) =
1

Vg

∫ 1

0

∫
X

(ϕ− ϕ0)gϕt
(ddcϕt)

n

n!
dt(2.31)

Ig(ϕ) =
1

Vg

∫
X

(ϕ− ϕ0)

(
gϕ0

(ddcϕ0)n

n!
− gϕ

(ddcϕ)n

n!

)
(2.32)

Jg(ϕ) =
1

Vg

∫
X

(ϕ− ϕ0)gϕ0

ωn0
n!
− Eg(ϕ) =: Λg(ϕ)− Eg(ϕ).(2.33)

Similar as in [82],

1

C
(I− J) ≤ Ig − Jg ≤ C(I− J).(2.34)
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For simplicity of notations, we assume Vg = 1 (by rescaling g). For Jg, let ut = tu.

Ig(ϕ)− Jg(ϕ) =

∫ 1

0

d

dt
(Ig − Jg)(ϕt)dt

= −
∫ 1

0

∫
X

ut(Vf,ϕ(u) + ∆tu)gϕt
ωnut
n!
dt

=

∫ 1

0

∫
X

tgϕt

√
−1

2π
∂u ∧ ∂̄u ∧

ωn−1
ut

(n− 1)!
dt

=

∫
X

n−1∑
k=0

(

∫ 1

0

1

k!(n− k − 1)!
(1− t)ktn−kgϕtdt)

√
−1

2π
∂u ∧ ∂̄u ∧ ωk ∧ ddcϕn−k−1,

(2.35)

where the last equality is by using ωut = (1− t)ω + tddcϕ. Similarly, we have

Jg(ϕ) =

∫ 1

0

∫
X

u(g
ωn

n!
− gϕt

ωnut
n!

)dt

= −
∫ 1

0

∫
X

u

∫ t

0

(V (u) + ∆su)gϕs
ωnus
n!
dsdt

=

∫ 1

0

∫ t

0

∫
X

gϕs

√
−1

2π
∂u ∧ ∂̄u ∧

ωn−1
us

(n− 1)!
dsdt

=
1

Vg

∫
X

∫ 1

0

∫ t

0

gϕs
1

k!(n− k − 1)!
(1− s)ksn−k−1dsdt

√
−1

2π
∂u ∧ ∂̄u ∧ ωk ∧ ωn−k−1

u .

(2.36)

Then we have

1

C
J ≤ Jg ≤ CJ(2.37)

and

1

C
Jg ≤ Ig − Jg ≤ CJg.(2.38)

Moreover, for any t ∈ [0, 1], if we let ϕt = (1− t)ϕ0 + tϕ, then

d

dt
Jg(ϕt) =

1

Vg

∫
X

(ϕ− ϕ0)

(
gϕ0

(ddcϕ0)n

n!
− gϕt

(ddcϕt)
n

n!

)
≥ 1

t
(1 +

1

C
)Jg(ϕt).

This is equivalent to d
dt

log(Jg(ϕt)) ≥ (1 + 1
C

)1
t

and hence implies

t1+ 1
C Jg(ϕ) ≥ Jg(ϕt).(2.39)

By (2.34) (2.37), we also have

1

C
I ≤ Ig ≤ CI.(2.40)

Remark 2.4. The calculation in the middle steps of (2.35) and (2.36) is done for ϕ ∈ HT .
This is sufficient. Indeed, since E1

T is the completion of HT under the strong topology for each
ϕ ∈ E1

T , we can choose a sequence ϕj ∈ HT that converges to ϕ in strong topology. Then we
only need to show (2.35) and (2.36) hold for each ϕj.
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Lemma 2.5. There exists C > 0 such that for any ϕ ∈ E1
T (X,L),

(2.41) sup(ϕ− ϕ0)− C ≤ Λg(ϕ) ≤ sup(ϕ− ϕ0).

Proof. The second inequality is clear. The first inequality follows easily follows from the Har-
togs’ lemma. Indeed, if there is no such C > 0, then there exists a sequence {ϕj}∞j=1 such that
uj = ϕj − ϕ0 satisfies

(2.42)
1

Vg

∫
X

(uj − supuj)gϕ0

(ddcϕ0)n

n!
≤ −j.

However, by Hartogs’ lemma, uj − supuj converges in L1 to some u∞ ∈ L1((ddcϕ0)n). Letting
j → +∞, we get a contradiction. �

Proposition 2.6. Eg is monotone increasing, concave and upper semi-continuous for ϕ ∈
E1
T (X,L). Moreover, for any decreasing sequence ϕj that converges weakly to ϕ ∈ E1

T (X,L),
Eg(ϕj) converges to Eg(ϕ).

Proof. The monotonicity is a direct result of the definition of Eg. For ϕ ∈ E1
T , it can be

approximated by a decreasing sequence of ϕj = ϕ0 + uj ∈ HT . By a similar calculation as in
(2.36), with normalization Vg = 1,

Eg(ϕj) =

−
∫
X

n−1∑
k=0

( 1

k!(n− k − 1)!

∫ 1

0

∫ t

0

(1− s)ksn−k−1gϕj,sdsdt
)√−1

2π
∂uj ∧ ∂̄uj ∧ ωk ∧ (ddcϕj)

n−k−1,

where ϕj,s = (1 − s)ϕ0 + sϕj. Since gϕj,s is uniformly bounded, the convergence result of
Monge-Ampère measure along a decreasing sequence ϕj can be adapted to show that Eg(ϕj)
converges to Eg(ϕ). As a consequence of the convergence of Eg, to show Eg is concave, it
suffices to show Eg is concave for ϕ ∈ HT . The concavity is shown by the second variation

E′′g(tu)|t=0 = −
∫
X
gϕ
√
−1

2π
∂u∧ ∂̄u∧ (ddcϕ)n−1

(n−1)!
≤ 0. The upper-semicontinuity is a consequence of

the monotonicity and approximation property: for a sequence ϕi that converges to ϕ weakly

in E1
T , we can choose decreasing sequences ϕji ↘ ϕi, ϕ

j ↘ ϕ, and ϕji
i→∞−−−→ ϕj smoothly. Then

limi→∞Eg(ϕ
i
i) ≤ Eg(ϕ

j) for any j. Let j → ∞, the limit is ≤ Eg(ϕ) and the upper semi-
continuity is proved. �

We will use the notation Eg,ϕ to emphasize the reference metric is ddcϕ. As in the case when
g = 1, it can be shown that Eg also satisfies the cocycle property:

(2.43) Eg,ϕ0(ϕ1)− Eg,ϕ0(ϕ2) = Eg,ϕ2(ϕ1),

where ϕ0, ϕ1, ϕ2 ∈ E1
T (X,L).

Lemma 2.7. Ig satisfies a quasi-trangle inequality:

(2.44) c(n, g)Ig(ϕ1, ϕ2) ≤ Ig(ϕ1, ϕ0) + Ig(ϕ0, ϕ2),

where ϕ0, ϕ1, ϕ2,∈ E1
T (X,L), and the constant c(n, g) depends on the dimension n and the

function g.

Proof. By the inequality (2.40),

Ig(ϕ1, ϕ2) ≤ CI(ϕ1, ϕ2).

where C depneds on n, g. By [6, Theorem 1.8], there exists a constant c(n) such that

c(n)I(ϕ1, ϕ2) ≤ I(ϕ1, ϕ0) + I(ϕ0, ϕ2).



YAU-TIAN-DONALDSON CONJECTURE FOR GENERALIZED KÄHLER-RICCI SOLITONS 13

Use inequality (2.40) again, then we have

Ig(ϕ1, ϕ2) ≤ C2

c(n)
(Ig(ϕ1, ϕ0) + Ig(ϕ0, ϕ2)).

�

Proposition 2.8 (see [6]). E1
T,sup(X,L) = {ϕ ∈ E1

T (X,L) :
∫
X

(ϕ − ϕ0)g
ωn0
n!

= 0} is complete
under the topology induced by Ig.

Proof. Let ϕj ∈ E1
T,sup be a sequence such that Ig(ϕj) is a Cauchy sequence. By Hartogs’

compactness lemma, there exists a ϕ ∈ PshT , such that up to a subsequence, ϕj converges to ϕ
in weak topology. By (2.38) and [6], Ig(ϕj, ϕ) converges to 0, which implies Jg(ϕj) − Jg(ϕ) =∫
X

(ϕj−ϕ)g
ωn0
n!

+Eg(ϕj)−Eg(ϕ) converges to 0. Since weak convergence implies L1-convergence,∫
X

(ϕj − ϕ)g
ωn0
n!

converges to 0. This implies, Eg(ϕj) converges to Eg(ϕ) which is > −∞. Then
ϕ ∈ E1

T,sup(X,L). �

2.3. Generalized Ding functional v.s generalized Mabuchi functional.

Definition 2.9. The generalized Ding functional is defined as

D(ϕ) := Dg,Θ(ϕ) = −Eg(ϕ) + LΘ(ϕ),(2.45)

where LΘ(ϕ) = − log(
∫
X
e−(ϕ−ϕ0)dµ0) = − log(

∫
X
e−u+h0 ω

n
0

n!
).

Definition 2.10. The generalized Mabuchi functional is defined as

M(ϕ) := Mg,Θ(ϕ) =

∫
X

log(
gϕ(ddcϕ)n

eh0ωn0
)gϕ

(ddcϕ)n

n!
+ Jg(ϕ)− Ig(ϕ).(2.46)

Remark 2.11. We want to point out that, the generalized Mabuchi functional (2.46) can be
considered as the “integral” of the Futaki invariant. (More details about generalized Mabuchi
functional can be found in section 4.) This is a generalization of the Mabuchi functional defined
in [83], but different from the one used in [13] and [46] (See Remark 9.3). By the Moment map
picture built in Appendix 9, M can be considered as a Kempf-Ness functional, which is expected
to be convex along a geodesic. (The convexity is proved in section 4.)

Denote the probability measures dν = gϕ
(ddcϕ)n

n!
, dµ0 = eh0 ω

n
0

n!
. Then

M(ϕ) := Mg,Θ(ϕ) :=

∫
X

log(
dν

dµ0

)dν + Jg(ϕ)− Ig(ϕ)

= Hg,Θ(ϕ) + Jg(ϕ)− Ig(ϕ).

(2.47)

Lemma 2.12. For any ϕ ∈ E1
T (X,L), M(ϕ) ≥ D(ϕ).

Proof. Note that

Ig(ϕ)− Jg(ϕ) = −
∫
X

(ϕ− ϕ0)gϕ
(ddcϕ)n

n!
+ Eg(ϕ).

So

M(ϕ) = −
∫
X

log(
e−(ϕ−ϕ0)dµ0

dν
)dν − Eg(ϕ).

By Jensen’s inequality, we have

M(ϕ) ≥ − log

(∫
X

e−(ϕ−ϕ0)dµ0

)
− Eg(ϕ) = LΘ(ϕ)− Eg(ϕ) = D(ϕ).
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�

2.4. Duality. Let dχ be a measure in M1
T . Using the Legendre transform, we define

E∗g(dχ) = sup
v∈E1

T

{
Eg(v + ϕ0)−

∫
X

vdχ

}
,(2.48)

L∗Θ(dχ) = sup
v∈E1

T

{
− log(

∫
X

e−vdµ0)−
∫
X

vdχ

}
.(2.49)

Definition 2.13. We define the space of energy bounded Radon measures M1
T (X) as:

M1
T (X) = {dχ is a Radon measure :

∫
X

dχ = 1, dχ is T -invariant,E∗g(dχ) <∞}.(2.50)

We have the following result:

Proposition 2.14 ([13]). Let dχ be a Radon measure on X, and
∫
X
dχ = 1.There exists a

unique (up to constant) u ∈ E1
T (X,ω) such that MAg(ϕ) = dχ if and only if dχ ∈M1

T (X).

The following duality lemma is essentially contained in [6]. For reader’s convenience, we also
state a brief proof.

Lemma 2.15. Let dν = gϕ
(ddcϕ)n

n!
. Then

E∗g(dν) = Ig(ϕ)− Jg(ϕ)(2.51)

L∗Θ(dν) = Hg,Θ(ϕ).(2.52)

Proof. By letting v = u = ϕ − ϕ0 in the definition (2.48), we have E∗g(dν) ≥ Ig(ϕ) − Jg(ϕ).

Since the first variation of Eg(v + ϕ0)−
∫
X
vdν = 0 at v = u, and Eg(v + ϕ0) is concave while∫

X
vdν is linear, we have E∗g(dν) ≤ Ig(ϕ)− Jg(ϕ).

By letting v = − log( dν
dµ0

), we have Hg,Θ(u) ≤ L∗Θ(dν). By Jensen’s inequality,

− log(

∫
X

e
−v−log( dν

dµ0
)
dν)−

∫
X

vdν ≤
∫
X

log(
dν

dµ0

)dν,

we have the inequality of the other direction. �

This lemma implies

M = −E∗g(dν) + L∗Θ(dν).(2.53)

By a similar proof as in [6], we have the following two lemmas.

Lemma 2.16. For any C > 0, {ϕ ∈ E1
T : Hg,Θ(ϕ) < C} is precompact. And Hg,Θ is l.s.c in E1

T

under strong topology.

Lemma 2.17. infϕ∈E1
T

D(ϕ) = infϕ∈E1
T

M(ϕ).

3. Existence and properness

In this section, we will study the existence of the generalized Monge-Ampère equation

MAg(ϕ) = e−(ϕ−ϕ0)dµ0,(3.1)

where MAg(φ) = gϕ
(ddcϕ)n

n!
, dµ0 = eh0 ω

n
0

n!
are probability measures on X.

Recall the notations AutT (X,D,Θ),G defined in section 1. Denote T = C(G) ' (C∗)r =
((S1)r)C the center of G, where (S1)r ⊂ K; and t as the Lie algebra of T. And let NR be a
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r-dimensional real vector space. For any ξ ∈ NR, ξ −
√
−1Jξ ∈ t, where J is the complex

structure.

Lemma 3.1. Any minimizer of the generalized Ding functional D is a solution to (3.1). Con-
versely, any solution to (3.1) is a minimizer of D.

Proof. The proof is essentially the same as [13, Proposition 2.16]. The key of the proof is
to use the projection operator: P (f) = sup∗{ϕ ∈ Psh(X,L) : ϕ ≤ f}. Assume ϕ is a
minimizer of D. For any continuous function v, let d(t) = −Eg(P (ϕ + tv)) + LΘ(ϕ + tv).
Since d(t) ≤ D(P (ϕ + tv)), d(0) is a minimizer. By [12], d(t) is differentiable at t = 0,
d′(0) =

∫
X
v(−MAg(ϕ) + e−ϕdµ) = 0. Since v can be any continuous function, this implies

−MAg(ϕ) + e−ϕdµ = 0. Then the minimizer ϕ is a solution to (3.1). The inverse direction is a
straightforward result of the convexity of D. �

The first part of the following lemma is similar to [6, Theorem 5.2], [21, Theorem 6] or [25,
Proposition 7]. The second part is similar to [45, Theorem 3.3] and [60, Theorem 2.15].

Lemma 3.2. Assume that there exist T -invariant solutions to (3.1).

i.) If ϕ1, ϕ2 are two T -invariant solutions to (3.1), there exists a 1-parameter subgroup
λ : (C,+)→ AutT (X,D,Θ) such that λ(1)∗ϕ2 = ϕ1. As a consequence, AutT (X,D,Θ)
is a reductive complex Lie group, i.e, it is the complexification of a compact Lie group
KAut and KAut is a subgroup of Iso(X, ddcϕ).

ii.) If G = KC is a reductive subgroup that contains a maximal torus of AutT (X,D,Θ), and
ϕ0, ϕ1 ∈ E1

T×K(X,L) are both solutions to (3.1), then there exists an σ in the center of
G, such that ddcϕ1 = σ∗ddcϕ0.

Proof. In the following proof, we will denote G = AutT (X,D,Θ), and by C(G) its center. Let
ϕ0, ϕ1 be two T -invariant solutions to (3.1). Let ϕt be geodesic segments connecting ϕ0 and ϕ1.

By [14], LΘ (or D since Eg is affine) is convex along a geodesic. Claim: if LΘ is affine,
then the geodesic is induced by a holomorphic vector field ξ, where the imaginary part of ξ is
a Killing vector field. We will show that our setting fits into the framework of [6, Appendix C].
By assumption, D+ Θ is a klt current, and Θ = ddcψ ≥ 0. Then (X,D) is a klt pair. We have
the ramification formula

(3.2) KX̃ +D′ = ρ∗(KX +D)− E− + E+,

where D′ is the strict transform of D, E−, E+ are effective exceptional divisors. Denote ∆ =
D′ + E−. Then coeffecients of prime divisors in ∆ is in [0, 1). Recall that, dµ0 = s∧s̄

|s|2
eϕ0+ψ

,

where s is a local holomorphic section of KX + D. Without the loss of generality, here we let
the multiplicity r = 1 . Then ρ∗dµ0 = σ∧σ̄

eϕ0+ψ+ϕ∆
, where σ is a local holomorphic section of

−Q = ρ∗(KX +D)−∆, ddcϕ∆ = [∆]. Then

LΘ(ϕ) = − log(

∫
X

e−(ϕ−ϕ0)dµ0)

= − log(

∫
X

e−(ϕ+ψ)s ∧ s̄)

= − log(

∫
X̃

e−(ϕ+ψ+ϕ∆)σ ∧ σ̄).

(3.3)

We have h0(X̃,KX̃ +Q) = h0(X̃, E+) = 1. Since −ρ∗(KX +D) is semi-ample, by Kawamata-

Viehweg vanishing theorem, h1(X̃,KX̃ + Q) = h1(X̃,KX̃ − ρ∗(KX + D) + ∆) = 0. Then
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we can apply [6, Appendix C] to conclude the claim. Denote this holomorphic morphism
induced by ξ as σξ. Since ιξ([D] + Θ) = 0, σξ fixes the divisor D and positive current Θ and
σξ ∈ Aut0(X,D,Θ). As the geodesic is induced by a holomorphic vector field, ϕ(t) is smooth

in Xsm. Since ξi = ϕij̄ϕ̇j̄ in Xsm, and ϕ is T -invariant, Lξ′ξ = 0 for any holomorphic vector
field ξ′ in the Lie algebra of T . Then σξ commutes with T and σξ ∈ G. The rest of argument
is the same as [6, Proof of Theorem 5.1].

For ii), assume there are two T×K invariant solutions ϕ0, ϕ1 to (3.1). Then again the geodesic
segment that connects ϕ0, ϕ1 is induced by a holomorphic vector field ξ, which generates a
holomorphic action σξ ∈ G such that σ∗ξddcϕ0 = ddcϕ1. Furthermore, ddcϕ0, ddcϕ1 are both

T ×K-invariant. In addition, K is a maximal subgroup of G, then σ−1
ξ Kσξ = K. Arguing as

in [59, Proof of Theorem 2.15], there exist t ∈ C(G), k ∈ K, such that σξ = tk. We can define
σ = t. This concludes (ii). �

Definition 3.3. Let G = KC ⊂ AutT (X,D,Θ) be a reductive Lie group and T be its center.
We say a functional F on E1

T×K is G-coercive (over E1
T×K) if there exist positive constants

δ > 0, C > 0, such that for any ϕ ∈ E1
T×K ,

F (ϕ) ≥ δ inf
σ∈T
{Jg(σ∗ϕ)} − C.(3.4)

We will consider F either as the generalized Ding functional or generalized Mabuchi func-
tional. Since Jg is comparable with J, this definition of G-coercivity is compatible with the one
defined in [22] in case of Kähler-Ricci soliton.

Lemma 3.4. We have the following properties for the functional Jg.

i) Jg is convex and proper over NR.
ii) For any ϕ ∈ E1

T×K, infσ∈T{Jg(σ∗ϕ)} can be obtained at some σ ∈ T.

Proof. The proof of the convexity follows from the lines of [45, Proposition 1.6]. We will work
on the resolution π : X̃ → X. We will abbreviate π∗ϕ as ϕ. For ξ ∈ NR, let σtξ ∈ T be the

group action indued by tξ. The action σtξ induces a family X̃ ×∆ and a metric Φ on the total

space , where Φ|(x,t) = σ∗tξϕ. By Lemma 4.6, we have ddcEg =
∫
X̃
gσ∗tξϕ

(ddcΦ)n+1

n!
. However, by

the construction of Φ, (ddcΦ)n+1 = σ∗tξ(ddcϕ)n+1 = 0. This implies Eg is affine along NR. Then

ddcJg =
∫
X̃

ddc(Φ) ∧ g ω
n
0

n!
≥ 0. By Lemma 5.14, we have the slope at the infinity (along the

trajectory of σtξ) JNA
g 6= 0 if ξ 6= 0. This and the convexity implies the properness of Jg. And

(ii) is a direct concequence of (i). �

The following generates the the analytic criterions in different situations as considered in
[77, 22, 71, 28, 27, 32, 45, 62, 59].

Theorem 3.5. Let G ⊆ AutT (X,D,Θ) (see Definition (1.4)) be a connected reductive subgroup.
Consider the following statements:

i) the generalized Mabuchi functional M is G-coercive.
ii) the generalized Ding functional D is G-coercive.

iii) there exists a solution ϕ ∈ E1
T×K(X,ω) to equation (3.1).

Then i) ⇔ ii) ⇒ iii).
Moreover, if G ⊆ AutT (X,D,Θ) and contains a maximal torus of AutT (X,D,Θ), then iii)
⇒ i).

Proof. i) ⇒ ii): Without the loss of generality, we may normalize
∫
X

(ϕ − ϕ0)efϕ0
(ddcϕ0)n

n!
= 0.

Then Jg(ϕ) = −Eg(ϕ). The constants C in the following estimates may change from line by
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line. By the G-coercivity of M, we have L∗Θ(dχ) ≥ (1 + δ)E∗g(dχ) − C, for some δ > 0. Let

ε = 1
1+δ

. Then we have E∗g(dχ) ≤ εL∗Θ(dχ) + C, for dχ ∈M1
T (X). Then

Eg((1− ε)ϕ0 + εϕ) = inf
dχ∈M1

T

{∫
X

ε(ϕ− ϕ0)dχ+ E∗g(dχ)

}
≤ ε inf

dχ∈M1
T

{∫
X

(ϕ− ϕ0)dχ+ L∗Θ(dχ)

}
+ C

≤ ε · LΘ(ϕ) + C.

Then by (2.39),

LΘ(ϕ) ≥ ε−1Eg((1− ε)ϕ0 + εϕ)− C ≥ ε
1
CEg(ϕ)− C,(3.5)

which implies

D(ϕ) = LΘ(ϕ)− Eg(ϕ) ≥ (1− ε
1
C )Jg(ϕ)− C.(3.6)

ii) ⇒ i): This follows from Lemma 2.12.
ii) ⇒ iii): If D is G-coercive, then it is bounded from below. Then any minimizing sequence
which converges to a minimizer of D by the lower semicontinuity of D with respect to the weak
topology. Then the implication follows by Lemma 3.1.
Now assume G contains a maximal torus of AutT (X,D,Θ).
iii) ⇒ i): Assume M is not G-coercive. Let ϕ be a solution to (3.1). By Lemma 2.17, M(ϕ) =
D(ϕ). By the assumption and Lemma 3.4(ii), there exists a sequence of ϕj ∈ E1

T×K , where
Jg(ϕj) = infσ∈T Jg(σ

∗ϕj), such that M(ϕj) ≤ δjJg(ϕj)−Cj, where δj → 0, and Cj →∞. Since
the entropy Hg,Θ(ϕj) is positive, we have Jg(ϕj) → ∞ or else Hg,Θ(ϕj) ≤ δjJg(ϕj) + (Ig −
Jg)(ϕj)−Cj → −∞. Let Φj(t) be the geodesic ray, that emanates from ϕ and passes through ϕj.
Denote the distance between ϕ and ϕj by Tj. Then Φj(Tj) = φj. Since D ≤M, by the convexity

of D, for t ∈ [0, Tj], we have D(Φj(t)) ≤ D(ϕ)+ t
Tj

(D(ϕj)−D(ϕ)) ≤ (1− t
Tj

)D(ϕ)+(δj− Cj
Tj

)t.

As j → ∞, up to choosing a subsequence, Φj converges weakly to a geodesic ray Φ. From
our construction, we can see that Φ is not an orbit of T (see Lemma 6.2). By the lower semi-
continuity of D, D(Φ(t)) ≤ limj→∞D(Φj(t)) ≤ D(ϕ). Then for any t, Φ(t) is a minimizer of
D. By Lemma 3.1, Φ(t) is a solution of (3.1). By Lemma 3.2.(ii), Φ is in an orbit of T, which
is a contradiction. �

The proof of the corollary below essentially follows from [6].

Corollary 3.6. Let

(3.7) π : X̃ → X

be a resolution of X. If ddcϕ is a weak solution to Kähler-Ricci soliton, then π∗ϕ ∈ L∞(X̃).

Proof. Let G = AutT (X,D,Θ). By iii) ⇒ i) in Theorem 3.5, there exists a σ ∈ T, such that

M(ϕ) ≥ δ

2
J(σ∗ϕ)− C.

Since M is G-invariant, and the regularity of ϕ, σ∗ϕ are the same, we will rename σ∗ϕ as φ,
and have

M(ϕ) ≥ δ

2
J(ϕ)− C.
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Denote dν = gϕ
(ddcϕ)n

n!
. By duality, this implies

L∗Θ(dν)− E∗g(dν) ≥ εE∗g(dν)− C.

Let p = 1 + ε > 1.
We have the Legendre transforms

L∗Θ(dν) = sup
v∈E1

T

{∫
vdν − log(

∫
X

evdµ)

}
,(3.8)

Eg(u) = inf
dν∈M1

T

{∫
X

udν + E∗g(dν)

}
.(3.9)

Together with the properness inequality, we have

log(

∫
X

e−pudµ) = sup
dν∈M1

T

{∫
X

−pudν − L∗Θ(dν)

}
(3.10)

≤ sup
dν∈M1

T

{
−p
∫
X

udν − pE∗g(dν)

}
− Cp(3.11)

≤ −p inf
dν∈M1

T

{∫
X

udν + E∗g(dν)

}
− Cp ≤ −pEg(u)− Cp,(3.12)

∫
X

e−pudµ ≤ C · e−pEg(u).(3.13)

This implies e−u ∈ Lp(dµ). As |fϕ| < C, MAg(ϕ) is comparable with MA(ϕ). Then the
machinary of [36] can be applied to obtain the L∞-estimate. �

Proposition 3.7. Assume that g > 0 is smooth on P and let ϕ be the solution to (3.1). Let
S = E ∪D′ ∪ {x ∈ X̃ : π∗ψ is singular at x}. Then π∗ϕ is smooth on X \ S.

Proof. We will state the proof briefly which basically follows from [6]. For simplicity, we will
denote ϕ as the solution to (3.1) on X̃. Let ω̃ = ddcϕ̃ be a K × T -invariant Kähler metric
on X̃. The right-hand side of (3.1) can be rewritten into the form e−ϕ−ϕ0dµ0 = eψ

+−ψ−Ω,
where ψ+, ψ− are quasi-psh functions, i.e, ddcψ+, ddcψ− ≥ −Cω̃ for some constant C > 0,
Ω is a smooth non-degenerate volume form. By the L∞-bound of ϕ and the klt condition,
e−ψ

− ∈ Lp(ωn0 ) for some p > 1. Furthermore, for any open subset U ⊂ X̃ \ S, there exists a
quasi-psh function ψ̄ such that U ⊂ X̃ \ {ψ̄ = −∞}. Without the loss of generality, we can set
U = X̃ \ {ψ̄ = −∞}.

Let ωε = ω + εω̃. By Demailly’s approximation result, there exist smooth approximations
ψ±ε of ψ± which decreases to ψ±, such that ddcψ±ε ≥ −Cω̃, and converges to ddcψ± weakly

in current sense. And ‖e−ψ−ε ‖Lp(ωn0 ) is uniformly bounded. It’s not hard to see that ψ± can

be chosen to be T -invariant. Then (C + 1)ϕ̃ + ψ±ε is a T -invariant Kähler metric on X̃, and
ξα((C+1)ϕ̃+ψ±ε ) is a coordinate function of the moment polytope corresponding to the Kähler
class [ddc((C + 1)ϕ̃ + ψ±ε )]. This implies ξα(ψ±ε ) is uniformly bounded. For the same reason,
since ψ̄ can be approximated by ψ̄ε, ddcψ̄ε ≥ −Cω̃, and ψ̄ε converges to ψ̄ smoothly on U , we
have ξα(ψ̄) is uniformly bounded on U .

We will consider the following continuity method

(3.14) etfϕε,t (ddcϕε,t)
n = dε,te

ψ+
ε −ψ−ε Ω,
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where ddcϕε,t = ωε + ddcuε,t, 0 ≤ t ≤ 1, 0 ≤ ε � 1, and dε,t is a constant to balance the
cohomologous equality. At t = 0, by [6, Lemma 3.6], there exists a solution uε,0 which is

smooth on X̃ \ S. The openness over t and ε is clear. The uniform C0-estimate follows from
the similar proof of corollary 3.6. Next we need to show the uniform C2-estimate.

Let θα,ωε (abbreviated as θα below) be the Hamiltonian function that corresponds to the
holomorphic vector field ξα with respect to ωε. We have θα,ϕε,t = θα + ξα(uε,t), ∂j̄fϕε,t =
fα∂j̄θα,ϕε,t = fα(∂j̄θα + ξα(∂j̄uε,t)). Then

(3.15) ∆fϕε,t ≥ fαξα(n+ ∆uε,t)− C(n+ ∆uε,t)− C,

where ∆ is with respect to ωε. By Chern-Lu’s inequality,

∆ϕε,t log(n+ ∆uε,t) ≥
∆f −∆ψ−ε
n+ ∆uε,t

− C −
∑
i

C

1 + ∂īiuε,t

≥ fαξα(n+ ∆uε,t)

n+ ∆uε,t
− ∆ψ−ε
n+ ∆uε,t

− C −
∑
i

C

1 + ∂īiuε,t
,

(3.16)

where the constant C > 0 above may change from line by line, but is uniformly bounded. We
will apply the maximum principle to log(n+ ∆uε,t)− A(uε,t + ψ̄) + ψ−ε for some A sufficiently
large. Since −ψ̄ approaches to +∞ near the boundary of U , log(n+ ∆uε,t)−A(uε,t + ψ̄)− ψ−ε
will achieve its maximal value at a point x0 ∈ U .

At x0, ξα(log(n+ ∆uε,t)− A(uε,t + ψ̄) + ψ−ε ) = 0; ξαuε,t = θα,ϕε,t − θα is uniformly bounded,
and ξαψ

±
ε , ξαψ̄ are uniformly bounded. Then at x0,

fαξα(n+ ∆uε,t)

n+ ∆uε,t
= fαξα(log(n+ ∆uε,t)− A(uε,t + ψ̄) + ψ−ε )+

Afαξα(uε,t + ψ̄)− fαξα(ψ−ε )

= Afα(θα(ϕ)− θα + ψ̄)− fαξα(ψ−ε ),

which is bounded. Then

(3.17) ∆ϕ(log(n+ ∆uε,t)− A(uε,t + ψ̄) + ψ−ε ) ≥ −C +
∑
i

C

1 + ∂īiuε,t
.

Then

(3.18) [
n+ ∆uε,t∏n

i=1(1 + ∂īiuε,t)
]

1
n−1 ≤

∑
i

1

1 + ∂īiuε,t
≤ C.

Since fϕε,t is uniformly bounded, eψ
+

is uniformly bounded above, we have n + ∆uε,t ≤
(ddcϕε,t)

n ≤ Ce−ψ
−

. This gives the uniform C2-estimate on U .
The uniform C2-estimate implies equation (3.1) is a uniform elliptic equation. Then we can

apply the standard Krylov-Evans estimate (which is a local estimate) to obtain a uniform C2,α-
bound. The standard maximum principle would then imply the higher order estimates. �

4. Generalized Mabuchi functional and its convexity

In this section, we will discuss generalized Mabuchi functional and generalized Futaki invari-
ant. In particular, we will show that M is convex along a weak geodesic.
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4.1. Generalized Mabuchi functional M. Generalized Mabuchi functional M can be refor-
mulated into:

M(ϕ) =

∫
X

log

(
gϕ(ddcϕ)n

ef0ωn0

)
gϕ

(ddcϕ)n

n!
− (Ig(u)− Jg(u))−

∫
X

(h0 − f0)gϕ
(ddcϕ)n

n!
,(4.1)

where ef0 = gϕ0 ,

Ig(ϕ)− Jg(ϕ) = −
∫
X

(ϕ− ϕ0)gϕ
(ddcϕ)n

n!
+ Eg(ϕ).

Then

M(ϕ) =

∫
X

log(
(ddcϕ)n

e−u+h0ωn0
)gϕ

(ddcϕ)n

n!
+

∫
X

fϕgϕ
(ddcϕ)n

n!
− Eg(ϕ)

=

∫
X

log(
(ddcϕ)n/n!

e−udµ0

)gϕ
(ddcϕ)n

n!
+

∫
X

fϕgϕ
(ddcϕ)n

n!
− Eg(ϕ).

(4.2)

Following [82] which generalizes [40], we define a generalized Futaki invariant as

Definition 4.1. For ϕ ∈ H(X,L), set ehϕ = n!·e−ϕ−ψ
(ddcϕ)n

and fϕ = log gϕ. For any ξ ∈ autT (X,D,Θ)

(see (1.10)), we define:

Futg(ξ) := Futg([ω], ξ) := Futg(ddcϕ, ξ) =

∫
X

ξ(hϕ − fϕ)efϕ
(ddcϕ)n

n!
.(4.3)

To see that the Futaki invariant is well-defined, we need to verify that the integral does not
depend on the choice of Kähler metrics. Before explaining this fact in Proposition 4.2, which
is in some sense well-known, we first introduce some notation.

For any ξ ∈ autT (X,D,Θ) (see (1.10)), by definition we have the vanishing:

(4.4) ιξΘ =

√
−1

2π
∂̄(ξ(ψ)) = 0.

This together with ιξ{D} = 0 implies that ξ lifts to induce an infinitesimal action ξ̃ on (Cartier
multiples of the Q-)line bundles L = −KX −D − B and hence on B. Moreover the vanishing
(4.4) implies that the function

(4.5) χψ(ξ̃) :=
Lξ̃e−ψ

e−ψ
= −ξ̃(ψ)

is globally a constant. It is well-known that different liftings of ξ differ by a rescaling vector
field along the fibre of the line bundle. In particular, by choosing ξ̃∗ = ξ̃ + ξ̃(ψ)w ∂

∂w
where w is

a linear variable along the C-fibre, we get

(4.6) χψ(ξ̃∗) = 0.

We call the lifting ξ̃∗ that satisfies (4.6) the canonical lifting of ξ.

Proposition 4.2. With the canonical lifting of ξ satisfying (4.6), we have the following formula
for the generalized Futaki invariant:

(4.7) Futg(ddcϕ, ξ) = −
∫
X

θξ,ϕe
fϕ

(ddcϕ)n

n!
,

where θξ,ϕ is the moment function associated to the canonical lifting of ξ with respect to ddcϕ.
As a consequence, the Futaki invariant is well-defined and independent of the choice of ddcϕ.
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Proof. We can calculate:∫
X

ξ(hϕ − fϕ)efϕ
(ddcϕ)n

n!
=

∫
X

ξ

(
log

e−ϕ−ψ

(ddcϕ)n/n!
− fϕ

)
efϕ

(ddcϕ)n

n!

=

∫
X

Lξ̃∗e
−ϕ−ψ

e−ϕ−ψ
efϕ

(ddcϕ)n

n!
= −χψ(ξ̃∗)−

∫
X

θξ,ϕe
fϕ

(ddcϕ)n

n!
.

The above integration by parts on X can be verified by lifting the integral to a resolution of
X. In case that ξ generates a C∗-group 〈ξ〉 that commutes with TC, the last integral can be
calculated using the Duistermaat-Heckmann (DH) measure associated to the action of 〈ξ〉×TC
which does not depend on the choice of ddcϕ. The general case can be verified using the
equivariantly closed differential forms as in [41].

�

4.2. Alternative definition of generalized Mabuchi functional. In this subsection, we
will discuss some equivalent formulas of M. For simplicity, we require X to be smooth. We
consider ϕ as the metric of an ample R-line bundle of the form L = −(KX + D + Θ) + H,
where H is a R-line bundle. An alternative definition of the generalized Mabuchi functional is
by considering it as a Kempf-Ness functional: (see [65] and Appendix 9.)

M(ϕ) =

∫ 1

0

∫
X

ϕ̇
(
−Rϕ + CR + ∆fϕ + trϕ(ddcψ + [D]) + Vf,ϕ(fϕ)

+
CR
n

∑
α

fαLξα(ϕ) +
∑
α

fαLξα(log(ddcϕ)n)
)
gϕ

(ddcϕ)n

n!
dt

(4.8)

where CR is a constant such that
∫
X
Rϕ − trϕ(ddcψ + [D]) (ddcϕ)n

n!
=
∫
X
CR

(ddcϕ)n

n!
, which does

not depend on the specific choice of ϕ. Note that we can write the integrand in terms of
θα := θα(ϕ) = Lξα(ϕ) by the following identities:

∆fϕ = fαβ(θα)i(θβ)i + fα∆θα, Vf,ϕ(fϕ) = fαfβ(θα)i(θβ)i

Lξα(log(ddcϕ)n) =
Lξα(ddcϕ)n

(ddcϕ)n
= ∆θα.

Lemma 4.3. When L = −(KX +D + Θ), definition (4.8) is equivalent to (4.1) and (4.2).

Proof. When L = −(KX +D + Θ), CR = n and∑
α

fαθα + fα∆θα =
∑
α

fα (Lξα(ϕ) + Lξα log((ddcϕ)n))

=
∑
α

fαξα

(
log(

(ddcϕ)n/n!

e−ϕ−ψ
)

)
= −Vf,ϕ(hϕ).

Here we have used the canonical lifting LṼα(ψ) = 0. Then (4.8) can be reduced to

M(ϕ) =

∫ 1

0

∫
X

ϕ̇(−Rϕ + n+ ∆fϕ + trϕ(ddcψ + [D])− Vf,ϕ(hϕ − fϕ))gϕ
(ddcϕ)n

n!
dt

= −
∫ 1

0

∫
X

ϕ̇
(
∆(hϕ − fϕ) + Vf,ϕ(hϕ − fϕ)

)
gϕ

(ddcϕ)n

n!
dt− C0.

(4.9)

The constant C0 =
∫
X

(h0 − f0)ef0 ω
n
0

n!
in the second equality. By using integration by parts,

we can see the definition above is an integral of the generalized Futaki invariant (up to minus
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a constant). Indeed, this alternative definition agrees with (4.1) and (4.2). Since the proof is
short, we will include it below.

−
∫ 1

0

∫
X

ϕ̇
(
∆(hϕ − fϕ) + Vf,ϕ(hϕ − fϕ)

)
gϕ

(ddcϕ)n

n!
dt

=

∫ 1

0

∫
X

gϕ

√
−1

2π
∂(hϕ − fϕ) ∧ ∂̄ϕ̇ ∧ (ddcϕ)n−1

(n− 1)!
dt

=

∫ 1

0

∫
X

(hϕ − fϕ)(gϕ
(ddcϕ)n

n!
)′dt

= −
∫
X

(hϕ − fϕ)gϕ
(ddcϕ)n

n!
+

∫
X

(h0 − f0)gϕ0

(ddcϕ0)n

n!
+

∫ 1

0

∫
X

(hϕ − fϕ)′gϕ
(ddcϕ)n

n!
dt

=

∫
X

(
− hϕ + fϕ

)
gϕ

(ddcϕ)n

n!
−
∫ 1

0

∫
X

(−∆ϕ̇− ϕ̇− ḟϕ)gϕ
(ddcϕ)n

n!
dt+ C0

=

∫
X

log(
(ddcϕ)n/n!

e−udµ0

)gϕ
(ddcϕ)n

n!
+

∫
X

fϕgϕ
(ddcϕ)n

n!
− Eg(ϕ) + C0,

where we used ḟϕ = Vf,ϕ(ϕ̇), (∆ϕ̇+ ḟϕ)gϕ
(ddcϕ)n

n!
= (gϕ

(ddcϕ)n

n!
)′. �

The following generalized Chen-Tian’s formula will be used in section 4.4 on a smooth ambient
space to approximate Mabuchi functional on singular spaces. Such type of formula has appeared
in the study of Kähler-Ricci solitons (see [52]) and the twisted K-energy formula in [10]. After
we finish the first version of our paper, we notice that such type of Chen-Tian formula has also
been established in a very general setting (at least for the un-twist case) in [53, Theorem 5]
for the so-called (v, w)-Mabuchi energy. However because the notations in [53] differ from ours
significantly and that we are also dealing with the twisted case, we will keep our proof for the
reader’s convenience.

Lemma 4.4. For M defined as in (4.8), we have generalized Chen-Tian’s formula:

M(ϕ) =

∫
X

log(
gϕ(ddcϕ)n

ωn0
)gϕ

(ddcϕ)n

n!
dt− ERiceq

0
g (ϕ) + CREg(ϕ)(4.10)

+
CR
n

∫ 1

0

∫
X

ϕ̇
∑
α

fαθαgϕ
(ddcϕ)n

n!
dt+ Eddcψ

g (ϕ) + ED
g (ϕ)

where

ERiceq
0

g (ϕ) =

∫ 1

0

∫
X

ϕ̇gϕ(nRic0 −
∑
α

fα(Lξα(logωn0 ))(ddcϕ)) ∧ (ddcϕ)n−1

n!
dt

=

∫ 1

0

∫
X

ϕ̇

(
ngRic0 −

∑
α

gα(Lξα(logωn0 ))(ddcϕ)

)
∧ (ddcϕ)n−1

n!
dt

ED
g (ϕ) =

∫ 1

0

∫
D

ϕ̇gϕ
(ddcϕ)n−1

(n− 1)!
dt, Eddcψ

g (ϕ) =

∫ 1

0

∫
X

ϕ̇gϕddcψ ∧ (ddcϕ)n−1

(n− 1)!
dt.
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Proof. The proof is by applying integration by parts calculation to (4.8).

−
∫ 1

0

∫
X

ϕ̇Rϕgϕ
(ddcϕ)n

n!
dt

=

∫ 1

0

∫
X

ϕ̇∆ log(
(ddcϕ)n

ωn0
)gϕ

(ddcϕ)n

n!
dt−

∫ 1

0

∫
X

ϕ̇gϕRic0 ∧
(ddcϕ)n−1

(n− 1)!
dt

= −
∫ 1

0

∫
X

gϕϕ
ij̄∂i log(

(ddcϕ)n

ωn0
)∂j̄ϕ̇

(ddcϕ)n

n!
dt−

∫ 1

0

∫
X

ϕ̇gϕϕ
ij̄∂i log(

(ddcϕ)n

ωn0
)∂j̄fϕ

(ddcϕ)n

n!
dt

−
∫ 1

0

∫
X

ϕ̇gϕRic0 ∧
(ddcϕ)n−1

(n− 1)!
dt

=

∫ 1

0

∫
X

log(
(ddcϕ)n

ωn0
)(ϕij̄∂ifϕ∂j̄ϕ̇+ ∆ϕ̇)gϕ

(ddcϕ)n

n!
dt−

∫ 1

0

∫
X

ϕ̇gϕVf,ϕ(log(
(ddcϕ)n

ωn0
))

(ddcϕ)n

n!
dt

−
∫ 1

0

∫
X

ϕ̇gϕRic0 ∧
(ddcϕ)n−1

(n− 1)!
dt

=

∫ 1

0

∫
X

log(
(ddcϕ)n

ωn0
)(gϕ

(ddcϕ)n

n!
)′dt−

∫ 1

0

∫
X

ϕ̇gϕVf,ϕ(log(
(ddcϕ)n

ωn0
))

(ddcϕ)n

n!
dt

−
∫ 1

0

∫
X

ϕ̇gϕRic0 ∧
(ddcϕ)n−1

(n− 1)!
dt

=

∫
X

log(
(ddcϕ)n

ωn
)gϕ

(ddcϕ)n

n!
−
∫ 1

0

∫
X

∆ϕ̇gϕ
(ddcϕ)n

n!
dt

−
∫ 1

0

∫
X

ϕ̇Vf,ϕ(log(
(ddcϕ)n

ωn
))gϕ

(ddcϕ)n

n!
dt−

∫ 1

0

∫
X

ϕ̇gϕRic0 ∧
(ddcϕ)n−1

(n− 1)!
dt

Then

M(ϕ) =

∫
X

log(
(ddcϕ)n

ωn0
)gϕ

(ddcϕ)n

n!
−
∫ 1

0

∫
X

ϕ̇gϕRic0 ∧
(ddcϕ)n−1

(n− 1)!
dt

−
∫ 1

0

∫
X

ϕ̇Vf,ϕ(log(
(ddcϕ)n

ωn0
))gϕ

(ddcϕ)n

n!
+

∫ 1

0

∫
X

ϕ̇
∑
α

fαLξα(log((ddcϕ)n))gϕ
(ddcϕ)n

n!
dt

+
CR
n

(nEg(ϕ) +

∫ 1

0

∫
X

ϕ̇fϕgϕ
(ddcϕ)n

n!
dt) + Eddcψ

g (ϕ) + ED
g (ϕ)

+

∫ 1

0

∫
X

(
−∆ϕ̇gϕ

(ddcϕ)n

n!
+ ϕ̇∆fϕgϕ

(ddcϕ)n

n!
+ ϕ̇Vf,ϕ(fϕ)gϕ

(ddcϕ)n

n!

)
dt

=

∫
X

log(
(ddcϕ)n

ωn0
)gϕ

(ddcϕ)n

n!
−
∫ 1

0

∫
X

ϕ̇gϕ(nRic0 −
∑
α

fαLξα(log(ωn0 )) ∧ (ddcϕ)n−1

n!
dt

+
CR
n

(nEg(ϕ) +

∫ 1

0

∫
X

ϕ̇
∑
α

fαθα(ϕ)gϕ
(ddcϕ)n

n!
dt) + Eddcψ

g (ϕ) + ED
g (ϕ),

where the integral in the fourth line vanishes by using integration by parts. �

Remark 4.5. One can verify that the above functionals in Lemma 4.10 do not depend on

the choice of path connecting ϕ0 to ϕ. We briefly explain this fact for E
Riceq

0
g (ϕ) which is an

equivariant analogue of the ERic0-functional in the original Chen-Tian’s formula. Consider the
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following one form defined on the space of Kähler metrics:

Γ(u) =

∫
X

ugϕ(nRic0 −
∑
α

fαLξα(log(ωn0 ))) ∧ (ddcϕ)n−1

n!

=

∫
X

u

(
gϕϕ

ij̄(Ric0)ij̄ −
∑
α

gα,ϕ∆0θ
0
α

)
(ddcϕ)n

n!
.

By using the identity ∂̄∆0θ
0
α = ιξαRic0, a straightforward calculation via several integration by

parts shows that:

u1(Γ(u2)) = Re

(∫
X

((u1)ī(u2)j(Ric0)ij̄g − (u1)ī(u2)i(Ric0)kk̄)g
(ddcϕ)n

n!

)
= u2(Γ(u1)),

which means that Γ is a closed 1-form and so the integral does not depend on the choice of
paths.

4.3. Convexity of M when X is smooth. In this subsection, we will use Berman-Berndsson’s
work [5] to show that M is convex along a weak geodesic in case X is smooth. This is a prelude
to the general case, which will be discussed in Section 4.4. Define the metric on Kähler potential
space by

〈v1, v2〉 =

∫
X

v1v2gϕ
(ddcϕ)n

n!
.(4.11)

A simple calculation shows that the connection is given by

∇v = v̇ +
1

2
〈∇u̇,∇v〉(4.12)

and the geodesic induced by the metric above is

ü− 1

2
|∇u̇|2 = 0.(4.13)

By the Kempf-Ness picture (see Appendix 9),M should have a certain convex property. A
rigorous proof of the convexity along a C1,1-geodesic is stated in the following.

Consider the total space X × A, where A = [0, 1] × S1 is an annulus, with complex local
coordinate zn+1, and t = Re(zn+1). Let ddcΦ = π∗1ddcϕ be the metric on X × A.

Lemma 4.6. For any differentiable form v on X × A,

(4.14) d(

∫
X

v(x)gϕ(ddcΦ)n) =

∫
X

gϕdv ∧ (ddcΦ)n,

where
∫
X

is the operator of integration along the fibre for the trivial fibration X × A→ X.

Proof. Since the exterior derivative commutes with the integral along the fibers, we get

∂̄

∫
X

vgϕ(ddcΦ)n =

∫
X

(∂̄v) ∧ gϕ(ddcΦ)n +

∫
X

v∂̄gΦ ∧ (ddcΦ)n.

By Lemma 2.1,

∂̄(gΦ) ∧ (ddcΦ)n =
2π√
−1

ιVg,ϕ(ddcΦ) ∧ (ddcΦ)n

=
2π√
−1

1

n+ 1
ιVg,ϕ(ddcΦ)n+1.
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Since Vg,ϕ is along the vertical direction of the projection X ×A→ A, it is easy to see that the
second integral vanishes. Similar consideration applies to the differential operator ∂. �

In the following, we will use the expression (4.2) to show that M is convex along a weak geo-

desic. We will divide M into two parts, (I) =
∫
X

log( (ddcϕ)n

e−u+h0ωn0
)gϕ

(ddcϕ)n

n!
, (II) =

∫
X
fϕgϕ

(ddcϕ)n

n!
−

Eg(ϕ).
We will follow Berman-Berndtsson’s calculation for (I). By Lemma (4.6),

ddc

∫
X

log(
(ddcϕ)n

e−u+h0ωn0
)gϕ(ddcΦ)n =

∫
X

gϕddc log(
(ddcϕ)n

e−u+h0ωn0
) ∧ (ddcΦ)n

=

∫
X

gϕddc log((ddcϕ)n) ∧ (ddcΦ)n −
∫
X

gϕddc log(e−u+h0ωn0 ) ∧ (ddcΦ)n

=

∫
X

gϕddc log((ddcϕ)n) ∧ (ddcΦ)n +

∫
X

gϕ(ddcΦ)n+1 +

∫
X

gϕddcψ ∧ (ddcΦ)n +

∫
D

gϕ(ddcΦ)n

≥
∫
X

gϕddc log((ddcϕ)n) ∧ (ddcΦ)n.

(4.15)

In the third equality, the last three terms are induced by −ddc log(e−udµ0) = ddcϕ+ [D] + Θ.
Each of the three terms is nonnegative along a geodesic. The term in the last line is positive
by using Bergman kernel approximation approach by Berman-Berndtsson. Then (I) is convex.

For (II), by a direct calculation, we can see that
∫
X
fϕgϕ

(ddcϕ)n

n!
is constant. This can also be

seen by considering it as an integral on polytope P associated with a Duistermaat-Heckman

measure. Then ddc(II) = ddcEg(u) =
∫
X
gϕ

(ddcΦ)n+1

(n+1)!
= 0. Then we conclude with

(4.16) ddcM(ϕ) ≥
∫
X

gϕddc log((ddcϕ)n) ∧ (ddcΦ)n

n!

and M is convex along a weak geodesic.

Remark 4.7. In a recent paper [54], over a smooth manifold X, the Mabuchi functional
is shown to be convex along weak geodesics under a very general setting. This generalized
Mabuchi functional is called (v, w)-Mabuchi energy. Interesting readers are referred to [54] for
more details.

4.4. Convexity of generalized Mabuchi functional in singular case. In this subsection,
we will prove that the generalized Mabuchi functional M is convex along a geodesic when X
is a variety. The idea of the proof is similar to [58, 4.1.2]. Let P = π∗L − Eb be an ample
Q-line bundle on the resolution X̃. (We will abbreivate π∗L as L when there is no ambiguity.)
Our strategy is to approximate ϕ by ϕε ∈ c1(L+ εP ), then prove that the generalized Mabuchi
functional Mϕ0,ε(ϕε) is convex along a geodesic. (where the subscript is to emphasis ϕ0,ε is the
chosen reference metric.) At last we will show that Mϕ0,ε(ϕε) converges to M(ϕ) at the end
points which would imply the convexity of the latter.

By generalized Stone-Weierstrass theorem, g can be approximated by polynomials in C2-
norm. Let

ĤT (X,L) = {ϕ = ϕ0 + u ∈ PshT (X,L) : u ∈ L∞(X̃) ∩ C∞(X̃ \ E), (ddcπ∗ϕ)n is smooth over X̃,

and there exist α,C > 0 such that |ddcu| ≤ C|sE|−α}

(4.17)
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We consider a pair of metrics ϕ(0), ϕ(1) ∈ ĤT (X,L), which is connected by a weak geodesic
ϕ(t). We assume supX ϕ(i) = 0. Let ωP = ddcϕP be a K × T -invariant Kähler metric on X̃,
ddcϕ0,ε = ωε = ω + εωP , where 0 ≤ ε ≤ 1; ϕε(i) ∈ H(X̃, Lε), which will be determined later;
ϕε = ϕ0,ε + uε; ϕε(t) be the geodesic that connects ϕε(0), ϕε(1). Since the TC-action can be

lifted up to the resolution X̃, we can lift the action of TC to E, as well as to L + εP . Then
the moment map mϕε is well-defined. By the generalized Chen-Tian’s formula (4.10) for the

polarized pair (X̃,D′ = π−1
∗ D,L+ εP ), we have

Mϕ0,ε(ϕε)

=

∫
X̃

log(
(ddcϕε)

n

ωnε
)efϕε

(ddcϕε)
n

n!

+
(CR,ε

n
Eddcϕεeq

g (ϕε)− ERiceq
ε

g (ϕε) + ED′

g (ϕε) + Eddcψ
g (ϕε)

)
+ C1,ε

= Hg,ωε(ϕε) + Fg,ε(ϕε) + C1,ε,

(4.18)

where the constant CR,ε satisfies
∫
X̃

(Rϕ,ε − trϕε(ddcψ + [D′])) (ddcϕε)n

n!
=
∫
X̃
CR,ε

(ddcϕε)n

n!
, C1,ε =∫

X̃
fϕ0,εgϕ0,ε

ωnε
n!

(without the loss of generality, we can drop the constant C1,ε in the following
analysis), and

Eddcϕεeq

g (ϕε) =

∫ 1

0

∫
X̃

ϕ̇s,εgϕs,ε
((ddcϕs,ε)

n

(n− 1)!
+
∑
α

fαLξα(ϕs,ε)
(ddcϕs,ε)

n

n!

)
ds

=

∫ 1

0

∫
X̃

uεgϕs,ε
((ddcϕs,ε)

n

(n− 1)!
+
∑
α

fαLξα(ϕs,ε)
(ddcϕs,ε)

n

n!

)
ds,

(4.19)

where ϕs,ε = ϕ0,ε + suε, Vs,ε =
∑

1≤α≤r fα(mϕs,ε)Vα, and Vα still denotes the lifting of ξα over

X̃.

ERiceq
ε

g (ϕε) =

∫ 1

0

∫
X̃

ϕ̇s,εgϕs,ε
(
Ricε ∧

(ddcϕs,ε)
n−1

(n− 1)!
−
∑
α

fαLξα(log(ωnε ))
(ddcϕs,ε)

n

n!

)
ds

=

∫ 1

0

∫
X̃

uε
(
gRicε ∧

(ddcϕs,ε)
n−1

(n− 1)!
−
∑
α

gαLξα(log(ωnε ))
(ddcϕs,ε)

n

n!

)
ds,

(4.20)

where Ricε = −ddc log(ωnε ).

ED′

g (ϕε) =

∫ 1

0

∫
D′
ϕ̇s,εgϕs,ε

(ddcϕs,ε)
n−1

(n− 1)!
ds

=

∫ 1

0

∫
D′
uεgϕs,ε

(ddcϕs,ε)
n−1

(n− 1)!
ds,

(4.21)

Eddcψ
g (ϕε) =

∫ 1

0

∫
X̃

ϕ̇s,εgϕs,εddcψ ∧ (ddcϕs,ε)
n−1

(n− 1)!
ds

=

∫ 1

0

∫
X̃

uεgϕs,εddcψ ∧ (ddcϕs,ε)
n−1

(n− 1)!
ds.

(4.22)

Lemma 4.8. Mϕ0,ε is convex along ϕε(t).
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Proof. We will first prove the case when g =
∑

~k a~k
∏

α y
kα
α is a polynomial, where y ∈ Rr,

~k belongs to a finite set. Then
∑

α gαξα =
∑

αDαg(mϕs,ε)Vα =
∑

~k a~k
∑

α kα
∏

β θ
kβ−δα,β
β,ε Vα.

Denote ϑα,ε = LVα(log(ωnε )).

∫
X̃

ϕ̇ε
∑
α

gα(Lξα(logωnε ))
(ddcϕε)

n

n!
=
∑
~k

a~k

∫
X

ϕ̇ε
∑
α

kα
∏
β

θ
kβ−δα,β
β,ε ϑα,ε

(ddcϕε)
n

n!
=

∑
~k

a~k

∫
X̃[~k]

ϕ̇ε
∑
α

ϑα,ε(ddcϕFS
α,ε) ∧

(ddcϕε)
n

n!
∧

(θ1,εddcϕFS
1,ε)

k1

k1!

· · · ∧
(θα,εddcϕFS

α,ε)
kα−1

(kα − 1)!
∧ · · · ∧

(θr,εddcϕFS
r,ε)

kr

kr!
.

Then

−ERiceq
ε

g (ϕε) =
∑
~k

a~k

∫ 1

0

∫
X̃[~k]

uεddc log(ωnε )[~k] ∧ (ddcϕ
[~k]
s,ε)n+k−1

(n+ k − 1)!
ds

=
∑
~k

a~k
1

(n+ k)!

n+k−1∑
j=0

∫
X̃[~k]

uεddc log(ωnε )[~k] ∧ (ddcϕ[~k]
ε )n+k−1−j ∧ (ddcϕ

[~k]
0,ε)

j.

(4.23)

Then

(4.24) − ddcERiceq
ε

g =
∑
~k

a~k

∫
X̃[~k]

ddc log(ωnε )[~k] ∧ (ddcΦ
[~k]
ε )n+k

(n+ k)!
.

By a similar calculation,

Eddcϕεeq

g (ϕε) =
∑
~k

a~k
(n+ k)

(n+ k + 1)!

n+k∑
j=0

∫
X̃[~k]

uε(ddcϕ[~k]
ε )n+k−j ∧ (ddcϕ

[~k]
0,ε)

j

=
∑
~k

a~k(n+ k)E
[~k]

ϕ
[~k]
0,ε

(ϕ[~k]
ε ).

(4.25)

(4.26) ddcEddcϕεeq

g =
∑
~k

a~k(n+ k)

∫
X̃[~k]

(ddcΦ
[~k]
ε )n+k+1

(n+ k + 1)!
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and (compare with the calculation in Remark 4.5)

ddc(

∫
X̃

log(
(ddcϕε)

n

ωnε
)gϕε

(ddcϕε)
n

n!
− ERiceq

ε
g )

= ddc
(∑

~k

a~k

∫
X[~k]

log(
(ddcϕε)

n

ωnε
)
(ddcϕ

[~k]
ε )n+k

(n+ k)!

)
− ddcERiceq

ε
g

=
∑
~k

a~k

∫
X[~k]

ddc log((ddcϕε)
n)[~k] ∧ (ddcΦ

[~k]
ε )n+k

(n+ k)!
−
∫
X̃[~k]

ddc log(ωnε )[~k] ∧ (ddcΦ
[~k]
ε )n+k

(n+ k)!
− ddcERiceq

ε
g

=
∑
~k

a~k

∫
X̃[~k]

ddc log((ddcϕε)
n)[~k] ∧ (ddcΦ

[~k]
ε )n+k

(n+ k)!

=

∫
X̃

gϕεddc log((ddcϕε)
n) ∧ (ddcΦε)

n

(n)!
.

(4.27)

The equality of the last two lines can be checked locally. Let U be an open affine chart in X̃,

ddc

∫
U

log((ddcϕε)
n)gϕε

(ddcϕε)
n

n!
= ddc

(∑
~k

a~k

∫
U [~k]

log((ddcϕε)
n)[~k] (ddcϕ

[~k]
ε )n+k

(n+ k)!

)
=
∑
~k

a~k

∫
U [~k]

ddc log((ddcϕε)
n)[~k] ∧ (ddcΦ

[~k]
ε )n+k

(n+ k)!
.

(4.28)

By Berman-Berndtsson’s Bergman kernel approximation method, (4.27) is non-negative. When

Φε is a geodesic, Φ
[~k]
ε is also a geodesic. (compare with (4.11)-(4.13).) From (4.26), along a

geodesic, we have ddcEg,ωeq
ϕε

(ϕε) = 0. Similar as in the proof of the smooth case, it can be shown

that ED
g (ϕε),E

ddcψ
g (ϕε) are convex along ϕε(t). Then when gϕε is a polynomial, Mϕ0,ε(ϕε) is

convex along the geodesic ϕε(t).
In the general case, we can approximate g by polynomials gj. For simplicity, denote the

corresponding generalized Mabuchi functional by Mj(t), and denote the limit by M(t). For
any ε > 0, when j is sufficiently large, |Mj(t) −M(t)| < ε. Then M(t) ≤ Mj(t) + ε ≤
(1 − t)tMj(0) + tMj(1) + ε ≤ (1 − t)M(0) + tM(1) + 3ε. Take the limit, we can see Mϕ0,ε is
convex. �

Remark 4.9. Our expansion of generalized Mabuchi functional is partially motivated by the
expansion in [78]. See also [69].

Let ϕε(i) (i = 0, 1) be the solution to the Monge-Ampère equation

(4.29) gϕε(i)(ddcϕε(i))
n = dεgϕ(i)(ddcϕ(i))n, sup

X̃

uε = 0,

where the right-hand side of the equation is a degenerate smooth volume form and dε =∫
X̃
gϕ0,εω

n
ε /
∫
X̃
gϕ0ω

n.

Lemma 4.10. The solution uε(i) ∈ C2(X̃ \ E), and |∇2uε(i)| ≤ C|sE|−αϕ0,1
, for some C, α > 0.

Proof. We will brief the proof. Denote Ω = gϕ(ddcϕ)n, which is a smooth volume form. Consider
the continuty method (ddcϕε,t)

n = dε,te
−tfϕε,tΩ. At t = 0, this is solved by Yau’s resolution [89].
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The C0-estimate follows [36]. The C2-estimate follows from a similar argument as in the proof
of Proposition 3.7. �

Lemma 4.11. For i = 0, 1, up to a subsequence, uε(i) converges to u(i) in L1(ωn1 ). Further-

more, limε→0 Eg,ϕ0,ε(ϕε(i)) = Eg(ϕ(i)), limε→0 E
ddcϕ(i)eq

ε
g (ϕε(i)) = E

ddcϕ(i)eq

g (ϕ(i)).

Proof. Abbreviate u(i) as u. By Hartogs’ compactness theorem, up to a subsequence, ddcϕε
converges to ddcϕ as current, which furthermore implies uε converges to u in L1(ωn1 ).

Eg,ϕ0,ε(ϕε)−Eg,ϕ0(ϕ) =
(
Eg,ϕ0,ε(ϕε)−Eg,ϕ0,ε(ϕ−ϕ0+ϕ0,ε)

)
+
(
Eg,ϕ0,ε(ϕ−ϕ0+ϕ0,ε)−Eg,ϕ0(ϕ)

)
.

Note that ϕ− ϕ0 + ϕ0,ε = ϕ0,ε + u = ϕ+ εϕP .

Eg,ϕ0,ε(ϕε)− Eg,ϕ0,ε(ϕ+ εϕP ) = Eg,ϕ+εϕP (ϕε)

= Ig,ϕ+εϕP (ϕε)− Jg,ϕ+εϕP (ϕε) +

∫
X̃

(uε − u)gϕε(ddcϕε)
n

Ig,ϕ+εϕP (ϕε) =
∫
X̃

(uε − u)
(
gϕ+εϕP (ddc(ϕ + εϕP ))n − gϕε(ddcϕε)

n
)
. There exists some C > 0,

such that gϕ+εϕP (ddc(ϕ+ εϕP ))n ≤ Cωn1 . Then

(4.30) |
∫
X̃

(uε − u)gϕ+εϕP (ddc(ϕ+ εϕP ))n| ≤ C

∫
X̃

|uε − u|ωn1
ε→0−−→ 0.

By (4.29), Hg,ωε(ϕε) is uniformly bounded. Then by Hölder-Young’s inequality,

|
∫
X̃

(uε − u)gϕε(ddcϕε)
n| = |

∫
X̃

(uε − u)
(ddcϕε)

n

ωnε
gϕεω

n
ε |

≤ C|uε − u|Lχ∗ |
(ddcϕε)

n

ωnε
|Lχ ≤ C|Hg,ωε(ϕε)||uε − u|Lχ∗ ,

(4.31)

where χ(s) = (s+ 1) log(s+ 1)− s, χ∗(s) = es − s− 1. Since χ∗(s) ≤ ses, the inequality above

implies |uε − u|Lχ∗ ≤
∫
X̃
|uε − u|e|uε−u|ωn1 ≤ C|uε − u|L1(ωn1 )

ε→0−−→ 0, since |uε − u| is uniformly
bounded. In addition, Jg ≤ CIg. Then we have as ε→ 0, 0 ≤ Jg,ϕ+εϕP (ϕε) ≤ CIg,ϕ+εϕP (ϕε)→
0. Similarly,

(4.32) |
∫
X̃

(uε − u)gϕε(ddcϕε)
n| = |dε||

∫
X̃

(uε − u)gϕε(ddcϕ)n| ≤ C

∫
X̃

|uε − u|ωn1
ε−→ 0.

Then we have |Eg,ϕ0,ε(ϕε)− Eg,ϕ0,ε(ϕ− ϕ0 + ϕ0,ε)|
ε→0−−→ 0 . Denote ϕs = ϕ0 + su.

|Eg,ϕ0,ε(ϕ− ϕ0 + ϕ0,ε)− Eg,ϕ0(ϕ)| = |
∫ 1

0

∫
X̃

u
(
gϕs+εϕP (ddcϕs + εϕP )n − gϕs(ddcϕs)

n
)
ds|

= |
∫ 1

0

∫
X̃

u
(
(gϕs+εϕP − gϕs)(ddc(ϕs + εϕP ))n + gϕs((ddc(ϕs + εϕP ))n − (ddcϕs)

n)
)
ds|

≤ C

∫ 1

0

∫
X̃

|gϕs+εϕP − gϕs|ωn1 ds+ |
∫ 1

0

∫
X̃

ugϕs((ddc(ϕs + εϕP ))n − (ddcϕs)
n)ds|

ε→0−−→ 0,

(4.33)

where in the third line, we use the fact u ∈ L∞(X̃, ω1), in the last line, we use the dominated
convergence theorem. Then limε Eg,ϕ0,ε(ϕε) = Eg(ϕ).

Let gj be the polynomial approximation of g. By (4.25) and a similar argument as above,

for any ε′ > 0, there exists a ε0 > 0, such that when ε < ε0, |Eddcϕeq
ε

gj
(ϕε)− Eddcϕeq

gj
(ϕ)| < ε′.
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Meanwhile, since the moment polytope is bounded, LVα(ϕs,ε) = θα,ϕs,ε is uniformly bounded.
By the C2-convergence of gj, we have j0 > 0, for j > j0, |

∑
α(fj,αLξα(ϕs,ε) − fαLξα(ϕs,ε))| ≤∑

α |Dαfj − Dαf ||LVα(ϕs,ε)| < ε′. In addition, uε is uniformly bounded. Then there exists a

C > 0, such that |Eddcϕeq
ε

gj
(ϕε)− Eddcϕeq

ε
g (ϕε)| < Cε′. Then

|Eddcϕeq
ε

g (ϕε)− Eddcϕeq

g (ϕ)| ≤

|Eddcϕeq
ε

g (ϕε)− Eddcϕeq
ε

gj
(ϕε|+ |Eddcϕeq

ε
gj

(ϕε)− Eddcϕeq

gj
(ϕ)|+ |Eddcϕeq

gj
(ϕ)− Eddcϕeq

g (ϕ)|
j→∞,ε→0−−−−−−→ 0

�

Lemma 4.12. For any t, uε(t) is uniformly bounded (with respect to t and ε); uε(t) converges to
u(t) in L1(X̃, ωn1 ) uniformly (with respect to t). Furthermore, limε→0 Eg,ϕ0,ε(ϕε(t)) = Eg(ϕ(t)),

limε→0 E
ddcϕ(t)eq

ε
g (ϕε(t)) = E

ddcϕ(t)eq

g (ϕ(t)).

Proof. By [32, Proposition 1.4],

(4.34) |uε(t)− uε(s)| ≤ |uε(1)− uε(0)|(t− s)

for 0 ≤ s ≤ t ≤ 1, we have uε(t) is uniformly bounded with respect to ε, s, and uε(t) is
equicontinuous with respect to t. Then up to choose a subsequence, as ε→ 0, uε(t) converges to
a limit û(t) in L1(X̃, ωn1 ), uniformly with respect to t. Since Mϕ0,ε(ϕε(t)) is convex along uε(t),
Mϕ0,ε(ϕε(i)) are uniformly bounded for i = 0, 1, we have Mϕ0,ε(ϕε(t)) is uniformly bounded
with respect to ε and t. From (4.19),(4.20),(4.21),(4.22), using the fact that uε(t) is uniformly
bounded and f ∈ C2(P ), it’s not hard to check Fg,ε(uε(t)) is uniformly bounded with respect
to ε, t. Then the entropy term Hg,ωε(ϕε(t)) is also uniformly bounded. As Hg,ωε and uε(t) are
both uniformly bounded, we can adapt the same argument as in the proof of Lemma 4.11 to
show that Eg,ϕ0,ε(ϕε(t)) converges to Eg(ϕ̂(t)) both as a convex function and concave function
over t. Then Eg(ϕ̂(t)) is affine over t. This implies that û(t) = u(t).

By a similar argument as in the proof of Lemma 4.11, we also have limε→0 E
ddcϕ(t)eq

ε
g (ϕε(t)) =

E
ddcϕ(t)eq

g (ϕ(t)). �

Lemma 4.13. In the formula (4.18), for 0 ≤ t ≤ 1, limε→0 Fg,ε(ϕε(t)) = Fg(ϕ(t)).

Proof. We will abbreviate ϕ(t) by ϕ. The convergence of Eddcϕeq
ε

g (ϕε) is already shown in Lemma
4.12. Let gj be the polynomial approximation of g. Using the expression (4.23), by a similar

argument as in the proof of Lemma 4.11 and Lemma 4.12, limε→0 ERiceq
ε

gj
(ϕε) = ERiceq

ε
gj

(ϕ). For

any ε′ > 0, by the C2-convergence of gj, there exists a j0 > 0, such that for any j > j0,
|gj,ϕs,ε − gϕs,ε | < ε′, |Vs,ε,j(log(ωnε )) − Vs,ε(log(ωnε ))| < ε′, where the second inequality is by the
same argument as in the proof of Lemma 4.11. In addition, uε is uniformly bounded. Then

|ERiceq
ε

gj
(ϕε)− ERiceq

ε
g (ϕε)| ≤ Cε′

∫ 1

0

∫
X̃

|Ricε ∧
(ddcϕs,ε)

n−1

(n− 1)!
|+ (ddcϕs,ε)

n

n!
ds

≤ Cε′

Then by the 3ε-argument as in the proof of Lemma 4.11, we have limε→0 ERiceq
ε

g (ϕε) = ERiceq

g (ϕ).

Similarly, we can show the convergence of ED
g (ϕε),E

ddcψ
g (ϕε). �
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By the convergence of Fg,ε(ϕε(t)) and the lower semi-continuity of Hg,ωε(ϕε), M(ϕ(t)) ≤
limε→0 Mϕ0,ε(ϕε(t)). Then

M(ϕ(t)) ≤ lim
ε→0

Mϕ0,ε(uε(t))

≤ lim
ε→0

(
(1− t)Mϕ0,ε(uε(0)) + tMϕ0,ε(uε(1))

)
≤ (1− t)M(ϕ(0)) + tM(ϕ(1)).

Following the proof of [10, Lemma 3.1], we have

Lemma 4.14. For any ϕ ∈ E1
T , there exists a sequence of ϕj ∈ ĤT (X,L), such that ϕj converges

to ϕ under the strong topology of E1
T , and Hg,Θ(ϕj) converges to Hg,Θ(ϕ).

Combine the approximation Lemma 4.14 and the analysis above, we can conclude that
M(u(t)) is convex along the geodesic u(t).

5. Non-Archimedean functionals and G-uniform stability

5.1. Psh rays and Non-Archimedean metrics. In the previous sections, we have studied
the equation (3.1) from the Archimedean point of view. In the following sections, we will
reconsider this question from the Non-Archimedean side. We will be brief in our discussion and
only emphasize the key modifications in our generalized case.

For a projective variety X, let XNA be the Berkovich analytification of X with respect to the
trivial norm on C. Then XNA is a compact, Hausdorff space. The set of divisorial valuations
Xdiv

Q is a dense subset of XNA.
Let B = {τ ∈ C : |τ | ≤ 1} be the unit disk in C. We call a continuous map Φ = {ϕ(t)} :

(·, t) ∈ R>0 → E1
T (X,L) a psh ray, if Φ(x,− log |τ |) is a psh metric on X × B∗. A psh ray Φ is

said to have linear growth if

(5.1) lim
t→+∞

supX(ϕ(t)− ϕ0)

t
=: λmax(Φ) < +∞.

Φ is called sup-normalized if λmax(Φ) = 0. Any sup-normalized a psh ray Φ extends to a psh
metric on X × B. The upper bound of the growth rate guarantees the existence of a constant
a > 0, such that Φ + a log |τ | < +∞. Φ induces metric ΦNA on LNA. Let φtriv be the trivial
metric on LNA. Then the relative potential ΦNA − φtriv is represented by a function on Xdiv

Q :

for any v ∈ Xdiv
Q ,

(ΦNA − φtriv)(v) = −σ(v)(Φ + a log |τ |) + a

where σ : Xdiv
Q → (X × C)div

Q is the Gauss extension, and when v = vE, where E is a Weil
divisor, σ(v)(Φ + a log |τ |) is the generic Lelong number of Φ + a log |τ | at E.

For a projective variety X coupled with a line bundle L, a test configuration (X ,L) is a
projective variety X coupled with a line bundle L, with

(1). π : X → B is a flat projective morphism, which is C∗-equivariant.
(2). L is a C∗-equivariant Q-line bundle.
(2). (Xt,Lt) is isomorphic to (X,L) when t 6= 0.

For a test configuration (X ,L), by resolution of singularity, we can assume (X ,L) is dominat-
ing, i.e. there exists a C∗-equivariant birational morphism ρ : X → X×B. Then L = ρ∗L+D for
some Q-Cartier divisor D. The test configuration (X ,L) induces a canonical Non-Archimedean
metric φ(X ,L) on LNA, which satisfies

(5.2) (φ(X ,L) − φtriv)(v) = σ(v)(D)
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for any v ∈ Xdiv
Q . We set:

(5.3) HNA(L) := {φ(X ,L) : (X ,L) is a test configuration of (X,L)}.

We call Φ a smooth psh ray associated to (X ,L) if e−Φ extends to a smooth metric on L.
Specifically, the pull-back of the Fubini-Study metric ΦFS on X is a smooth psh ray.

Lemma 5.1. For any TC × G-equivariant test configuration φ = φX ,L ∈ HNA, there exists a
smooth psh ray Φ associate to it, such that Φ is T ×K-invariant.

Proof. Since L is semi-ample over X , there exists a smooth psh ray Φ on X . Averaging Φ by
T ×K-action. Then Φ becomes T ×K-invariant. �

5.2. NA-functionals. In this subsection, we will define the Non-Archimedean version of Eg,Jg,Dg

functionals.
Recall the definition of ENA,JNA,LNA

Θ for any φ = φ(X ,L) ∈ HNA (see [9]):

ENA(φ) = ENA(L) =
1

V1

L̄·n+1

(n+ 1)!
=

1

L·n
L̄·n+1

n+ 1
(5.4)

ΛNA(φ) = ΛNA(L) =
1

V1

L̄ ·
L·nP1

n!
=

1

L·n
L̄ · L·nP1(5.5)

JNA(φ) = JNA(L) = ΛNA − ENA(5.6)

LNA
Θ (φ) = LNA

Θ (L) = inf
v∈Xdiv

Q

(A(X,D+Θ)(v) + (φ− φtriv)(v)),(5.7)

where A(X,D+Θ) is the log discrepancy function: for any v ∈ Xdiv
Q :

(5.8) A(X,D+Θ)(v) = A(X,D)(v)− v(Θ).

We will follow the conventions used in the proof of Proposition 2.2. Our strategy to define
non-Archimedean functionals is motivated by the method in the Archimedean case. We will
first deal with the case when g is a polynomial by using a fibration construction (see the proof
of Proposition 2.2). Then the functionals associated to a general g can be defined as a limit of
the functionals associated to polynomial g.

5.3. Polynomial g. First assume g =
∏r

α=1 y
kα
α to be a monomial. We will use the notations

in our proof of Proposition 2.2 and denote Eg = E[~k]. When ϕ ∈ HT (X,L) we have the identity:

Eg(ϕ) = E[~k](ϕ) :=

∫ 1

0

dt
1

Vg

∫
X

ϕ̇
r∏
i=1

θα(ϕ)ki
(ddcϕ)n

n!
=

1

Vg

∫ 1

0

dt

∫
X[~k]

ϕ̇[~k] (ddcϕ[~k])n+k

(n+ k)!

=
1

Vg

1

(n+ k + 1)!

n+k∑
p=0

∫
X[~k]

(ϕ[~k] − ϕ[~k]
0 )(ddcϕ

[~k]
0 )p ∧ ((ddcϕ)[~k])n+k−p,(5.9)

where k = |~k| = k1 + · · · + kr. The formula in the second equality is also well-defined for

ϕ ∈ E1
T (X,L). We will use this formula as the definition of E[~k].

Using the fibration construction in section 2.1, we set:

(5.10) (X [~k],L[~k],X [~k]
0 ) = (X ,L,X0)× S2k+1)/(S1)r
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where (S1)r acts X vertically along the fibres of X → C. Then similar to the non-Archimedean
E functional in (5.4), we set:

(E[~k])NA =
1

Vg

(L̄[~k])·n+k+1

(n+ k + 1)!
.(5.11)

As a consequence, ENA
g is also defined if g is a polynomial.

Lemma 5.2. For any normal test configuration (X ,L). Fix a smooth Hermitian metric e−ϕ

on L. Assume that η is the holomorphic vector field generating the C∗-action and let θη(ϕ) be
the Hamiltonian function of η. Then for any polynomial g, we have the identity:

(5.12) ENA
g (L) =

1

Vg

∫
X0

θη(ϕ)gϕ
(ddcϕ)n

n!
.

Proof. We only need to show the equality for (E[~k])NA when g =
∏

α θ
kα
α is a monomial. Consider

the spaces defined in (5.10). Because T ∼= (S1)r acts vertically and commutes with the C∗-
action, we then have a C∗-equivariant morphism X [~k] → C such that the central fibre is given

by X [~k]
0 . We can assume that L[~k] is relatively ample over C (by adding a positive constant to θ

as in section 2.1). So we are reduced to the usual case of the E-functional. By the well-known
result for the usual E-functional (see [16, Proposition 3.12]), we get the identity:

(E[~k])NA(L) =
1

Vg

(L̄[~k])·n+k+1

n+ k + 1

=
1

Vg

∫
X [~k]

0

θη(ϕ)[~k] ((ddcϕ)[~k])n+k

(n+ k)!

=
1

Vg

∫
X0

θη(ϕ)
∏
α

θα(ϕ)kα
(ddcϕ)n

n!
.

�

5.4. Continuous g.

Definition 5.3. For any φ = φ(X ,L) ∈ HNA, we choose a smooth psh metric e−ϕ on L|X0 and
let η denote the holomorphic vector field generating the C∗-action. We define:

(5.13) ENA
g (φ) := ENA

g (L) :=
1

Vg

∫
X0

θη(ϕ)gϕ
(ddcϕ)n

n!
.

Lemma 5.4. The quantity on the right-hand-side of (5.13) does not depend on the choice of
ϕ.

Proof. Let DHTC×C∗ be the Duistermaat-Heckman measure associated to the TC × C∗-action
on (X0,L|X0). Then the right-hand-side is given by:

(5.14)
1

Vg

∫
P×R

λ · g(y)DHTC×C∗(X0,L0),

where λ and y are the variable on R and P respectively. It is well-known that the DH measure
and hence the above integral do not depend on the choice ϕ̃ (see [16]).

�
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Lemma 5.5. Let (X ,L) be an ample normal test configuration. For a continuous function g,
let gi be a sequence of polynomials that converges to it over the moment polytope P . Then

(5.15) lim
i→∞

ENA
gi

(L) = ENA
g (L).

Proof. By the definition of MAg(ϕ), MAgi(ϕ) converges to MAg(ϕ) as a measure. By rescaling,
without loss of generality we can assume that Vgi = Vg = 1. Then

lim
i→∞

ENA
gi

(L) = lim
i→∞

∫
X0

θη(ϕ)egi,ϕ
(ddcϕ)n

n!

= lim
i→∞

∑
j

ej

∫
Ej

θη(ϕ)MAgi(ϕ)

=
∑
j

ej

∫
Ej

θη(ϕ)MAg(ϕ) =

∫
X0

θη(ϕ)gϕ
(ddcϕ)n

n!
.

(5.16)

The first equality is by Lemma 5.2, the third equality is by dominated convergence theorem. �

Definition 5.6. For any φ ∈ HNA, we define

(5.17) ΛNA
g (φ) = ΛNA(φ) =

1

L·n
L̄ · L·nP1 .

We define the Non-Archimedean Jg functional as

(5.18) JNA
g = ΛNA

g − ENA
g

and define the Non-Archimedean generalized Ding-functional as

(5.19) DNA = −ENA
g + LNA

Θ .

5.5. Slope formulas.

Definition 5.7. Let F be a functional on E1
T (X,ω). Let Φ be a psh ray of linear growth. The

slope at infinity of F along Φ is defined as

(5.20) F′∞(Φ) = lim
t→+∞

F(Φ(t))

t

if the limit exists.

Proposition 5.8. Let φ = φ(X ,L) ∈ HNA(L) be a normal ample test configuration. Let Φ(t) be
a smooth psh ray associated to (X ,L). Then

F′∞(Φ) = FNA(φ).(5.21)

where t = − log |τ |, τ ∈ B, and F can be Eg,Jg,Dg.

Proof. We will first show the proof for Eg. We first assume that g =
∏r

α=1 y
kα
α is a monomial.

Then

(5.22) Eg(ϕ) = E[~k](ϕ[~k]).

We can apply the same argument in [17, Proof of Theorem 4.2] to (X [~k],L[~k]) to get

lim
t→+∞

Eg(ϕ(t))

t
= lim

t→+∞

E[~k](ϕ(t))

t
=

1

Vg

(L̄[~k])n+k+1

(n+ k + 1)!
= (E[~k])NA(φ).
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For general continuous g, by Stone-Weierstrass theorem, we can find a sequence of polynomi-
als gi which converges to g uniformly over the moment polytope P . For simplicity of notations,
we assume Vgi = Vg = 1. It’s easy to see for each fixed ϕ,

(5.23) lim
i→+∞

Egi(ϕ) = Eg(ϕ).

For any ε > 0, there exists an i0 > 0, such that for any indices i, i′ > i0, |gi − gi′| < ε. Then

|
(Egi − Egi′

)(ϕ(t))

t
|

≤ 1

t
|
∫ t

0

∫
X

(ϕ̇− C + C)(gi − gi′)
(ddcϕ)n

n!
ds|+ 1

t
|(Egi − Egi′

)(ϕ(0))|

≤ ε

t

(
|
∫ t

0

∫
X

(ϕ̇− C)
(ddcϕ)n

n!
ds|+ Ct

)
+
C ′ε

t

≤ ε
(
(|ENA − C|+ C) +

C ′

t

)
,

(5.24)

where we have used ϕ̇− C ≤ 0 for some constant C in the third line.
Then we have:

lim
t→+∞

Eg(ϕ(t))

t
= lim

t→+∞
lim
i→+∞

Egi(ϕ(t))

t

= lim
i→+∞

lim
t→+∞

Egi(ϕ(t))

t
= lim

i→+∞
ENA
gi

(φ)

=
1

Vg

lim
i→+∞

∫
X0

θefi(ϕ̃)(ddcϕ̃)n

=
1

Vg

∫
X0

θξ(ϕ̃)efϕ̃(ddcϕ̃)n = ENA
g .

We can exchange the limits in the second line because of the estimate (5.24).
To show the slope formula for Jg, we only need to show that

(5.25) lim
t→∞

1

t

∫
X

(ϕ(t)− ϕ0)efϕ0
(ddcϕ0)n

n!
= ΛNA

g (φ) = ΛNA(φ).

Since Φ(t) has linear growth, we have limt→∞(supX
ϕ(t)−ϕ0

t
) = λmax(Φ) < +∞. By Hartogs’

compactness lemma, up to a subsequence, ϕ(t)− ϕ0 − supX(ϕ(t)− ϕ0) converges weakly to a
function in E1

T (X,ω). Then

lim
t→∞

1

t

∫
X

(ϕ(t)− ϕ0)efϕ0
(ddcϕ0)n

n!

= λmax + lim
t→+∞

1

t

∫
X

(ϕ(t)− ϕ0 − sup
X

(ϕ(t)− ϕ0))efϕ0
(ddcϕ0)n

n!

= λmax.

On the other hand, it is known that λmax(Φ) = ΛNA(φ).
Since Dg = −Eg + LΘ, the slope formula for Dg follows from the proof for Eg above and the

proof for LΘ as in [8]. �

We have the following non-Archimedean version of Ding’s inequality ([18, Lemma 6.17]).
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Corollary 5.9. For any t ∈ [0, 1] and φ ∈ HNA, we have the inequality:

(5.26) JNA
g ((1− t)φtriv + tφ) ≤ t1+ 1

C JNA
g (φ).

Proof. This follows from the Archimedean inequality (2.39) and the slope formula in the above
proposition. �

Based on the previous discussion, it is convenient to introduce the following:

Definition 5.10. Let (X ,L) be a test configuration of (X,L), we define: If g =
∏r

α=1 y
kα
α , then

(5.27)
1

p!

(
L̄·p · L·n+1−p

P1

)
g

:=
1

(k + p)!
(L̄[~k])·p · (L[~k]

P1)·n+1−p.

Moreover, if ∆ is a TC×C∗-invariant divisor on X and if ∆[k] = (∆×S[~k])/(S1)r is the associated

invariant divisor on X [~k], then we set:

(5.28)
1

p!
(∆ · L̄p · L·n−pP1 )g :=

1

(k + p)!
∆[~k] · (L̄[~k])·p · (L[~k]

P1)·n+1−p.

For a general continuous g defined on P , we choose a sequence of polynomials gi that converges
uniformly to g and define:

(5.29)
(
L̄·p · L·n+1−p

P1

)
g

= lim
i→+∞

(
L̄·p · L·n+1−p

P1

)
gi
.

(5.30) (∆ · L̄p · L·n−pP1 )g = lim
i→+∞

(∆ · L̄p · L·n−pP1 )gi .

Remark 5.11. During our completion of this paper, we noticed a preprint of Inoue [50] in
which a more general framework of equvariant intersections is used to define an equivariant
version of K-stability adapted to the usual Kähler-Ricci solitons.

Recall D = L − ρ∗LC. We can use the same argument for E′∞ = ENA to get:

(5.31)
1

n!
(D · L·n)g := D[~k] · (L[~k])·n+k

(n+ k)!
= lim

t→∞

1

t

∫
X[~k]

(ϕ[~k] − ϕ[~k]
0 )

((ddcϕ)[~k])n+k

(n+ k)!

Proposition 5.12. For any φ = φ(X ,L) we have

(5.32) INA
g (φ) = ΛNA

g − (D · L·n)g.

Furthermore, we have the slope formula for INA
g

(5.33) INA
g (L) = I′∞g (Φ).

Proof. As shown in formula (5.26), Λ = limt→+∞
1
t

∫
X

(ϕ− ϕ0)efϕ0
(ddcϕ0)n

n!
.

Again, by the fact Φ is a smooth psh ray, there exists a C > 0, such that ϕ(t)−ϕ0 < C(t+1).
Then we have For ε > 0, there exists i0 ∈ N, such that for any i, i′ > i0, |gi − gi′ | < ε.

1

t
|
∫
X

(ϕ(t)− ϕ0)(gi,ϕ0 − gi′,ϕ0)|(ddcϕ0)n

n!
≤

ε

t

(
|
∫
X

(ϕ(t)− ϕ0 − C(t+ 1))
(ddcϕ)n

n!
|+ |

∫
X

C(t+ 1)
(ddcϕ)n

n!
|
)

≤ ε
(
|(D · L·n)g − C ′|+ C ′

)
.

(5.34)
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Take t→∞, we can see |(D ·L·n)gi− (D ·L·n)gi′ | < C ′′ε, which implies INA
g (φ) = limi→∞ INA

gi
(φ)

and is well-defined. Furthermore,

I′∞g (Φ) = lim
t→∞

1

t
Ig(ϕ(t))

= lim
t→∞

lim
i→∞

1

t
Igi(ϕ(t))

= lim
i→∞

lim
t→∞

1

t
Igi(ϕ(t)) = lim

i→∞
INA
gi

(φ) = INA
g (φ),

(5.35)

where the third equality is because of (5.34) and dominated convergence theorem.
�

Set

(5.36) HNA
T×K = {φ = φ(X ,L); (X ,L) is a TC ×G equivariant test configuration of (X,L)}.

In the following, we will abbreviate φ(X ,L) as φ when there is no ambiguity. From now on, let G
be a reductive complex Lie group of AutT (X,D,Θ) (see Definition 1.4). Assume G = KC and let
T be the center of G. Then T ∼= (C∗)r. We will denote NZ = Hom(C∗,T), NR = NZ⊗Z R ∼= Rr.

Definition 5.13 (see [45]). For any ξ ∈ NR and a (TC×G)-equivariant test configuration (X ,L),
the ξ-twisted test configuration (X ,L)ξ is defined as the following. Let ζ be the holomorphic
vector field that generates the C∗-action of (X ,L). Then (X ,L)ξ is the T-equivariant test
configuration with the holomorphic vector field ζ+ξ. If φ = φ(X ,L), we also denote φξ = φ(Xξ,Lξ).

For any φ ∈ HNA
T×K , set

(5.37) JNA
g,T(φ) = inf

ξ∈NR
JNA
g,T(φξ).

Proposition 5.14. For any ξ ∈ NR, it induces a test configuration φξ with C∗-action genearted
by ξ. Then JNA

g (φξ) = 0 if and only if ξ = 0.

Proof. The “if” direction is straightforward. We need to show the “only if” direction. By (2.37),
we have

(5.38)
1

C
≤ lim

t→∞

J(σξ(t)
∗ϕ)

t
≤ lim

t→∞

Jg(σξ(t)
∗ϕ)

t
≤ C lim

t→∞

J(σξ(t)
∗ϕ)

t
.

Then J′∞g (Φξ) = 0 implies J′∞(Φξ) = JNA(φξ) = 0. By [16], this implies φξ = 0 and ξ = 0. �

We also have the following equivariant version of slope formula.

Proposition 5.15. Let φ = φ(X ,L) be an TC ×G-equivariant ample normal test configuration.
Let Φ be a T ×K-invariant smooth psh ray associated to (X ,L). Then

JNA
g,T(φ) = J′∞g,T(Φ).(5.39)

Proof. LHS ≥ RHS can be seen from the definition. We need to show LHS ≤ RHS. We have
infξ∈NR Jg(σ

∗
tξΦ(t)) = Jg(σ

∗
tξt

Φ(t))). First, we will show that |ξt| ≤ C for some C > 0. This is
deduced from the quasi-triangle inequality

Jg(σ
∗
tξtϕ0) ≤ C(Jg(σ

∗
tξtΦ(t)) + σ∗tξtJg,Φ(t)(ϕ0))

≤ C(JNA
g (φ) · t+ o(t)).
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Since |ξt| < C, we can choose a sequence such that ξtj converges to ξ∞. We need to show that
1
tj
|Jg(σξtj (tj)

∗Φ(tj))− Jg(σξ∞(tj)
∗Φ(tj))| → 0. It suffices to show

(5.40)
1

tj
|σ∗tjξtjΦ(tj)− σ∗tjξ∞Φ(tj)| → 0,

since

|Jg(σ∗tjξtjΦ(tj))− Jg(σ
∗
tjξ∞

Φ(tj))| ≤ CI(σ∗tjξtjΦ(tj), σ
∗
tjξ∞

Φ(tj))

≤ C ′|σ∗tjξtjΦ(tj)− σ∗tjξ∞Φ(tj)|.

Choose q ∈ N such that sections of qL embed X into a projection space. It turns out that it
is equivalent and more convenient to work with the Fubini-Study metric ϕFS instead of ϕ. Let
s0, · · · , sNq be a basis of H0(X, qL). Denote ζ as the vector field that induces the C∗-action
of the test configuration. Denote the weight of ζ on si as λi; denote the weight of ξ on si as
〈ξ, ai〉. Then

1

tj
|σξtj (tj)

∗ϕFS(tj)− σξ∞(tj)
∗ϕFS(tj)| =

1

tj
| log(

∑
i τ
−2(λi+〈ξtj ,ai〉)
j |si|2ϕ∑

i τ
−2(λi+〈ξ∞,ai〉)
j |si|2ϕ

)|

≤ |〈ξti0 − ξt∞ , ai0〉|+ o(1)

≤ C|ξtj − ξ∞|+ o(1),

where tj = − log |τj|2, i0 is the index such that λi0 + 〈ξ∞, ai0〉 = supi λi + 〈ξ∞, ai〉. Then the
proof is concluded. �

Proposition 5.16. Let (X ,L) be a TC×G-equivariant ample normal test configuration. Then
JNA
g,T(L) = 0 if and only if (X ,L) is induced by σξ, where ξ ∈ NR.

Proof. The “if” direction is straightforward. We need to show the “only if” direction. Let Φ
be a smooth psh ray associated to (X ,L). As shown in the proof of Proposition 5.15, there

exists a ξ ∈ NR, such that JNA
g,T(L) = JNA

g (Lξ) = limt→+∞
Jg(σ∗tξΦ(t))

t
. We may choose Φ be the

pull-back of the Fubini-Study metric by the embedding qL for some q ∈ N. Let {λ0, · · · , λNq},
{µ0, · · · , µNq} be eigenvalues of the C∗-action and ξ-action on H0(X, qL) accordingly. Then

JNA(Lξ) = max0≤i≤Nq(λi + µi)− 1
Nq+1

∑Nq
i=0(λi + µi) = 0. Consequently, λi + µi = λj + µj, and

(Xξ,Lξ) is a trivial test configuration. Thus (X ,L) is test configuration induced by σ−ξ. �

5.6. G-uniform stability and valuative criterion. We introduce:

Definition 5.17. Let G be a connected reductive subgroup of AutT (X,D,Θ) and T be its
center. X = (X,D + Θ, T ) is G-uniformly g-Ding-stable if there exists γ > 0 such that for any
TC ×G-equivariant test configuration φ ∈ HNA(L), we have:

DNA(φ) ≥ γ · JNA
g,T(φ).

In this section, we will explain a valuative criterion for the G-uniform g-Ding-stability for X
which generalizes the results in [38, 59]. Since the proof is similar to the usual case as considered
in [59] which generalizes the argument in [9]. We will only emphasize the key points and leave
the details to the reader.

For simplicity of notations, we assume that L is Cartier. See [59, 2.4.2] for modifications of
notations when L is only Q-Cartier. Let W• = {Wm} be a T -invariant graded linear series ([55,
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2.4.A]). We first define a g-weighted volume denoted by volg(W•). For this, we decompose

(5.41) Wm =
⊕
α∈MZ

Wm,α ⊂ H0(X,mL) =: Rm,

where Wm,α = {s ∈ Wm; t ◦ s = tα · s}. Then we define:

(5.42) volg(W•) = lim
m→+∞

n!

mn

∑
α

g(
α

m
) dimWm,α.

The existence of this limit can be proved using the theory of Newton-Okounkov bodies.
Let F = {FλRm} be a T -invariant filtration as considered in [15] (see [59, 2.4.2]). For each

α ∈MZ, let λ
(m,α)
1 ≥ λ

(m,α)
2 ≥ · · · ≥ λ

(m,α)
Nm,α

be the successive minima of the filtration FλRm,α.
Set

fm(λ) =
n!

mn

∑
λ

(m,α)
k ≥λ

g(
α

m
) dim(FmλRm,α),(5.43)

νm := −dfm(λ) =
n!

mn

∑
α,k

g(
α

m
)δλ(m,α)

m

.(5.44)

On the other hand, we set F (λ) = {FmλRm}. Then as m → +∞, fm(λ) → volg(F (λ)). So
arguing as in [15], we know that νm converges to the measure:

(5.45) DHg(F) :=
1

Vg

(
−dvolg(F (t))

)
.

Let φ = φF be the (continuous) non-Archimedean metric associated to F . Then we define:

ENA
g (φF) =

1

Vg

∫
R
λ(−dvolg(FR(λ)

• )).(5.46)

For any v ∈ (Xdiv
Q )T , it defines a filtration Fv by setting:

(5.47) FλvRm = {s ∈ Rm; v(s) ≥ λ}.
In this case, by integration by parts, we known that:

(5.48) ENA(φFv) =
1

Vg

∫ +∞

0

volg(FR(λ)
• )dλ = Sg(v)

where we introduced:

(5.49) Sg(v) := SL,g(v) :=
1

Vg

∫ +∞

0

volg(FR(λ)
• )dλ.

We have the following valuative criterion:

Theorem 5.18. (X,D+ Θ) is G-uniformly g-Ding-stable if and only if there exists γ > 1 such
that for any v ∈ (Xdiv

Q )T , there exists ξ ∈ NR satisfying:

(5.50) AD+Θ(vξ)− γ · Sg(vξ) ≥ 0.

It is clear that we can adopt the proof in [59, Corollary 3.2] and [59, 4.2] to prove the valuative
criterion for G-uniform g-Ding-stability without using the MMP program. In each step of the
argument, we just need to replace A(X,D) by A(X,D+Θ) and replace S(v) by Sg(v). So we omit
the details of the argument, except for recording the following useful lemma in its proof, which
generalizes a corresponding inequality in [9, 59]. Note that the proof in [59, 4.2] does not need
the solution of non-Archimedean Monge-Ampèand Legendre duality as used in [9].
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Lemma 5.19. Given any φ = φ(X ,L) for a TC ×G-equivariant semi-ample test configuration

(5.51) inf
v∈(Xdiv

Q )G
(Sg(v) + (φ− φtriv)(v)) ≥ inf

v∈Xdiv
Q

(Sg(v) + (φ− φtriv)(v)) ≥ ENA
g (φ).

6. Yau-Tian-Donaldson conjecture for twisted Kähler-Ricci g-solitons

Lemma 6.1. Let (X ,L) be a TC × G-equivariant normal ample test configuration. Let ξ be a
holomorphic vector field in NR, (XC, LC,ξ) be a product test configuration induced by ξ using the
canonical lifting of ξ (see (4.6)). Then

(6.1) ENA
g (Lξ) = ENA

g (L) + ENA
g (LC,ξ)

(6.2) LNA
Θ (Lξ) = LNA

Θ (L)

and

(6.3) Futg(ξ) = −ENA
g (LC,ξ).

Proof. We will use the pull-back of Fubini-Study metric as a T ×K-invariant smooth psh ray
Φ associated to (X ,L).(details can be found in the proof of Proposition 5.15.) The advantage
of using this metric is, we can express ϕ(t) = σ∗tλϕ, where σtλ is the C∗-action of the test
configuration. Let Φξ be the ξ-twisted psh ray. Then φξ(t) = σ∗tξσ

∗
tλϕ = σ∗tξ+tλϕ. Then

ENA
g (Lξ) = E′∞g (Φξ)

= lim
t→∞

Eg(ϕξ(t))

t

= lim
t→∞

Eg(ϕξ(t)− Eg(ϕ(t))

t
+ lim

t→∞

Eg(ϕ(t))

t

= lim
t→∞

Eg,σ∗tλϕ
(σ∗tλσ

∗
tξϕ)

t
+ ENA

g (L)

= lim
t→∞

Eg(σ
∗
tξϕ)

t
+ ENA

g (L)

= ENA
g (LC,ξ) + ENA

g (L)

(6.4)

The identity for LNA
Θ (L) can be proved using the same argument as [59, Proposition 3.3].

Moreover, the identity (6.3) follows from the identity ENA
g (LC,ξ) =

∫
X
θξ,ϕMAg(ϕ) and the

formula (4.7) for the generalized Futaki-invariant.
�

Lemma 6.2. Let G be the reductive Lie group defined before. Assume M is not G-coercive.
Then for any ϕ ∈ E1

T×K(X,L), there exists a T ×K-invariant geodesic ray Φ emanating from
ϕ satisfying:

(1) We have the normalization:

(6.5) sup(ϕ(t)− ϕ0) = 0, E(ϕ(t)) = −t.
(2)

(6.6) M′∞(Φ) ≤ 0.

(3)

(6.7) inf
ξ∈NR

J′∞(Φξ) = 1.
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Proof. Assume M is not G-coercive. Let ϕ be an arbitary metric in E1
T×K(X,L). Then by

the assumption and Lemma 3.4(ii), There exists a sequence of ϕj ∈ E1
T×K , where Jg(ϕj) =

infσ∈T Jg(σ
∗ϕj), such that M(ϕj) ≤ δjJg(ϕj) − Cj, where δj → 0, and Cj → ∞. Since

the entropy Hg,Θ(ϕj) has a lower bound, we have Jg(ϕj) → ∞. Let Φj(t) be the geodesic
ray, that emanates from ϕ and passes through ϕj. Denote the distance between ϕ and ϕj
by Tj. Then Φj(Tj) = ϕj. By the convexity of M (Section 4.4), for t ∈ [0, Tj], we have

M(Φj(t)) ≤ (1− t
Tj

)M(ϕ) + (δj
Jg(ϕj)

Tj
− Cj

Tj
)t.

We can assume sup(ϕj − ϕ0) = 0. As j → ∞, up to choosing a subsequence, Φj converges
weakly to a geodesic ray Φ. From our construction, we can see that Φ is not an orbit of
T. Let T > 0 be any positive constant. When t ∈ [0, T ], Hg,Θ(Φj(t)) is uniformly bounded
above. By Lemma 2.16, Ig(Φj(t)),Jg(Φj(t)) converges uniformly. In addition, Hg,Θ is lower
semi-continuous in strong topology. Then M(Φ(t)) ≤ limj→∞(M(Φj(t))) ≤M(ϕ). Since M is
also convex , M is decreasing along Φ.

With the Hartogs’ lemma 2.5 and arguing in the same way as [60, Proof of Proposition 6.2],
we get the conclusion. �

Now we can prove the Yau-Tian-Donaldson conjecture by using the method developed in
[8, 9, 58, 46, 59].

Theorem 6.3. The generalized Ding functional D is G-coercive if and only if G is reductive
and X is G-uniform Ding-stabile.

proof of the “only if” direction. Let (X ,L) be an ample normal test configuration. Let Φ be a
smooth psh ray associated to (X ,L). Since D is G-coercive, there exist δ > 0, C > 0 such that
D(Φ(t)) ≥ δJg,T(Φ(t))− C. Then by slope formulas,

(6.8) DNA(L) = lim
t→∞

D(Φ(t))

t
≥ lim

t→∞
δ
Jg,T(Φ(t))

t
= δJNA

g,T(L)

Thus X is G-uniform Ding-stable. �

proof of the “if” direction. We will decompose the proof of the “only if” part into four steps.

Step 1: Construct a destabling geodesic ray.
Assume D is not G-coercive. By Theorem 3.5, this implies M is not G-coercive. By Lemma

6.2, there exists a destablizing geodesic ray Φ emanating from 0, which satisfies the conditions
(6.5)-(6.7).

Step 2: Approximate the destablizing geodesic ray by test configurations. We use the
construction in [9, 58].

We need two approximations: approximating L by ample line bundles over the resolution of
X and approximating psh rays by test configurations.

Let ρ : X̃ → X be a log resolution of singularities obtained by a composition of blowing-up
along smooth centers. Assume {Ei} are the exceptional divisors. Then there exist bi ∈ Q>0

such that ρ∗L −
∑

i biEi is ample on X̃, where L = −KX − D − B as before. Moreover, we
have the identity

−KX̃ −D
′ − ρ∗B =

1

1 + ε

(
ρ∗(−KX −D −B) + ε(ρ∗(−KX −D −B)−

∑
i

biEi)

)
+
∑
i

(−ai +
ε

1 + ε
bi)Ei.
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Set:
(6.9)

Θ̃ = ρ∗Θ, Dε = D′ +
∑
i

(−ai +
ε

1 + ε
bi)Ei, P = ρ∗L−

∑
i

biEi, Lε =
1

1 + ε
(ρ∗L+ εP ).

Then we have:

(6.10) −KX̃ −Dε − ρ∗B = Lε.

Fix a smooth positively e−ϕP curved metric on P and set Φε = 1
1+ε

(ρ∗Φ + εϕP ). Then Φε is a

subgeodesic ray for the line bundle Lε over X̃.
Let am = J (mΦε) be the multiplier ideal sheaf with respect to mΦε. We would like to

use the normal blow-up along am, Blam(X̃C) as test configurations that approximate Φε. Let

L̂ε = (1 + ε)Lε, Φ̂ε = (1 + ε)Φε. We need to first show that, there exists an integer m0 > 0,

such that for any m > 0, OX̃×C((m0 + m)L̂ε ⊗ am) is globally generated. If so, Blam(X̃C) can
be embedded into a projective space, which provides a TC × G-equivariant test configuration.
By Castelnuovo-Mumford regularity theorem, in order to show finite generation, it suffices to
show H i(X̃C, ((m0 + m)L̂ε − iP )⊗ am) = 0, for any i > 0, which can be reduced to show that

Ri(OX̃C
((m0 +m)L̂ε − (n+ 1)P )⊗ am) = 0. There exists an m0 > 0, such that −KX̃ + (m0 +

m)L̂ε − (n+ 1)P is p2-ample for any m ∈ N, where p2 : X̃C → C. By applying Nadel vanishing

to (−KX̃ + (m0 +m)L̂− (n+ 1)P )⊗ am, the vanishing of higher order direct image sheaves is
proved.

By Demailly’s Bergman kernel approximation, we have Φ̂ε,m = 1
2(m0+m)

log(
∑

j |s
(m)
j |2), where

{s(m)
j } is an orthonormal basis of H0(X̃C,OX̃C

(m0 +m)L̂ε ⊗ am), with respect to the L2-norm∫
X̃C
|s|2emΦε . Corresponding, we have φ̂ε,m − φ̂triv as a function on X̃div

Q . By [8, Lemma 5.7],

φ̂ε ≤ φ̂ε,m ≤ m
m0+m

φ̂ε + 1
m

(AX̃ + 1), and limm→∞ LNA
Θ (φ̂ε,m) = LNA

Θ (φ̂ε). By monotonicity of
Eg,Λg functionals, we have

lim
m→∞

ENA
g (φ̂ε,m) ≥ E′∞g (Φ̂ε)(6.11)

lim
m→∞

ΛNA
g (Φ̂ε,m) ≥ Λ′∞g (Φ̂ε).(6.12)

Furthermore,

Lemma 6.4. For any ξ ∈ NR,

lim
ε→0

E′∞g,ϕ0,ε
(Φ̂ε,ξ) = E′∞g (Φξ),(6.13)

lim
ε→0

Λ′∞ϕ0,ε
(Φ̂ε,ξ) = Λ′∞(Φξ),(6.14)

lim
ε→0

LNA
Θ (φ̂ε,ξ) = LNA

Θ (φ).(6.15)

Proof. Equalities (6.14), (6.15) have been shown in [59]. By [59], we also have

lim
ε→0

(E[~k]
ϕ0,ε

)′∞(Φ̂
[~k]
ε,ξ) = (E[~k])′∞(Φ

[~k]
ξ ).

Since for any δ > 0, there exists a polynomial pi =
∑

~k a~k
∏r

α=1 y
kα
i , such that |pi − g| < δ. As

shown in the proof of Proposition 5.8, there exists a C > 0, uniform over ε, such that

|E′∞g,ϕ0,ε
(Φ̂ε,ξ)−

∑
~k

a~k(E
[~k]
ϕ0,ε

)′∞(Φ̂
[~k]
ε,ξ)| < Cδ.
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Then the uniform convergence implies (6.13). �

Step 3: Completion of the proof By Lemma 6.2, M is decreasing along Φ. Then D′∞(Φ) ≤
M′∞ ≤ 0. By the construction of Φ, Λ′∞g (Φ) = 0, −E′∞g (Φ) = J′∞g,T(Φ) = 1. Then L′∞Θ (Φ) ≤ −1.

Choose a subsequence of G-invariant divisorial valuations vk ∈ Xdiv such that

(6.16) L′∞Θ (Φ) ≤ A(X,D+Θ)(vk)−G(vk)(Φ) < L′∞Θ (Φ) +
1

k
.

By valuation criterion, there exists δ = δG(X,D + Θ) > 1, and ξk ∈ NR, such that

(6.17) A(X,D+Θ)(vk,ξk) ≥ δSg(vk,ξk).

From the argument of the valuation criterion in Theorem 5.18 and the same calculation as
in [58, 4.4], we have

(6.18) A(X̃,Dε+Θ̃)(vk,ξk) ≥ δ′SLε,g(vk,ξk)

where δ′ > 1. Indeed, this follows from the estimate: there exists C > 0 such that for any
v ∈ Xdiv

Q ,

A(X̃,Dε+Θ̃)(v)

SLε,g(v)
≥ (1− Cε)

A(X,D+Θ)(v)

Sg(v)

for some C > 0, which follows from two inequalities:

(1) Note that the identity Dε = D0 + ε
1+ε

∑
i biEi.

A(X̃,Dε+Θ̃)(v)

A(X,D+Θ)(v)
=

AX̃(v)− v(Dε)− v(Θ)

AX̃(v)− v(D0)− v(Θ)
= 1− ε

1 + ε

∑
i biv(Ei)

AX̃(v)− v(D0)− v(Θ)

≥ 1− ε

1 + ε
lct(X̃,D0 + Θ +

∑
i

biEi)
−1.

(2) Recall that Lε = ρ∗L− ε
1+ε

∑
i biEi. It is easy to see that the integrands in Sg and SLε,g

has a comparison:

(6.19) volg(L− xv) ≥ volg(Lε − xv).

Moreover by the same argument as in [59, 3.1] (see also [60, 2.1.3]), we have the identity for
any ξ ∈ NR:

(φε,m,ξ − φtriv)(v) = (φε,m − φtriv)(vξ) + A(D̃,Dε+Θ̃)(vξ)− A(D̃,Dε+Θ̃)(v).

Again note that we are using the canonical lifting of ξ (see (4.6)) to twist the non-Archimedean
metric.
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Now we can estimate in the same way as [59]:

LNA
(X̃,Dε+Θ̃)

(φε,m) +O(ε,m−1, k−1)

= A(X̃,Dε+Θ̃)(vk) + (φε,m − φtriv)(vk)

= A(X̃,Dε+Θ̃)(vk,ξk) + (φε,m,−ξk − φtriv)(vk,ξk)

≥ δ′SLε(vk,ξk) + (φε,m,−ξk − φtriv)(vk,ξk)

≥ δ′ENA
g ((δ′)−1(φε,m,−ξk − φtriv))

= (−δ′JNA
g (δ′

−1
(φε,m,−ξk − φtriv)) + JNA

g ((φε,m,−ξk − φtriv))) + ENA
g ((φε,m,−ξk − φtriv))

≥ (1− (δ′)
−1
C )JNA

g ((φε,m,−ξk − φtriv)) + ENA
g ((φε,m,−ξk − φtriv))

= (1− (δ′)
−1
C )Λ′∞g (Φε,m,−ξk) + (δ′)

−1
C E′∞g (Φε,m,−ξk)

≥ (1− (δ′)
−1
C )Λ′∞g (Φ−ξk) + (δ′)

−1
C E′∞g (Φ−ξk)

= (1− (δ′)
−1
C )J′∞g (Φ−ξk) + E′∞g (Φ−ξk)

= (1− (δ′)
−1
C )J′∞g (Φ−ξk) + E′∞g (Φ) + Futg(ξk)

≥ (1− (δ′)
−1
C )− 1 = −(δ′)

−1
C .

(6.20)

The second inequality used Lemma 5.19. The last inequality uses (6.7). Moreover we have used
the identity (6.3) and the fact the Futg(ξk) ≡ 0. Letting ε→ 0,m→ +∞, k → +∞, we get a
contradiction to LNA(φ) ≤ −1.

Remark 6.5. By the same argument as in [59, 5.4], we actually know that |ξk| in the above proof
is uniformly bounded. Moreover, if X is smooth, then the above argument can be simplified
(see [9, 46, 60])

�

7. Stability via special test configurations

Definition 7.1. A test configuration (X ,L) of (X,L) is a special test configuration if X0 is a
normal projective variety and L is relatively ample.

Remark 7.2. If (X,D) is log Fano and Θ = 0, then the usual definition of special test
configuration also requires that L ∼π,Q −(KX + D). Since we are considering the general
twisting, the special test configuration is in a more general sense compared with the log Fano
case. See also Remark 7.9.

Theorem 7.3. Let G ⊆ AutT (X,D,Θ) be a reductive subgroup. Then (X,D + Θ) is G-
uniformly g-Ding-stable if and only if if it is G-uniformly g-Ding-stable for all TC×G-equivariant
special test configurations.

We will use the notations for g-intersection of equivariant line bundles as defined in Definition
5.10. The following observation is the key to our later calculations.

Theorem 7.4. Let (X ,L) be a test configuration of (X,L). Assume X0 =
∑

i biEi. Assume
that Lλ = L +

∑
i ci(λ)Ei for λ ∈ [0, ε) and ci(λ) are differentiable functions of λ ∈ [0, ε). We

have the following formula:

(7.1)
d

dλ

1

(n+ 1)!
(L̄·n+1

λ )g =
1

n!
(L̄·nλ ·

dL̄λ
dλ

)g =
∑
i

dci
dλ

∫
Ei

gϕ
(ddcϕ)n

n!
,
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where ϕ is a smooth Hermitian metric on L0 → X0. In particular, if dci(λ)
dλ
≥ 0 and g ≥ 0 over

P , then we have the non-negativity:

(7.2)
d

dλ
(L̄·n+1

λ )g ≥ 0.

Proof. If g = y
~k is a monomial, then we have (L̄·n+1)g

(n+1)!
= (L̄[~k])·n+k+1

(n+k+1)!
. So

(7.3)
d

dλ

(L̄·n+1)g
(n+ 1)!

=
1

(n+ k)!
(L[~k])·n+k · L̇[~k] =

1

n!
(L̄·n · L̇)g.

By using the construction in our proof of Proposition 2.2, we see that (7.1) holds for monomial
and hence any polynomial function g. For a general continuous g, by Stone-Weierstrass theorem,
we can find a sequence of polynomials functions gi that converges to g uniformly over P . Then

d

dλ

(L̄·n+1
λ )g

(n+ 1)!
=

d

dλ
lim
i→+∞

(L̄·n+1
λ )gi

(n+ 1)!

= lim
i→+∞

d

dλ

(L̄·n+1
λ )gi

(n+ 1)!
= lim

i→+∞

1

n!

(
L·n · d

dλ
Lλ
)
gi

.

The conclusion follows easily. Note that the switch of limit and derivative follows from the
following standard fact from real analysis.

�

Theorem 7.5 ([74]). Suppose {fm} is a sequence of functions, differentiable on [a, b] and such
that fm(x0) converges for some point x0 ∈ [a, b]. If {f ′m} converges uniformly on [a, b], then
{fm} converges uniformly on [a, b], to a function f , and

(7.4) f ′(x) = lim
m→+∞

f ′m(x).

Now we assume that S is T -invariant sub-linear system of |mB| for some m ∈ N. Choose a
T -equivariant basis s := {s1, . . . , sN}. Then e−ψ = 1

(
∑
i |si|2)2/m is a possibly singular Hermitian

metric on B and its curvature current is

(7.5) Θ := Θs :=
1

m
ddc log

∑
i

|si|2.

In this case, we say that Θ is associated to the sub-linear system S.

Lemma 7.6. Let S be a T -invariant sub-linear system of |mB|. Then for a generic choice of ba-
sis s = {s1, . . . , sN} the following statement holds true: there is a character χ : AutT (X,D,Θs)→
C∗ such that for any s ∈ S, we have σ ·s = χ(s)s. In particular, S is AutT (X,D,Θs)-invariant.

Proof. Let ξ ∈ autT (X,D,Θ) also denote the corresponding holomorphic vector field. Then

(7.6) 0 = ιξΘ = ∂̄

(∑
i〈Lξsi, si〉∑

i |si|2

)
.

Since s = {si} is generic, we have Lξsi = χ(ξ)si for some χ(ξ) ∈ C∗. �

For any ∆ ∈ 1
m
S, we set:

(7.7) LNA
∆ (φ) =

1

n!
inf
v

(
A(X,D)(v)− v(∆) + φ(v)

)
.
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Lemma 7.7. With the above assumptions,

(7.8) LNA
Θ (φ) = sup

{
LNA

∆ (φ); ∆ ∈ S
}
.

Moreover for a general divisor ∆ ∈ S, we have LNA
S (φ) = L∆(φ).

This follows easily from the identity: for any v ∈ Xdiv
Q ,

(7.9) v(Θ) = inf

{
v(∆); ∆ ∈ 1

m
S

}
=

1

m
v(b(S)),

where b(S) is the base ideal of S. We will follow the MMP process in [57] that was adapted to
the Ding stability in [8, 38], and to the twisted K-stability in [11]. We will essentially show that
the MMP process respects the twisted g-Ding-stability as well. Moreover, by the argument in
[59, 4.1], we don’t need to worry about the twisting by ξ ∈ NR in the calculation.

Theorem 7.8. Let X = (X,D,Θs) and s ⊂ S be as above. Let (X ,L)/P1 be a normal, ample
test configuration for (X,L). There is an integer d and a special test configuration (X s,Ls)
such that for any ε ∈ [0, 1] and any ξ ∈ NR, we have

(7.10) DNA(φs)− εJNA
g,T(φs) ≥ d ·

(
DNA(φ)− εJNA

g,T(φ)
)
.

Proof. Step 1: Choose a general divisor ∆ ∈ 1
m
S. Set Q = D + ∆ and L = −KX −D −∆.

Then there exist d ∈ Z>0, a projective birational C∗-equivariant morphism π : X lc → X (d)

and a normal, ample test configuration (X lc,Qlc,Llc)/P1 for (X,Q,L) such that for any ε ∈ [0, 1]
and any ξ ∈ NR,

(7.11) d
(
DNA(φξ)− εJNA

g (φξ)
)
≥ DNA(φlc

ξ )− εJNA
g (φlc

ξ ).

Choose a semistable reduction of X → C. By this, we mean that there is an integer d and a
G-equivariant log resolution of singularities X̃ → Xd := X ×C,t→td C such that (X̃ ,X0) is simple
normal crossing. Since the linear system S is (TC ×G)-invariant, we can run a (TC ×G×C∗)-
equivariant MMP (see [2, 70, 72]) to get a log canonical modification: πlc : X lc → Xd such that
if Qlc is the pushforward of Q then (X lc,X lc

0 +Qlc) is log canonical and KX lc +Qlc is relatively
ample over Xd. In the following calculation, we can assume d = 1 by multiplicativity of both
sides of (7.11). Set E = KX lc + Qlc + (πlc)∗L =

∑k
i=1 eiX0,i with e1 ≤ e2 ≤ · · · ≤ ek and

Lλ = ρ∗L+ λE. Then

LNA
Θ (φλ,ξ) = LNA

Θ (φλ) = LNA
∆ (φλ) = (1 + λ)e1.

As in the argument in [59], we can reduce the calculation to the case when ξ = 0 in which case:

n!(DNA(φλ)− εJNA
g (φλ)) = −(1− ε)(L̄·n+1

λ )g
n+ 1

− ε(L̄λ · L·nP1)g + (1 + λ)e1

= −(1− ε)(L̄·n+1
λ )g
n+ 1

− ε(L̄s · L·nP1)g + (1 + λ)e1(X lc
0 · L̄·n)g

To see that the difference is decreasing, we calculate:

n!
d

dλ
(DNA

g − εJNA
g )(φλ) = −(1− ε)(L̄·nλ · E)g − ε(E · (LP1)·n)g + e1

= −(1− ε)(L̄·nλ · E)g + (1− ε)e1(X lc
0 · L̄·nλ )g − ε(E · (LP1)·n)g + εe1(X lc

0 · L̄·n)g

= −
∑
i

(ei − e1)
[
(1− ε)(Ei · L̄·nλ )g + ε(Ei · (LP1)·n)g

]
≤ 0.
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By the argument in [11], we know that the outcome (X lc,Llc) does not depend on the choice of
the general member of ∆ ∈ 1

m
S. Moreover Qlc is just the closure of Q×C∗ in X lc (Q is called

compatible with X lc in [11]).
Step 2: With the (X lc,Qlc,Llc) obtained from the first step, we run a relative MMP with

scaling to get a normal, ample test configuration (X ac,Lac)/P1 for (X,−KX) with (X ac,Qac +
X ac

0 ) log canonical such that −(KX ac +Qac) ∼Q Lac. Because m∆ ∈ S is a general member of
the G-invariant linear system, the MMP is automatically G-equivariant and the outcome does
not depend on the choice of ∆. Moreover, for any ε ∈ [0, 1] we have:

(7.12) DNA
g (φlc)− εJNA

g,T(φlc) ≥ DNA
g (φac)− εJNA

g,T(φac).

More concretely, we take ` � 1 such that Hlc = Llc − (` + 1)−1(Llc + KX lc +Qlc) is relatively
ample. Set X 0 = X lc, Q0 = Qlc, L0 = Llc, H0 = Hlc and λ0 = `+ 1. Then KX 0 +Q0 +λ0H0 =
`L0. We run a sequence of (KX 0 + Q0)-MMP over C with scaling of H0. Then we obtain a
sequence of models

X 0 99K X 1 99K · · · 99K X k

and a sequence of critical values

λi+1 = min{λ;KX i +Qi + λHi is nef over C}

with ` + 1 = λ0 ≥ λ1 ≥ · · · ≥ λk > λk+1 = 1. For any λi ≥ λ ≥ λi+1, we let Hi (resp. Qi) be
the pushforward of H (resp. Q) to X i and set

(7.13) Liλ =
1

λ− 1

(
KX i +Qi + λHi

)
=

1

λ− 1
(KX i +Qi +Hi) +Hi =:

1

λ− 1
E +Hi.

Write E =
∑k

j=1 ejX i
0,j with e1 ≤ e2 ≤ · · · ≤ ek. By the argument in [59], we reduce to the case

when ξ = 0 in which case the statement follow from the following decreasing property (see [38]
and [57]):

n!
d

dλ
DNA(φiλ) =

d

dλ

(
−(1− ε)(L̄i·n+1

λ )g
n+ 1

− ε(L̄ · (LP1)·n)g +
λ

λ− 1
e1

)
= (1− ε) 1

(λ− 1)2
(E · L̄i·n)g + ε

1

(λ− 1)2
(E · (LP1)·n)g −

1

(λ− 1)2
e1

=
1

(λ− 1)2

∑
i

(ei − e1)
[
(1− ε)(Ei · L̄·n)g + ε(Ei · (LP1)·ng

]
≥ 0.

Step 3: With the test configuration (X ac,Qac,Lac) obtained from step 2, there exists d ∈ Z>0

and a projective birational TC × C∗-equivariant birational map X (d) 99K X s over P1 such that:

(7.14) d(DNA(φac)− εJNA
g,T(φac)) ≥ DNA(φs)− εJNA

g,T(φs).

As in [57], this is achieved by doing a base change and run an MMP. By the argument in [11],
the outcome does not depend on the ∆ ∈ 1

m
S and is automatically G-equivariant.

Let E = −KX s/P1 − (−KX ′/P1). Then E ≥ 0 by the negativity lemma. Lλ = −KX ′/P1 + λE.
As in [59], we verify the decreasing (7.14) by reducing to the case when ξ = 0, and calculate:

n!
d

dλ
(DNA(φλ)− εJNA

g (φλ)) = − d

dλ

(
(1− ε)(L̄·n+1)g

n+ 1
− ε(L̄ · (LP1)·n)g + te1

)
= −

∑
i

(ei − e1)
[
(1− ε)(Ei · L̄·n)g + ε(Ei · (LP1)·n)g

]
≤ 0.
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So we have obtained special test configuration (X s,Qs,Ls) of (X,Q) which is TC × G-
equivariant.

�

Remark 7.9. If B ∼Q t(−KX−D) for some t ∈ [0, 1), then −(KX+D) = 1
1−t(−KX−D−B) =

1
1−tL. The end product πs : (X s,Ds)→ C is is a special test configuration of (X,D) satisfying

−(KX s +Ds) ∼πs,Q 1
1−tL.

As in [60, section 4] which generalizes [38, 39], Theorem 7.8 yields another proof of the
valuative criterion when Θ is associated to a linear system:

Corollary 7.10. Let (X,D,Θ) be as above. Then the valuative criterion holds true. In other
words, (X,D + Θ) is G-uniformly g-Ding-stable if and only if there exists γ > 1 such that for
any v ∈ Xdiv, there exists ξ ∈ NR satisfying:

(7.15) AD+Θ(vξ)− γ · Sg(vξ) ≥ 0.

8. Examples

It should be clear that our results generalize most of variational study of Kähler-Ricci/Mabuchi
soliton metrics on log Fano varieties. Here we just point out some simple consequence. We
leave the other applications to the interested reader.

Recall that T = C(AutT (X,D,Θ)) is a complex torus of rank r. Any one-parameter subgroup
of T generated by ξ ∈ NR gives a TC×AutT (X,D,Θ)-equivariant product (R-)test configuration
(XC,ξ, LC,ξ) of (X,L). In this case, DNA

g (XC,ξ, LC,ξ) = Futg([ω], ξ). Since we can replace ξ by
−ξ, we see that the G-uniform g-Ding semistability implies that Futg([ω], ξ) = 0 for any ξ ∈ NR.

When log g is affine, the equation (1.6) reduces to the Kähler-Ricci soliton equation, and
when g is affine, it reduces to the case of Mabuchi solitons. Note that in these two cases, the
vanishing of Futaki invariant uniquely determines the function g, which means the uniqueness
of V in (1.1) and (1.2) for which the corresponding equation could possibly have a solution.

Generalizing the application of results in [25], it is clear that the theorem 1.7 allows us to get
new examples of Kähler-Ricci g-solitons on possibly singular varieties with large symmetries.

For example, let (X,D) be a log Fano toric variety determined by a monotone labelled
polytope P = {li = 〈νi, x〉 ≤ 1} (see [56]). For simplicity assume Θ = 0. By Theorem 1.7, we
know that the existence of Kähler-Ricci g-soliton is equivalent to the vanishing of generalized
Futaki invariant which is equivalent to the vanishing of the weighted barycenter:

(8.1)

∫
P

xig(x)dx = 0, i = 1, . . . , n.

This generalizes the works on toric Kähler-Ricci solitons in [84, 75, 4, 56] when log g is affine,
and existence results about toric Mabuchi solitons in [87, 68] when g is affine. Note that in
the Mabuchi soliton case, the constraint (8.1) uniquely determines g = 1− θP where θP is the
extremal function as defined in [42]. The condition g > 0, which we assumed, becomes an
obstruction to the existence of solutions to the corresponding equation.

More generally, similar applications can be applied to T -varieties of complexity one (see
[23, 47]) and spherical varieties as in [29] or Fano G-varieties (for a reductive complex Lie
group G) as in [63]. In other words, one can effectively check their stability hence get the
(non-)existence of g-soliton on such varieties. 1

1T. Delcroix pointed to us that a related generation for the existence of coupled complex Monge-Ampère
equations on Fano horosymmetric manifolds has appeared in [30].
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9. Appendix: Mabuchi functional as Kempf-Ness functionals

In this section, we will build up the moment map for the equation (1.6). We will not use the
moment map explicitly in our paper. However, the moment map provides us with a Kempf-
Ness picture, which illustrates the naturality of using the variational approach to study (1.6).
For simplicity, we will only formulate the moment map for any polarized projective manifold
(X,L) without twistings by D and Θ. After the completion of the paper, we were informed
by Inoue that the moment map picture has been built up for Kähler Ricci solitons in [48] and
constant weighted scalar-curvature Kähler metrics in [53]. Nonetheless, for the completeness of
the paper, we will still include a proof under our settings in this Appendix.

Recall our notation: the holomorphic vector fields V1, . . . , Vr are generators of the complex-
ified toric action TC. We will fix the Symplectic form ω in the following. We will define the
following Lie algebra of the Hamiltonian action

Lie(G) = {v ∈ C∞0 (X) : v is T -invariant. }(9.1)

where (∂̄v)# = V 1,0
v = ϕij̄∂j̄v. The Lie algebra is associated with a metric 〈, 〉gϕ defined by

〈v1, v2〉gϕ =

∫
X

v1v2gϕ(ddcϕ)n(9.2)

for any v1, v2 ∈ Lie(G), where gϕ = efϕ .
Let J be the set of almost complex structures on X that are compatible with the symplectic

form ddcϕ. The moduli space under our consideration is

JT := {J ∈ J : J is integral, invariant under the T -action and is compatible with ddcϕ.}
(9.3)

The space J is associated with a Symplectic form (, )gϕ induced by ddcϕ:

(µ1, µ2)gϕ =

∫
X

〈µ1, µ2〉ddcϕgϕ(ddcϕ)n(9.4)

for any µ1, µ2 ∈ TJJ . (, )gϕ is closed since gϕω
n is a 2n-form independent of the choice of the

complex structure.
Denote T 1,0 = (TXC)1,0. Then TJJ ' Ω0,1(T 1,0). Since J is unitary, the Symplectic form ω

induces a duality Ω0,1(T 1,0) ' S2(T 1,0).
Define the action of Lie(G) on JT by: LV 1,0

v
J where V 1,0

v = JVv +
√
−1Vv, Vv is the Hamil-

tonian vector field induced by v. Let � denotes for the symmetric product. By [34, Lemma

10] LV 1,0
v
J = ∂̄V 1,0

v − V 1,0
v yN , where N = 0 when J is integrable. We can see that the image

of the action is kept to be T -invariant. Let Vθα be the Hamiltonian vector field induced by θα,
i.e, Vθαyddcϕ = dθα. Since J is T -invariant, LVθαJ = 0. Furthermore, since J is integrable,

LJVθαJ = 0, which implies ξα = JVθα +
√
−1Vθα is a holomorphic vector field with respect to

J . We also have θ̇α = 0, ḟϕ =
∑

α fαθ̇α = 0.

Proposition 9.1. For the action defined above, the corresponding moment map m is

Rϕ −R−∆fϕ −
R

n

∑
α

fαLξα(ϕ)− Vf,ϕ(fϕ)−
∑
α

fαLξα(log((ddcϕ)n)),(9.5)

where Rϕ is the scalar curvature.

Remark 9.2. We can compare the definition above with the moment map defined in [34] for
the case of Kähler Einstein (CscK). In that case, the moment map is uniquely determined up to
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a constant. For the definition (9.5), m is uniquely determined up to a constant and the choice
of the lifting of ξα (α = 1, · · · , r) to the line bundle L.

When L = −KX , let hϕ = − log( (ddcϕ)n

e−ϕ
), we can reformulate (9.5) into

(9.6) ∆(hϕ − fϕ) + Vf,ϕ(hϕ − fϕ)

Proof. A direct calculation shows that:

(
∑
α

fαLξα(ϕ))′ =
∑
α

(fαθα)′ = 0,

(
∑

α fαLξα log((ddcϕ)n))′ =
∑

α(fα∆θα)′. We only need to show that the dual of the infinitesi-
mal action is the infinitesimal moment map, which is

(9.7) m′ = R′ϕ − (Vf,ϕ(fϕ))′ − (∆fϕ)′ −
∑
α

(fα∆θα)′.

Since Vf,ϕ(fϕ) =
∑

α,β fαfβξα(θβ) =
∑

α,β fαfβ(ddcϕ)ij̄∂iθα∂j̄θβ =
∑

α,β fαfβω(JVθα , Vθβ), we
have

(9.8) (Vf,ϕ(fϕ))′ =
∑
α,β

fαfβω(µVθα , Vθβ) =
∑
α,β

fαfβ(ξα � ξβ, µ) = (Vf,ϕ � Vf,ϕ, µ).

The infinitesimal action P : Lie(G) → S2(T 1,0) can be furthermore decomposed into: P =
P2 ◦ P1,

P1 : Lie(G)→ Γ(T 1,0), v → V 1,0
v ,(9.9)

P2 : T 1,0 → S2(T 1,0), v → LvJ.(9.10)

Now consider the dual of P . Let µ ∈ S2(T 1,0) ' Ω0,1(T 1,0).
Then by [34][proof of Proposition 9] and an integration by parts calculation,

(P (v), µ)gϕ = (LVvJ, µ) = −(∂̄V 1,0
v , µ)gϕ

=

∫
X

−(V 1,0
v , ∂̄∗µ)gϕω

n +

∫
X

(V 1,0
v � Vf,ϕ, µ)gϕω

n

=

∫
X

vR′ϕgϕω
n + +

∫
X

v
∑
α,β

fαβ(ξα � ξβ, µ)gϕω
n + 2

∫
X

(µ, V 1,0
v � Vf,ϕ)gϕω

n

+

∫
X

v(Vf,ϕ � Vf,ϕ, µ)gϕω
n

And

(−
∫
X

v∆fϕgϕω
n)′ =

(∫
X

(
ω(Jdv, dfϕ) + vω(Jdfϕ, dfϕ)

)
gϕω

n

)′
=

∫
X

(µ, Vf,ϕ � V 1,0
v )gϕω

n +

∫
X

v(µ, Vf,ϕ � Vf,ϕ)gϕω
n,
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(−
∑
α

∫
X

vfα∆θαgϕω
n)′ =

(∫
X

∑
αβ

vfαβω(Jdfβ, dfα)gϕω
n

+
∑
α,β

vfαfβω(Jdfβ, dfα)gϕω
n +

∑
α

fϕω(Jdfα, dv)gϕω
n
)′

=
∑
α,β

∫
X

fαβ(µ, ξα � ξβ)gϕω
n +

∫
X

v(µ, Vf,ϕ � Vf,ϕ)gϕω
n

+

∫
X

(µ, Vf,ϕ � V 1,0
v )gϕω

n

By summing up the results above, we have

(v,R′ϕ − (Vf,ϕ(fϕ))′ − (∆fϕ)′ −
∑
α

(fα∆θα)′)gϕ

=

∫
X

v
(
R′ϕ − (Vf,ϕ(fϕ))′ − (∆fϕ)′

)
gϕω

n = (µ,LvJ)gϕ .

The proof is concluded.
Then the dual of P is R′f,ϕ − (Vf,ϕ(fϕ))′. This concludes the proof.

�

We have the following formal picture. By Kempf-Ness, the stable points in GIT quotient
GC � G corresponds to the symplectic quotient m−1(0)/G. We should expect the solution to
(1.6) is equivalent to a stability condition. Meanwhile, the generalized Mabuchi functional can
by considered as a Kempf-Ness functional (compatible with (4.8))

M(ϕ) =

∫ 1

0

dt∫
X

ϕ̇
(
−Rϕ +R + ∆fϕ +

R

n

∑
α

fαLξαϕ+ Vf,ϕ(fϕ) +
∑
α

fαLξα(log((ddcϕ)n))
)
gϕ

(ddcϕ)n

n!

Since the Kempf-Ness functional is “convex”(the Hamiltonian of m can be considered as the
Kähler potential of the moduli space), we should expect the generalized Mabuchi-functional is
convex along the weak geodesic.

When L = −KX , let hϕ = − log((ddcϕ)n) − ϕ be the Ricci potential. Then m = ∆(hϕ −
fϕ) + Vf,ϕ(hϕ − fϕ) = 0 implies hϕ − fϕ = 0, which furthermore implies the g-soliton equation
Ricϕ = ddcϕ+ ddcfϕ.

Remark 9.3. It seems to us that the formula for Mabuchi functionals used in [46] from[46,
Definition 2.21, (2.47) ] is not correct, since its variation does not give the correct soliton
equation.

Moreover, it appears that in [13] to make some argument work, the Mabuchi functional from
[13, Page 23] should be defined as FV (MAg(ϕ)) instead of FV (MA(ϕ)).

10. Appendix: Non-Archimedean Entropy and generalized Mabuchi functional

In this appendix, we will define the non-Archimedean entropy HNA
g,Θ and generalized Mabuchi

functional MNA. We will also show the slope formulas for them. For simplicity, we will only
consider the case when X is a smooth Fano manifold, and Θ = 0, D = 0. In this case,
dµ0 = e−ϕ0 , and Hg,Θ is reduced to Hg. See [86, 50] for related discussions.
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10.1. Polynomial g. First, assume g =
∑

~k a~k
∏r

α=1 θ
kα
α is a polynomial, where ~k is in a finite

set.

Hg(ϕ) =

∫
X

log(
gϕ(ddcϕ)n/n!

dµ0

)gϕ
(ddcϕ)n

n!

=
∑
~k

a~kH
[~k](ϕ)

(10.1)

where

H[~k](ϕ) =

∫
X

log(
gϕ(ddcϕ)n/n!

dµ0

)
∏
α

θkαα
(ddcϕ)n

n!

=

∫
X[~k]

log(
(ddcϕ)n/n!

dµ0

)
((ddcϕ)[~k])n+k

(n+ k)!
+

∫
X[~k]

log(gϕ)
((ddcϕ)[~k])n+k

(n+ k)!

(10.2)

Recall that, for a test configuration (X ,L) that dominates X × C1, for the entropy∫
X

log( (ddcϕ)n/n!
e−ϕ0

) (ddcϕ)n

n!
, the corresponding non-Archimedean entropy is defined as [16]

(10.3)

∫
Xdiv

Q

AX(v)MANA(φ) = Klog

X/P1 · L
·n − ρ∗(K log

XP1/P1) · L·n

where ρ : X 99K X × C, (X ,L) is the compactified test configuration.
Following the same idea, we give the non-Archimedean definition for the entropy functional

in our setting.

Definition 10.1. Let (X ,L) be a test configuration that dominates X × C1. Define the non-

Archimedean version entropies for H[~k],Hg as

(H[~k])NA(L[~k]) = (Klog

X/P1)[~k] · (L[~k]
)·(n+k) − (ρ[~k])∗(K log

XP1/P1)[~k] · (L[~k]
)·(n+k)

HNA
g (L) =

∑
~k

a~k(H
[~k])NA(L[~k])

(10.4)

Remark 10.2. K
[~k]
X and K

X[~k] are two different Cartier divisors in general. −K [~k]
X is ample

under our construction. However, X [~k] is in general not a Fano variety.

Recall the generalized Mabuchi functional

M(φ) = Hg(ϕ) +

∫
X

(ϕ− ϕ0)gϕ
(ddcϕ)n

n!
− Eg(ϕ)(10.5)

and ∫
X

(ϕ− ϕ0)gϕ
(ddcϕ)n

n!
=
∑
~k

a~k

∫
X

(ϕ− ϕ0)
∏
α

θkαα
(ddcϕ)n

n!

=
∑
~k

a~k

∫
X[~k]

(ϕ[~k] − ϕ[~k]
0 )

((ddcϕ)[~k])n+k

(n+ k)!
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and ∫
X[~k]

log(
(ddcϕ)n

e−ϕ0
)
((ddcϕ)[~k])n+k

(n+ k)!
+

∫
X[~k]

(ϕ[~k] − ϕ[~k]
0 )

(ddcϕ)n+k

(n+ k)!
− E[~k](φ[~k]) =

〈(log((ddcϕ)n))[~k], ϕ[~k], · · · , ϕ[~k]〉
X[~k] − 〈ϕ[~k]

0 , · · · , ϕ
[~k]
0 〉X[~k]

+ (〈ϕ[~k], · · · , ϕ[~k]〉
X[~k] − 〈ϕ[~k]

0 , · · · , ϕ
[~k]
0 〉X[~k])− E[~k](ϕ[~k])

where 〈· · ·〉
X[~k] denotes the metric on the Deligne pairing. Since we have chosen ϕ0 as the

reference metric, 〈ϕ[~k]
0 , · · · , ϕ

[~k]
0 〉X[~k] = 0. The calculation above inspires the following definition.

Definition 10.3. Let (X ,L) be a test configuration. We define the non-Archimedean version
of the generalized Mabuchi functional as

(10.6) (M[~k])NA(L[~k]) = H[~k](L[~k])− I[~k](L[~k]) + J[~k](L[~k])

which is equivalent to

(M[~k])NA(L[~k]) = H[~k](L[~k]) + (D[~k] · (L[~k])·n+k − E[~k](L[~k])

= H[~k](L[~k]) + (L[~k]
)·n+k+1 + (ρ[~k])∗K

[~k]
X · (L

[~k]
)·n+k − E[~k](L[~k])

= (Klog

X/P1)[~k] · (L[~k]
)·n+k + (n+ k)E[~k](L[~k]

)

(10.7)

MNA
g (L) =

∑
~k

a~k(M
[~k])NA(L[~k])(10.8)

10.2. continuous g. In this subsection, we will first show several estimates that will be used
later, then define HNA

g ,MNA for continuous g. At last, we will prove the corresponding slope

formulas. Let gi be a sequence of polynomials that converges to g in C0(P )-norm. Let (X ,L)
be an ample normal test configuration that dominates X ×C. Let eΨref be a smooth metric on
Klog
X/C. This auxilliary metric is introduced in [16] in the proof of the slope formulas. We will

use it in the proof of the estimates below.

Lemma 10.4. There exists a C > 0, such that

(10.9) |
∫
X

log(
(ddcϕ)n/n!

eψref
)giϕ

(ddcϕ)n

n!
| < C(log |t|+ 1)

Proof. The constant C may change from line by line in the proof below. By the proof of [16,

Lemma 3.10], there exists a C > 0, such that log( (ddcϕ)n/n!

eψref
) < C uniformly for all t. Then

|
∫
X

log(
(ddcϕ)n/n!

eψref
)giϕ

(ddcϕ)n

n!
|

≤ |
∫
X

(log(
(ddcϕ)n/n!

eψref
)− C)giϕ

(ddcϕ)n

n!
|+ C

∫
X

giϕ
(ddcϕ)n

n!

≤ sup
P

(gi)|
∫
X

(log(
(ddcϕ)n/n!

eψref
)− C)

(ddcϕ)n

n!
|+ C

≤ C(|
∫
X

log(
(ddcϕ)n/n!

eψref
)
(ddcϕ)n

n!
|+ 1)

< C(log |t|+ 1)

The last inequality is by [16, Lemma 3.10]. �
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Lemma 10.5. For any ε > 0, there exists an i0 > 0, such that for any i, j > i0,

(10.10) |
∫
X

log(
eψref

dµ0

)(giϕ − gjϕ)
(ddcϕ)n

n!
| < ε(t+ 1)

Proof. Since gi converges to g in C0(P ), for any ε′ > 0, there exists an i0, such that for any

i, j > i0, |gi− gj| < ε′. Since we restrict to the case that X is a Fano manifold, dµ0 = e−h0 ddcϕn0
n!

is smooth and non-degenerate. Since eψref is a smooth metric on Klog

X/P1 , there exists a C > 0

such that log(ψref

dµ0
) < C uniformly. Then

|
∫
X

log(
eψref

dµ0

)(giϕ − gjϕ)
(ddcϕ)n

n!
|

≤ |
∫
X

(log(
eψref

dµ0

)− C)(giϕ − gjϕ)
(ddcϕ)n

n!
|+ Cε′

≤ Cε′(|
∫
X

log(
eψref

dµ0

)
(ddcϕ)n

n!
|+ 1)

≤ Cε′(C ′t+ 1)

where the last line is by [16, Lemma 3.9]. �

Lemma 10.6. (H[~k])
′∞(Φ) = (H[~k])NA(φ), (M[~k])

′∞(Φ) = (M[~k])NA(φ).

Proof. Since eψref , e−ϕ0 are smooth metrics on Klog

X/P1 , (ρ)∗K log
XP1/P1 , by [16, Lemma 3.9], we have

(10.11) 〈ψ[~k]
ref , ϕ

[~k], · · · , ϕ[~k]〉 − 〈ψ[~k]
ref,0, ϕ

[~k]
0 , · · · , ϕ

[~k]
0 〉 = t(Klog

X/P1)[~k] · (L[~k])·(n+k) +O(1)

(10.12) 〈ϕ[~k]
0 , ϕ

[~k], · · · , ϕ[~k]〉 − 〈ϕ[~k]
0 , ϕ

[~k]
0 , · · · , ϕ

[~k]
0 〉 = t(ρ[~k])∗(K log

XP1/P1)[~k] · (L[~k])·(n+k) +O(1)

Then

(H[~k])
′∞(Φ) = lim

t→∞

1

t

∫
X[~k]

log(
(ddcϕ)n/n!

e−ϕ0
)
(ddcϕ[~k])n+k

(n+ k)!

= lim
t→∞

1

t

( ∫
X[~k]

log(
(ddcϕ)n/n!

eψref
)
(ddcϕ[~k])n+k

(n+ k)!
+

∫
X[~k]

log(
eψref

eϕ0
)
(ddcϕ[~k])n+k

(n+ k)!

)
= lim

t→∞

1

t

(
〈ψ[~k]

ref , ϕ
[~k], · · · , ϕ[~k]〉 − 〈ψ[~k]

ref,0, ϕ
[~k]
0 , · · · , ϕ

[~k]
0 〉 − (〈ϕ[~k]

0 , ϕ
[~k], · · · , ϕ[~k]〉 − 〈ϕ[~k]

0 , ϕ
[~k]
0 , · · · , ϕ

[~k]
0 〉)

)
= (Klog

X/P1)[~k] · (L[~k])·(n+k) − (ρ[~k])∗(K log
XP1/P1)[~k] · (L[~k])·(n+k)

where the equality of the second and third line is because of Lemma 10.4. The proof for (M[~k])NA

follows similarly. �

Definition 10.7. For a continuous function g, we define the non-Archimedean entropy and
generalized Mabuchi functional as

(10.13) HNA
g (L) = lim

i→∞
HNA
gi

(L)

(10.14) MNA(L) = lim
i→∞

MNA
gi

(L)

where MNA
gi

is the generalized Mabuchi functional with respect to gi.



YAU-TIAN-DONALDSON CONJECTURE FOR GENERALIZED KÄHLER-RICCI SOLITONS 55

Proposition 10.8. The limits in (10.13),(10.14) converge. And we have the slope formulas

(10.15) H
′∞
g (Φ) = HNA

g (φ)

(10.16) M
′∞(Φ) = MNA(φ)

Proof. By Lemma 10.6, for each polynomial gi, H
′∞
gi

(Φ) = HNA
gi

(φ). Let i0 be sufficiently large,
and i, j > i0. By Lemma 10.4, Lemma 10.5,

|Hgi(ϕ)−Hgj(ϕ)| ≤

|
∫
X

log(
(ddcϕ)n/n!

eψref
)giϕ

(ddcϕ)n

n!
|+ |

∫
X

log(
(ddcϕ)n/n!

eψref
)gjϕ

(ddcϕ)n

n!
|

+ |
∫
X

log(
eψref

dµ0

)(giϕ − gjϕ)
(ddcϕ)n

n!
| ≤ C(εt+ log(t) + 1)

Then 1
t
Hgi(ϕ) converges to H

′∞
gi

(Φ) = HNA
gi

(φ) uniformly. Specifically, |HNA
gi

(φ) −HNA
gj

(φ)| <
Cε. Then HNA

gi
(φ) is a Cauchy sequence, which converges to a limit HNA

g (φ). And by the

dominated convergence theorem, H
′∞
g (Φ) = HNA

g (φ).

The statement for MNA can be proved similarly. �
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