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Abstract

Let S be a smooth projective variety and ∆ a simple normal crossing Q-divisor with
coefficients in (0, 1]. For any ample Q-line bundle L over S, we denote by E (L) the extension
sheaf of the orbifold tangent sheaf TS(− log(∆)) by the structure sheaf OS with the extension
class c1(L). We prove the following two results:

(1) if −(KS + ∆) is ample and (S,∆) is K-semistable, then for any λ ∈ Q>0, the extension
sheaf E (λc1(−(KS + ∆))) is slope semistable with respect to −(KS + ∆);

(2) if KS + ∆ ≡ 0, then for any ample Q-line bundle L over S, E (L) is slope semistable
with respect to L.

These results generalize Tian’s result where −KS is ample and ∆ = ∅. We give two applica-
tions of these results. The first is to study a question by Borbon-Spotti about the relationship
between local Euler numbers and normalized volumes of log canonical surface singularities.
We prove that the two invariants differ only by a factor 4 when the log canonical pair is an
orbifold cone over a marked Riemann surface. In particular we complete the computation of
Langer’s local Euler numbers for any line arrangements in C2. The second application is to
derive Miyaoka-Yau-type inequalities on K-semistable log-smooth Fano pairs and Calabi-Yau
pairs, which generalize some Chern-number inequalities proved by Song-Wang.
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1 Introduction

The Hitchin-Kobayashi correspondence states that a holomorphic vector bundle over a Kähler
manifold admits a Hermitian-Einstein metric if and only if it is slope polystable. This was
known by the works of Narashimhan-Seshadri, Donaldson and Uhlenbeck-Yau. Correspond-
ingly, the Yau-Tian-Donaldson conjecture for Fano manifolds states that a smooth Fano
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manifold admits a Kähler-Einstein metric if and only if it is K-polystable. Due to many
people’s work, the latter conjecture has been solved (see [39, 1, 9, 40]). A Kähler-Einstein
metric is naturally a Hermitian-Einstein metric on the tangent bundle. So if a Fano manifold
admits a Kähler-Einstein metric then its tangent bundle is slope polystable. In [37], Tian
discovered a deeper phenomenon that the stability or the instability of the some natural
extension sheaf of the tangent sheaf can be used to bound the maximal possible positive
lower bound of the Ricci curvature of Kähler metrics in 2πc1(S). In particular he proved
that

Theorem 1.1 ([37]). 1. If a Fano manifold S admits a Kähler-Einstein metric, then
there is a natural Hermitian-Einstein metric hE on the extension bundle E of TS by the
trivial line bundle with the extension class c1(S). In particular, E is slope polystable.

2. If for any t ∈ (0, 1], there exists a Kähler metric in 2πc1(S) with Ric(ω) ≥ tω. Then
E is slope semistable.

Tian’s construction will be reviewed in section 3. In this note, we will first generalize
Theorem 1.1 to the logarithmic setting. To state the result, we first recall the following
standard definition.

Definition 1.2. Let S be a normal projective variety and ∆ =
∑
i δi∆i be a Q-divisor with

δi ∈ (0, 1]. We assume (S,∆) has log canonical singularities.

1. (S,∆) is a log-Fano pair if −(KS + ∆) is an ample Q-Cartier divisor and (S,∆) has
klt singularities.

2. (S,∆) is a log-Calabi-Yau pair (log-CY) if (KS + ∆) ≡ 0.

We can state our first result and refer to [39, 11, 25] for the definition of K-(semi)stability
of log-Fano pairs.

Theorem 1.3. Let (S,∆) be a log-Fano pair that is log smooth (i.e. S is smooth and
∆ is simple normal crossing). If (S,∆) is K-semistable, then the orbifold tangent sheaf
TS(− log ∆) is slope semistable with respect to −(KS + ∆).

Moreover, for any λ ∈ Q>0, if we let E be the extension sheaf of TS(− log ∆) by OS with
the extension class λ · c1(−(KS + ∆)), then E is slope semistable with respect to −(KS + ∆).

The first statement could be seen as the log-Fano correspondent of the semistability
results in [15], [17, Theorem C]. The techniques used in its proof is partly inspired by [7, 17].

We can prove a stronger result by weakening the log-smooth assumption (see section
3.2). We expect that a similar statement is true by just assuming that the pair (S,∆) is
K-semistable. Our proof uses continuity method as in [12, 30, 41] by introducing an auxiliary
very ample divisor and consider the Kähler-Einstein metric on (S,∆+ 1−t

m H) for t arbitrarily
close to 1. There seems to be some technical difficulty in producing such Kähler-Einstein
metrics on a general singular K-semistable Fano pair.

Similar argument can be used to prove a result in the log-Calabi-Yau case:

Theorem 1.4. Let (S,∆) be a log-Calabi-Yau pair that is log smooth. Let L be any ample
Q-line bundle on S. Then the orbifold tangent sheaf TS(− log(∆)) is slope semistable with
respect to L.

Moreover, let E = E (L) be the extension sheaf of TS(− log(∆)) by OS with the extension
class c1(L). Then E is slope semistable with respect to L.

Note that the first statement is well known if ∆ = 0, while the second statement seems
to be new even if ∆ = 0.

We will give two applications of the above results. The first one is to study a question
of Borbon-Spotti on the relation between the volume densities of Calabi-Yau metrics on log
surfaces and the local Euler numbers of log canonical singularities (see [33, 24]). In [24],
Langer introduced local Euler numbers for general log canonical surface singularities and
used it to prove a Miyaoka-Yau inequality for any log canonical surface. In an attempt to
understand Langer’s inequality using the Kähler-Einstein metric on a log canonical surface,
Borbon-Spotti conjectured recently in [3] that the volume densities of the singular Kähler-
Einstein metrics should match Langer’s local Euler numbers (at least for log terminal surface
singularities). They verified this in special examples by comparing the known values of both
sides. In another related direction, in a series of papers (see [27, 29, 31] and the references
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therein), a new notion of normalized volumes of klt singularities has been developed. It
has been proved that the normalized volume is equal to the volume density up to a factor
(dimX)dimX for any point (X,x) that lives on a Gromov-Hausdorff limit of smooth Kähler-
Einstein manifolds ([19, 32]). In view of this connection, one can formulate a purely algebraic
problem about two algebraic invariants of the singularities. This problem was already posed
by Borbon-Spotti at least in the log terminal case. We formulate the following form by
including one of Langer’s expectations (see [24, p.381]):

Conjecture 1.5 (see [3, p.37]). Let (X,D, x) be a germ of log canonical surface singularity.
Then we have

eorb(x,X,D) =

{
1
4 v̂ol(x,X,D), if (X,D) is log terminal ;

0, if (X,D) is not log terminal.
(1)

We refer to Definition 2.4 and Definition 4.1 for the definition of the two sides.
In this paper, we will confirm this conjecture for log canonical cone singularities.

Definition 1.6. (see [32]) A good C∗ action on a log pair (X,D) is a C∗-action on X that
preserves the divisor D and has a unique attractive fixed point x which is in the closure of
any C∗-orbit on X. In this case, (X◦, D◦) := (X \ {x}, D \ {x}) is a C∗-Seifert bundle over
the quotient orbifold (X,D)/C∗ := (X◦, D◦)/C∗ = (S,∆). Note that ∆ consists of both the
quotient of D and the orbifold locus of the quotient map X◦ ! S. We will also say that
(X,D) is a log orbifold cone (or simply a log cone) over (S,∆).

A log cone (X,D) is a log-Fano cone if (X,D) has klt singularities and (S,∆) is a log-
Fano pair.

A log cone (X,D) is a log-CY cone if (X,D) has log canonical singularities and (S,∆)
is log-CY.

Example 1.7. If X = C2 and the good C∗-action associated to the weight (a, b) (a, b ∈
N, gcd(a, b) = 1), then any log cone singularity covered by Definition 1.6 is of the form pair
(C2, D, 0) where D = c0{z2 = 0}+ c∞{z1 = 0}+

∑
i ciDi where Di = {uizb1 − za2 = 0}. The

corresponding quotient is given by:

(S,∆) =

(
P1,

(
c0
a

+
a− 1

a

)
{0}+

(
c∞
b

+
b− 1

b

)
{∞}+

∑
i

ci{ui}

)
, (2)

and the orbifold line bundle is given by the Q-Weil divisor L := −λ−1(KS + ∆) where
λ = a + b − c0b − c∞a − ab

∑
i ci. Note that degP1(L) = 1/(ab). Of course, (S,∆) can also

be obtained by using weighted blow up. In other words, if (Y,DY , E) ! (C2, D, 0) is the
weighted blow up with weight (a, b), where E ∼= P1 is the exceptional divisor, then we have
(S,∆) = (E,DiffE(DY )) (see [22, 31]).

Before we state our next results, we explain very roughly why the stability of extension
sheaves in Theorem 1.3-Theorem 1.4 can be applied to the log canonical cone case of con-
jecture 1.5. In [24], Langer defined local Euler numbers by using local second Chern classes
of sheaves of logarithmic co-tangent sheaves on (coverings of) log resolutions. Based on a
previous calculation of Wahl, he showed that such local second Chern classes can be effec-
tively calculated when we have a cone singularity such that the resolution is given by the
standard blow up of the vertex of the cone and the sheaf on the blow-up is the pull back of
a sheaf on the base. In this case the local second Chern class is related to the semistability
of the sheaf on the base (see Theorem 2.5). On the other hand, Wahl proved a basic fact in
[42, Proposition 3.3] that in the cone case, the logarithmic cotangent sheaf of the standard
blow-up is exactly the pull back of the extension sheaf of the co-tangent sheaf of the base
with the extension class given by the corresponding polarization. Our main observation is
that these two ingredients can be combined and generalized to the logarithmic case. As a
consequence, this allows us to apply Theorem 1.3-1.4 and Langer-Wahl’s formula to calculate
the local Euler class when we have a K-semistable log Fano cone or a log Calabi-Yau cone.
On the other hand, the normalized volumes of semistable log Fano cone singularities have
been calculate in full generality in [29, 31] (see Theorem 4.2-4.3). So we can compare and
confirm 1.5 for these log cone singularities. Next we will describe the results.
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Note that the quotient of a 2-dimensional log-Fano cone by its C∗-action is always a
marked Riemann sphere (S,∆) := (P1,

∑
i δipi) satisfying (see Lemma 2.7):

δi ∈ (0, 1] ∩Q and
∑
i

δi < 2. (3)

In this case, the K-semistabililty of (S,∆) can be completely characterized by the (closed)
Troyanov condition (see [25, Example 2], [18]):(

P1,
∑
i

δipi

)
is K-semistable ⇐⇒

∑
j 6=i

δj ≥ δi,∀i.

Proposition 1.8. Let (X,D, x) be a log-terminal singularity with a good C∗-action such that
it is an orbifold cone over (P1,

∑
i δipi). If (P1,

∑
i δipi) is K-semistable, then the Conjecture

1.5 holds true.

Combined with Langer’s calculation in ([24, Lemma 8.8]), we then see that Conjecture
1.5 is indeed true for all 2-dimensional log-Fano cones without assuming that (P1,

∑
i δipi)

is K-semistable:

Corollary 1.9. Let (X,D, x) be a 2-dimensional log-Fano cone singularity. Then the Con-
jecture 1.5 is true.

By similar argument we can apply Theorem 1.4 to confirm Conjecture 1.5 for log-CY
cone singularities:

Proposition 1.10. Assume (X,D, x) is a 2-dimensional log-CY cone. Then the Conjecture
1.5 holds true, i.e. eorb(X,D, x) = 0.

We expect the results in 1.8-1.10 to be useful to attacking the general case combined with
some degeneration/deformation techniques. To highlight our results, note that Proposition
1.8-1.10 in particular answers a question in [24, Remark on p. 387] and completes the
computation of local Euler numbers of line arrangements on C2. In other words, we now
know that the inequality for the last case considered in [24, Theorem 8.3] is indeed an identity:

Corollary 1.11. Let L1, . . . , Ln be m distinct lines in C2 passing through 0. Let D =∑m
i=1 δiLi, where 0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δm ≤ 1, and δ =

∑m
i=1 δi. If 2δm ≤ δ ≤ 2, then

eorb(0,C2, D) = (2−δ)2
4 .

Other immediate consequences of Theorem 1.3 and Theorem 1.4 are the following Chern
number inequalities for K-semistable log-smooth log-Fano pairs, and Calabi-Yau pairs. These
generalize Chern number inequalities of Song-Wang [36] and should be thought of as the log-
Fano/log-Calabi-Yau version of the Miyaoka-Yau inequality. Indeed, the use of Higgs bundle
in a proof of Miyaoka-Yau’s inequality (see [38, pp.149], [14, 17] and the reference therein)
for the log general type case is mirrored here by the use of the extension sheaf from Theorem
1.3 and Theorem 1.4. To state the result, we recall that according to [38, Lemma 2.4] and
[17, Example 3.6]), ci(S,∆), i = 1, 2 for log smooth pair (S,∆) are given by the following
expressions:

c1(S,∆) = c1(S) + ∆ ,

c2(S,∆) = c2(S) +KS ·∆ +
∑
i

δi∆
2
i +

∑
i<j

δiδj∆i ·∆j . (4)

We then have the following results:

Theorem 1.12. Let (S,∆) be a log-smooth log-Fano pair. Assume (S,∆) is K-semistable.
Then we have the following Chern-number inequality:(

2(n+ 1)c2(S,∆)− n · c21(S,∆)
)
· (−KS −∆)n−2 ≥ 0, (5)

where ci(S,∆), i = 1, 2 are logarithmic Chern classes appearing in (4).

Theorem 1.13. Let (S,∆) be a log-smooth log-Calabi-Yau pair. Let L be any nef line bundle
over S. Then we have the following Chern-number inequality:

c2(S,∆) · Ln−2 ≥ 0. (6)
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We note that the Calabi-Yau case Theorem 1.13 also follows from the work in [17]. As
in [17, Theorem B], the log-smooth condition could be weakened under suitable assumptions
of the pair (see also remark 4.5).

We remark that although the statements of the above theorems are purely algebraic, their
proofs depend heavily on the use of Kähler-Einstein metrics on log-Fano or log-Calabi-Yau
pairs. It would be interesting to give purely algebraic proofs of the above results.

Now we sketch the organization of this paper. In the next section, we recall a construction
of the pull back of orbifold (co-)tangent sheaves after taking log resolutions and ramified
coverings. This is well known and our exposition is inspired by [24, 17]. With these sheaves,
we state Langer’s definition of local Euler numbers for log canonical surface singularities. In
section 2.3 we specialize to the case of log canonical cone singularities. Here we generalize
a result of Wahl identifying the sheaf of logarithmic 1-forms on the standard blow-up of
cone singularity with the pull back of an extension sheaf on the base. This is a bridge from
Theorem 1.3-1.4 to Theorem 1.8-1.10 because the objects studied in Theorem 1.3-1.4 are just
examples of such extension sheaf. In section 3, we then extend Tian’s semistability result
and prove Theorem 1.3 and Theorem 1.4. Here we use similar argument as [17] to deal with
the technical difficulty caused by the conical singularities of Kähler-Einstein metrics on log
pairs. In the log-Fano cone case, we will first prove the polystable case in Theorem 3.1 and
then use a perturbative approach to deal with the K-semistable case in Theorem 3.5. In
section 3.2, we also prove a generalization of Theorem 1.3 for a class of singular log-Fano
pairs. In section 3.3, we prove Theorem 1.4.

In section 4.1, we recall the normalized volume of log terminal singularities. Combining
the results from previous sections and the properties/calculations of the invariants for log
canonical cone singularities, we complete the proof of Proposition 1.8, Corollary 1.9 and
Proposition 1.10.

In section 4.2, we prove Theorem 1.12 (resp. 1.13) by combining Theorem 1.3 (resp. 1.4)
and the Bogomolov-Gieseker inequality for slope semistable vector bundles.

Acknowledgement: The author is partially supported by NSF (Grant No. DMS-1405936)
and an Alfred P. Sloan research fellowship. The author would like to thank Martin de Borbon
and Christiano Spotti for useful comments and the suggestion of adding the example 1.7,
and to thank Henri Guenancia and Behrouz Taji for their interest and especially to Behrouz
Taji for very helpful comments and suggestions about orbifold structures. His thanks also go
to Yuchen Liu, Xiaowei Wang and Chenyang Xu for helpful discussions. The author would
like to thank Professor Gang Tian for his interest in this work and constant support through
the years.

2 Pull back of orbifold (co-)tangent sheaves

2.1 General constructions

We first define the pull back of the sheaf of logarithmic 1-forms along Q-divisors by combining
the constructions in [24, 17]. Let (X,x) be an (n + 1)-dimensional germ of normal affine
variety and let D =

∑
i δiDi be a Q-divisor with δi ∈ [0, 1]. Choose a log resolution µX :

(X̃, D̃ = (µX)−1
∗ D,Ex) ! (X,D, x) where Ex =

∑
j Ej is a simple normal crossing divisor

that is contracted to x.
By Kawamata’s covering lemma, we can choose a very ample divisor HX̃ over X̃ such

that HX̃ + D̃+Ex has simple normal crossings and construct a finite morphism σX̃ : Ỹ ! X̃
of degree N which is a ramified Galois cover with group G and it satisfies:

1. σX̃ is étale over the complement of
∑
i D̃i +HX̃ .

2. σ∗
X̃

(D̃ +HX̃ + Ex) is a simple normal crossing Weil divisor.

3. Near any point y0 ∈ Ỹ , there exists a G-invariant open set U 3 y0, a system of
coordiantes {wk} centered at y0, a system of coordinates {zk} near σX̃(y0) and an
integer p = p(y0) such that, with respect to these coordinates, the map σX̃ is locally
expressed as:

(w1, . . . , wp, wp+1, . . . , wn+1) 7!

(w1, · · · , wp, wNp+1, . . . , w
N
n+1) = (z1, · · · , zn+1).
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Let σX : Y ! X be the Stein factorization of the composition µX ◦σX̃ : Ỹ ! X. Then σ∗XD
is an integral Weil divisor and we have the commutative diagram:

Ỹ Y

X̃ X

µY

σX̃ σX

µX

Denote D′i = σ−1

X̃
Di and H ′

X̃
= σ−1

X̃
HX̃ . By construction, the ramification divisor of σX̃ is

equal to (N − 1)
∑
iD
′
i + (N − 1)H ′

X̃
. In other words we have the following identity:

KỸ = σ∗
X̃
KX̃ +

∑
i

(N − 1)D′i + (N − 1)H ′
X̃

Hence the pull back of the log canonical divisor KX̃ + D̃ + Ex under σX̃ is given by:

σ∗
X̃

(
KX̃ + D̃ + Ex

)
= KỸ − (N − 1)

(∑
i

D′i +H ′
X̃

)
+
∑
i

NδiD
′
i +
∑
j

E′j

= KỸ +
∑
i

(1−N +Nδi)D
′
i +
∑
j

E′j + (1−N)H ′
X̃

(7)

=: KỸ +G. (8)

Notations 2.1. Write G =
∑
i diGi where each irreducible component of supp(G) is either

equal to D′i, E
′
j or H ′

X̃
, and di is equal to 1−N +Nδi, 1 or 1−N correspondingly.

Note that if δi = 1, then di = 1−N+Nδi = 1, while if δi ∈ [0, 1), then di = 1−N+Nδi ≤ 0.

In the language of [17] (see Definition 2.13), σX̃ is a global adapted morphism defining an

orbifold structure on the pair (X̃, D̃ + Ex). This explains the terminology in the following
definition.

Definition 2.2. With the above notations, the pull back of the orbifold tangent sheaf of
(X̃, D̃ + Ex) with respect to σX̃ , denoted by σ∗

X̃
Ω1
X̃

(log(D̃ + Ex)), is defined to be the OỸ -
module locally given by:

n+1∑
i=p+1

OỸ w
−di
i dwi + σ∗

X̃
Ω1
X̃
.

We will also denote this sheaf by Ω1
Ỹ

(log(G)) since most of the time we will calculate directly

over Ỹ .
Dually, the pull back of the orbifold tangent sheaf of (X̃, D̃ + Ex) with respect to σX̃ ,

denoted by σ∗
X̃
TX̃(− log(D̃ + Ex)), is defined to be the OỸ -module locally given by:

n+1∑
i=p+1

OỸ w
di
i

∂

∂wi
+

p∑
i=1

OỸ
∂

∂wi
.

We will also denote this sheaf by TỸ (− log(G)).

Remark 2.3. 1. We have following identities which shows that the above definition is the
same as in [24, 2]:

w−dii dwi =
wNδi−dii dwi

wNδii

=
wN−1
i dwi

wNδii

=
σ∗
X̃
dzi

wNδii

.

2. By definition, the above sheaves depend on the choice of the log resolution (X̃, D̃) !
(X,D) and the ramified covering Ỹ ! X̃. However they transform naturally if dif-
ferent choices are made in the construction. So these sheaves should be considered as
representations of orbifold (co-)tangent sheaves associated to the original pair (X,D)
(called “virtual sheaves” in [24, 2]). See also appendix 2.3.1.
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2.2 Euler numbers for log canonical surface singularities

In this section, we assume that (X,D, x) is a log canonical surface singularity and carry out
the construction described in the previous section.

Definition-Proposition 2.4 ([24]). Let (X,D, x) be a log canonical surface singularity.
With the notations in previous section, the local Euler number of the pair (X,D) at x is
defined by (see the following remark):

eorb(x,X,D) = −
c2

(
µY , σ

∗
X̃

Ω1
X̃

((µX)−1
∗ D + Ex)

)
deg σ

. (9)

This is well defined and does not depend on the choice of the log resolution µX : (X̃, µ−1
∗ (D), Ex)!

(X,D, x) or the covering σX̃ : Ỹ ! X̃.

The numerical invariant c2(µY ,F ) := c2(µY ,F ∗∗) on the right-hand-side of (9) (called
local Chern class) was defined in [24] for any locally free sheaf F over Ỹ . In the current
paper, it’s not very important what is the exact formula for the c2. We just mention that this
term arises in Langer’s proof of Miyaoka-Yau’s inequality for general log canonical surfaces
and it’s conjectured to coincide with Wahl’s local second Chern class from [43] when D = 0.
This is indeed the case for surface cone singularities and follows essentially from Wahl’s
calculations in [43]. Here we only need the following formula from [24], which motivates us
to consider the case of cone singularities in the following subsection.

Theorem 2.5 ([24, Theorem 1.10]). Let E be a rank-2 vector bundle on a smooth projective
curve C and let L be a line bundle with degree d > 0. Set e = det E and

s̄ = s̄(E ) = max

(
1

2
e,max{deg L : L ⊂ E }

)
. (10)

Let X̃ be the total space of a line bundle L−1 and let π : X̃ ! C the canonical projection.
Let µX : X̃ ! X be the contraction of the zero section of L−1. Then

c2(µX , π
∗E ) = −s̄(e− s̄)/d ≥ − e

2

4d
.

In particular, if E is semistable then c2(µ, π∗E ) = − e2

4d = − c1(E )2

4d .

A. Langer in [24, section 8] used the above formula to calculate eorb for line arrange-
ments (C2,

∑m
i=1 δiLi) with m ≤ 3, which was used in turn to calculate the eorb for any

log canonical pair (X,D) with a fractional boundary ([24, section 9]). As mentioned in the
introduction, our semistability result will allow to calculate Langer’s local Euler numbers for
line arrangements consisting of any number of lines.

We shall need one important property of local Euler numbers:

Lemma 2.6 ([24, Lemma 7.1]). If σ : (X,D, x)! (Z,DZ , z) is a finite proper morphism of
normal proper surface germs and KX +D = σ∗(KZ +DZ) for some boundary Q-divisor DZ

on Z, then
eorb(x,X,D) = deg(σ) · eorb(z, Z,DZ).

2.3 Log cone singularity

Here we specialize the constructions in 2.1 to the case of cone singularities. Let S be a normal
projective variety of dimension n, L an ample Cartier divisor on S and X = C(S,L) =
SpecC

(
⊕+∞
k=0H

0(S, kL)
)

the corresponding affine cone. Let ∆ =
∑
i δi∆i be an effective Q-

divisor and D = C(∆, L) the corresponding Q-divisor on C(S,L). We will assume −(KS+∆)
is Q-Cartier. Let x ∈ X denote the closed point of the cone defined by the maximal ideal⊕+∞

k=1H
0(S, kL). Then a basic fact for us is:

Lemma 2.7 ([22, Lemma 3.1]). With the above notations, (X,D) has klt singularities if
and only if −(KS + ∆) = λL with λ > 0 and (S,∆) is klt. (X,D) is has log canonical
singularities if and only if −(KS + ∆) = λL with λ ≥ 0 and (S,∆) is log canonical.
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Let X̂ ! X denote the total space of the line bundle L−1 and πS : X̂ ! S denote the
natural projection. Let µ̂X : X̂ ! X denote the birational contraction of the zero section
of L−1. The unique exceptional divisor of µ̂X is isomorphic to S. Now we choose a log
resolution µS : (S̃, ∆̃) ! (S,∆) and (X̃, D̃) := (X̂, π−1

S (∆)) ×S S̃ with a natural projection

µX̂ : X̃ ! X̂. X̃ is just the total space of the line bundle µ∗SL with the natural projection

πS̃ : X̃ ! S̃. The natural morphism µX := µ̂X ◦ µX̂ : (X̃, D̃) ! (X,D) is a log resolution
whose exceptional divisor over x is given by:

Ex = µ−1
X (x) ∼= S̃.

Now we apply Kawamata’s covering lemma to (S̃, ∆̃) as in the previous subsection. In other
words, we choose a very ample divisor H such that the support of ∆̃ +H has simple normal
crossings and construct a finite morphism σS̃ : S′ ! S̃ of degree N which is a ramified Galois
cover with group G and it satisfies:

(i) σS̃ is étale over the complement of
∑
i ∆̃i +H.

(ii) σ∗
S̃

(∆̃ +H) is a simple normal crossing Weil divisor.

(iii) Near any point y0 ∈ S′, there exists a G-invariant open set U 3 y0, a system of
coordiantes {wk} centered at y0, a system of coordinates {zk} near σS̃(y0) and an
integer p = p(y0) such that, with respect to these coordinates, the map σS̃ is locally
expressed as:

(w1, . . . , wn) 7! (w1, . . . , wp, w
N
p+1, . . . , w

N
n ) = (z1, . . . , zp, zp+1, . . . , zn).

We denote fiber product S′ ×S̃ X̃ by Ỹ . Then Ỹ is nothing but the total space of σ∗
S̃
µ∗SL,

and we have the following commutative diagram:

Ỹ
σX̃−−−−! X̃

µX̂−−−−! X̂
µ̂X−−−−! X

πS′

y πS̃

y πS

y
S′

σS̃−−−−! S̃
µS−−−−! S

(11)

As before, we have the identity:

σ∗
S̃

(
KS̃ + ∆̃

)
= KS′ +

∑
i

(1−N +Nδi)∆
′
i − (N − 1)H ′ (12)

=: KS′ +B. (13)

Notations 2.8. Write B =
∑
i diBi. Each irreducible component of supp(B) is equal to ∆′i

or H ′, and di is equal to 1−N +Nδi or 1−N correspondingly.

Similar to 2.2, we define:

Definition 2.9. The pull back of the orbifold cotangent sheaf of (S̃, ∆̃) with respect to σS̃,

denoted by σ∗
S̃

Ω1
S̃

(log(∆̃)), is defined to be the OS′-module locally given by:

n∑
i=p+1

OS′ · w−dii dwi + σ∗
S̃

Ω1
S̃
.

We will also denote such a sheaf by Ω1
S′(log(B)).

Dually, the pull back of the orbifold tangent sheaf of (S̃, ∆̃) with respect to σS̃, denoted

by σ∗
S̃
TS̃(− log(∆̃)), is defined to be the OS′-module locally given by:

n∑
i=p+1

OS′ · wdii
∂

∂wi
+

p∑
i=1

OS′ ·
∂

∂wi
.

We will also denote such a sheaf by TS′(− log(B)).
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By definition, there is a natural injection of the sheaves σ∗
S̃

Ω1
S̃
↪! σ∗

S̃
Ω1
S̃

(log(∆̃)). We will
denote by φ the induced map on the cohomologies:

φ : H1(S′, σ∗
S̃

Ω1
S̃

)! H1(S′, σ∗
S̃

Ω1
S̃

(log(∆̃))) = H1(S′,Ω1
S′(log(B))). (14)

On the other hand, in Definition 2.2 of the previous subsection, we have defined
σ∗
X̃

Ω1
X̃

(log(D̃ + Ex)) = Ω1
X′(log(G)) and its dual σ∗

X̃
TX̃(− log(D̃ + Ex)) = TX′(− log(G)).

The main goal in this section is to prove the following result which generalizes [42, Proposition
3.3].

Proposition 2.10. With the above notations, there is an exact sequence on Ỹ :

0 // π∗S′σ
∗
S̃

Ω1
S̃

(log(∆̃)) // σ∗
X̃

Ω1
X̃

(log(D̃ + Ex)) // OỸ // 0

0 // π∗S′Ω
1
S′(log(B)) // Ω1

Ỹ
(log(G)) // OỸ // 0

(15)

If we let E ∨S′ = σ∗
X̃

Ω1
X̃

(log(D̃ + Ex)) ⊗OỸ OS′ , then the above sequence is the pull back
via πS′ via the following exact sequence on S′:

0 // σ∗
S̃

Ω1
S̃

(log(∆̃)) // E ∨S′ // OS′ // 0

0 // Ω1
S′(log(B)) // E ∨S′ // OS′ // 0.

(16)

Moreover, the extension class of the exact sequence (21) is given by Φ(c1(L)) where Φ is the
composition of the following natural homomorphism of cohomology groups ( δ is the natural
connecting morphism for the exact sequence and φ was given in (14)):

H1(S̃,O∗
S̃

)
δ
−! H1(S̃,Ω1

S̃
)
σ∗
S̃−! H1(S′, σ∗

S̃
Ω1
S̃

)

φ
−! H1(S′, σ∗

S̃
Ω1
S̃

(log(∆̃))) = H1(S′,Ω1
S′(log(B))).

Remark 2.11. If ∆̃ = 0, then we get back the result in [42, Proposition 3.3], whose proof
will be generalized in the following proof.

Proof. We choose an affine variable ξ along the fibre of the line bundle: σ∗
S̃
µ∗SL. Then by

definition, upstairs on Ỹ , σ∗
X̃
TX̃(− log(D̃ + Ex)) is locally spanned by:

∂

∂w1
, . . . ,

∂

∂wp
, w

dp+1

p+1

∂

∂wp+1
. . . , wdnn

∂

∂wn
, ξ
∂

∂ξ
.

Dually σ∗
X̃

Ω1
X̃

(log(D̃ + Ex)) is spanned by:

dw1, . . . , dwp, w
−dp+1

p+1 dwp+1, . . . , w
−dn
n

dwn
wn

,
dξ

ξ
.

Formally we have for i = p+ 1, . . . , n,

(wi)
di

∂

∂wi
= (zi)

di/NN(wi)
N−1 ∂

∂zi
= N(zi)

(di/N)+(1−N−1) ∂

∂zi
= Nzδii

∂

∂zi
.

For the simplicity of notations, we let δ1 = · · · = δp = 0 and write the generators above
simply as:

for TỸ (− log(G)) = σ∗
X̃
TX̃(− log(D̃ + Ex)) :

{
zδii

∂

∂zi
, ξ
∂

∂ξ

}
=:
{
D̂i, D̂ξ

}
;

for Ω1
Ỹ

(logG) = σ∗
X̃

Ω1
X̃

(log(D̃ + Ex)) :

{
dzi

zδii
,
dξ

ξ

}
=:
{
d̂i, d̂ξ

}
.
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Now consider coordinate change over S̃ on two overlapping coordinate neighborhoods Uα
and Uβ :

ξβ = fαβξ
α, zβi = Fiαβ(zα).

Then we can calculate the change of basis of TỸ (− log(G)) over Y (although we calculate
formally on X, but they can all be pulled back to Y ):

D̂α
i := (zαi )δi

∂

∂zαi
= (zαi )δi

∂zβj
∂zαi

∂

∂zβj
+ (zαi )δi

∂fαβ
∂zαi

ξα
∂

∂ξβ

=
(zαi )δi

(zβj )δj

∂zβj
∂zαi

D̂β
j + (zαi )δif−1

αβ

∂fαβ
∂zαi

D̂β
ξ ;

D̂β
ξ = ξβ

∂

∂ξβ
= ξα

∂

ξα
=: D̂α

ξ .

Dually we have the following change of basis for Ω1
Ỹ

(log(G)):

d̂βj =
∂zβj
∂zαi

(zαi )δi

(zβj )δj
d̂αi ,

dξβ

ξβ
=
dξα

ξα
+ (zαi )δif−1

αβ

∂fαβ
∂zαi

d̂αi .

From the above change of basis, we easily get the following two exact sequences which are
dual to each other:

0 −! OỸ
p
−! TỸ (− log(G))

q
−! π∗S′TS′(− log(B)) −! 0

0 −! π∗S′Ω
1
S′(log(B))

q∨

−! Ω1
Ỹ

(log(G))
p∨

−! OỸ −! 0.

Indeed, the sheaf morphisms in the above exact sequences are locally given by:

p(1) = D̂ξ, q(D̂i) = D̂i, q(D̂ξ) = 0;

q∨(π∗d̂i) = d̂i, p∨(d̂i) = 0, p∨(d̂ξ) = 1.

If we let ES′ = TỸ (− log(G))⊗OỸ OS′ , then these exact sequences are the pull-back via
πS′ of two dual exact sequences:

0 −! OS′ −! ES′ −! TS′(− log(B)) −! 0 (17)

0 −! Ω1
S′(log(B)) −! E ∨S′ −! OS′ −! 0. (18)

Moreover, the extension class of (18) is given by the Čech cocycle:

cαβ =
dξβ

ξβ
− dξα

ξα
= (zαi )δif−1

αβ

∂fαβ
∂zαi

d̂αi = σ∗
S̃

(
f−1
αβ

∂fαβ
∂zαi

dzαi

)
.

Because {f−1
αβ

∂fαβ
∂zαi

dzαi } is the image of c1(L) under the natural map δ : H1(O∗
S̃

)! H1(Ω1
S̃

)

and we have a natural map φ(δ(c1(L))) given in (14), we easily get the last statement.

From now on in this section, we assume that (S,∆ =
∑
i δi∆i) is a log smooth pair.

Then in the construction of the previous section, we can choose (S̃, ∆̃) = (S,∆) and Ex =
µ−1
X (x) ∼= S and the commutative diagram in (11) simplifies to become:

Ỹ
σX̃−−−−! X̃

µX−−−−! X

πS′

y πS

y
S′

σS−−−−! S

(19)

The following is then a corollary of Proposition 2.10 in the case (S,∆) is log smooth. Note
that when (S,∆) = (P1,

∑
i δipi), it also recovers the first statement of [24, Lemma 8.8].
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Corollary 2.12. Assume (S,∆) is log smooth. With the same notations as Proposition
2.10, there is an exact sequence on Ỹ :

0 // π∗S′σ
∗
SΩ1

S(log(∆)) // σ∗
X̃

Ω1
X̃

(log(D̃ + S)) // OỸ // 0

0 // π∗S′Ω
1
S′(log(B)) // Ω1

Ỹ
(log(G)) // OỸ // 0.

(20)

If we let E ∨S′ = σ∗
X̃

Ω1
X̃

(log(D̃+ S))⊗OỸ OS′ , then the above sequence is the pull back via
πS′ via the following exact sequence on S′:

0 // σ∗SΩ1
S(log(∆)) // E ∨S′ // OS′ // 0

0 // Ω1
S′(log(B)) // E ∨S′ // OS′ // 0.

(21)

Moreover, then extension class of the exact sequence (21) is given by Φ(c1(L)) where Φ is
the composition of the following natural homomorphism of cohomology groups (φ was given
in (14)):

H1(S,O∗S)
δ
−! H1(S,Ω1

S)
σ∗S−! H1(S′, σ∗SΩ1

S)
φ
−! H1(S′, σ∗SΩ1

S(log(∆))) = H1(S′,Ω1
S′(log(B))).

2.3.1 Appendix: Orbifold structures on log pairs

We follow [17] (see also [8, 35]) to recall the definition of orbifold structures for general log
pair.

Definition 2.13 ([17, Definition 2.3]). Let (S,∆ =
∑
i δi∆i) be a log pair with δi = 1− mi

ni
where mi, ni are integers satisfying 0 ≤ mi ≤ ni and gcd(mi, ni) = 1.

A finite, Galois, flat and surjective morphism f : S′ ! (S,∆) is said to be adapted to
(S,∆) if the following conditions are satisfied:

1. The variety S′ is a normal quasi-projective variety.

2. f∗∆i is a Weil divisor, for every i.

3. The morphism f is étale at the generic point of Supp(b∆c).

Definition 2.14 ([17, Definition 2.5]). We say that a pair (S,∆) has an orbifold structure
at x ∈ S if there is a Zariski open neighborbood Ux ⊂ S of x equipped with a morphism
fx : Vx ! Ux adapted to (S,∆)|Ux . Furthermore, if Ux is smooth and Supp(f∗x(∆)) is simple
normal crossing, we say that the orbifold structure defined by (Ux, fx, Vx) is smooth.

Definition 2.15 ([17, Definition 2.7]). Let C = {(Uα, fα, Sα)}α∈I be a collection of ordered
triples describing local orbifold structures on S. Let α, β ∈ I and define Sαβ be the normal-
ization of the fiber product (Sα ×Uα∩Uβ Sβ) with the natural projection gαβ : Sαβ ! Sβ and
gβα : Sαβ ! Sβ. We say that C defines an orbifold structure on S if

⋃
α∈I Uα = S and for

each α, β ∈ I, the two morphism gαβ and gβα are étale.

Most constructions in standard algebraic geometry can be extended to the orbifold set-
ting. These include the definitions of coherent orbifold (sub-)sheaves, Chern classes of orb-
ifold sheaves, slope (semi-, poly-)stability of orbifold sheaves. Moreover, one can define
orbifold tangent sheaf (resp. orbifold cotangent sheaf) for a given orbifold structure, which
is denoted by T 1

S(− log ∆) (resp. Ω1
S(log ∆)). For our limited purpose, we just need the log

smooth case.

Example 2.16 ([17, Example 2.8]). Let (S,∆) be a log smooth pair. There is a canonical
orbifold structure defined as follows. For any x ∈ S, let Ux be a Zariski neighborhood of x
where ∆i|Ux is given by the zero set of fi ∈ OUx . Let {ti}ki=1 parametrize each copy of C in
the produce Ck×Ux. Then the subvariety Vx ⊂ Ck×Ux defined by the zero of {(tnii −fi)}ki=1

admits a projection σx onto Ux. The collection C := {(Ux, σx, Vx)} defines a smooth orbifold
structure.
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The following basic facts can be deduced from [35, §3] and [17]. For the definition of
compatible orbifold sheaves, see [17, Definition 3.1].

Proposition 2.17 (see [35, Lemma 3.5] and [17, Proposition 3.3]). Let (S,∆) be a log-smooth
pair. Then the classes c21 and c2, as multilinear forms on N1(S)n−1

Q (resp. N1(S)n−2
Q ) are

well-defined. Moreover, they are functorial under adapted morphisms.

Proposition 2.18 ([17, 3.1]). Let (S,∆) be a log-smooth pair. We can choose σS in the
previous subsection such that the orbifold structure defined σS is compatible with the canonical
orbifold structure, and the orbifold tangent sheaf of (S,∆) with respect to σS is compatible
with its canonical orbifold tangent sheaf. As a consequence, TS(− log(∆)) is semistable with
respect to −(KS + ∆) if and only if σ∗STS(− log(∆)) = TS′(− log(B)) is semistable with
respect to σ∗S(−(KS + ∆)).

Remark 2.19. Behrouz Taji pointed out to me that, given two orbifold stuctures on a fixed
pair (S,∆), if we have the same ramification order along ∆ then the corresponding orbifold-
cotangent sheaves are compatible (see [17, Proof of Theorem C]).

3 Generalizations of Tian’s semistability result

3.1 log smooth case

Theorem 3.1. Assume that the log smooth Fano pair (S,∆) is K-polystable. Then the
orbifold tangent sheaf TS(− log ∆) is semistable with respect to −(KS + ∆).

Moreover, let E be the extension of the orbifold tangent sheaf TS(− log ∆) by OS with the
extension class λ · c1(−(KS + ∆)) and λ ∈ Q>0. Then E is slope semistable.

Proof. We will carry out the proof in several steps.
Step 1: We carry out the construction in section 2.3 by choosing (S̃, ∆̃) = (S,∆) and a ram-
ified covering σS : S′ ! S such that the orbifold structure defined by σS is compatible with
the canonical orbifold structure of the log smooth pair (S,∆). Consider the pull back of the
orbifold tangent sheaf with respect to σS , denoted by σ∗STS(− log(∆)) or by TS′(− log(B)),
as in Definition 2.9. By Proposition 2.18, we just need to show that the sheaf σ∗STS(− log ∆)
is semistable with respect to σ∗S(−(KS + ∆)).

By the Yau-Tian-Donaldson conjecture for log smooth Fano pair proved in [30, 41] 1, we
know that there is a Kähler-Einstein metric ω on (S,∆) in the sense that

1. ω satisfies the following equation:

Ric(ω) = ω +
∑
i

δi{∆i}. (22)

2. ω is smooth on S \ Supp(∆) and is quasi-isometric to the following model metric near
∆:

n∑
k=p+1

√
−1dzk ∧ dz̄k
|zk|2δi

+

p∑
k=1

√
−1dzk ∧ dz̄k.

Pulling back ω by σS : S′ ! S, we get a positive current ω′, satisfying:

1. Outside Supp(B), Ric(ω′) = ω′. Here B =
∑
i(1 − N + Nδi)∆

′
i + (1 − N)H ′ (see

Notation 2.8)

2. ω′ is smooth outside Supp(∆′+H ′) = Supp(B), and near Supp(B), ω′ is quasi-isometric
to the following model metric:

n∑
k=p+1

|wk|−2dk
√
−1dwk ∧ dw̄k +

p∑
k=1

√
−1dwk ∧ dw̄k, (23)

where dk = 1−N +Nδk or 1−N . Note that dk ≤ 0 always holds.

1since we will be using approximation approach to deal with K-semistability in step 3, we just need the version
involving uniform K-stability in [30]
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Step 2: We use similar argument as [17, pp. 22-23]. Let F be any coherent sheaf of
TS′(− log(B))(= σ∗STS(− log(∆)) with rank r = rk(F ). Let L = (∧rF )∗∗. Then we get a
holomorphic section u of ∧r(TS′(− logB)) ⊗L −1. Fix a smooth Hermitian metric hL on
L . The metric ω′ := σ∗Sω induces a Hermitian metric h′ on ∧r(TS′(− logB)). Because ω′

is quasi-isometric to the model metric (23), by using the local generator of TS′(− logB) in
Definition 2.9, it’s easy to see that the metric h′ is bounded. Denote |u|2 = |u|2

h′⊗h−1
L

. Then

|u|2 is a bounded function on S′ which is smooth on S′ \B.
To proceed, we need the following easy lemma.

Lemma 3.2. Let E be a holomorphic vector bundle over a complex manifold M with a
smooth Hermitian metric h and u a holomorphic section of E. Let F = F (·) be a smooth
concave function on (0,+∞) (i.e. F ′′ ≤ 0), then we have the following inequality:

√
−1∂∂̄F (|u|2) ≥ −F ′(t)(REu, u)h + (F ′′(t)t+ F ′(t))|∇u|2, (24)

where t = |u|2h and RE is the Chern curvature of (E, h).

Proof. We first claim the following holds. For any p ∈ M , we can choose holomorphic
coordinate chart {Up, zi} centered at p (i.e. zi(p) = 0 for all i) and holomorphic frames

{sα}1≤α≤rk(E) over Ũp such that hαβ̄ = (sα, sβ)h satisfies:

hαβ̄(p) = δαβ , and ∂hαβ̄(p) = 0.

To see this, we first choose any holomorphic frame {s̃α} of E over a coordinate neighborhood
(Ũp, {zi}) of p such that the Hermitian metric h̃αβ = (s̃α, s̃β)h satisfies h̃αβ̄(p) = δαβ . Choose

sα = (δαβ −
∑
i(∂zihαβ̄(p))zi)s̃β . Then it’s easy to verify that there exists Up ⊂ Ũp such

that {sα} are holomorphic frames of E over Up and satisfie the requirement.
Let u = uαsα with uα holomorphic over Up. Then we can easily calculate that (∂∂̄hαβ̄)(p) =

−(REsα, sβ)h(p) and ∂̄|u|2(p) =
(
uα∂̄ūα

)
(p) and

∂∂̄|u|2(p) =
[
(∂uα)(∂̄ūα) + uαūβ∂∂̄hαβ̄

]
(p)

= (∂uα)(∂̄ūα)(p)− (REu, u)(p).

Substituting these expression into ∂∂̄F (|u|2) and using Cauchy-Schwarz inequality, we easily
get the inequality (24) since p is arbitrary.

Applying the above lemma to (M,E, h) = (S′\B,∧r(T ′S)⊗L −1, h′) and F (t) = log(t+τ2)
where τ > 0 is a constant we get the inequality

√
−1∂∂̄ log(|u|2 + τ2) ≥ |u|2

|u|2 + τ2

(
RL −

(R∧
rTS′u, u)h′⊗h−1

L

|u|2
h′⊗h−1

L

)
, (25)

where RL is the Chern curvature of (L , hL ) and R∧
rTS′ is the Chern curvature of the

Hermitian metric on ∧rTS′ induced by h′. In other words, for any v = ∂
∂wm1

∧ · · · ∧ ∂
∂wmr

∈
∧rTS′ , we have:

R∧
rTS′ (v) = R∧

rTS′

(
∂

∂wm1

∧ · · · ∧ ∂

∂wmr

)
=

r∑
α=1

∂

∂wm1

∧ · · · ∧
(
RTS′

∂

∂wmα

)
∧ · · · ∧ ∂

∂wmr

=: (RTS′ )∧r(v).

Here R
T ′S
ij̄

= R
′ l
ij̄k

dwk⊗ ∂
∂wl

is the Riemannian tensor of the Kähler metric ω′ on S′ \SuppB

and so g′ij̄R
TS′
ij̄

= Ric(ω′)lkdwk ⊗ ∂
∂wl

. As a consequence,

trω′
(
R∧

rTS′
)

= g′ij̄R
∧rTS′
ij̄

= (idTS′ )
∧r = r · id∧rTS′ .
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As in [6, 9], [7, p.2363], we can choose a family of cut-off function {χε}ε>0 such that the
L1-norm of

√
−1∂∂̄χε with respect to a smooth metric on S′ goes to zero as ε! 0. Wedging

both sides of (25) by χεω
′n−1
t and integrating on S′, we get by integration by parts:

−
∫
S′

log(|u|2 + τ2)
√
−1∂∂̄χε ∧ ω′n−1 ≥

∫
S′

|u|2χε
|u|2 + τ2

(
RL − (R∧

rT ′Su, u)

|u|2

)
∧ ωn−1. (26)

Because dk ≤ 0 and |u|2 is bounded, it’s easy to see that the left-hand-side goes to 0 as
ε! 0. The right-hand-side splits into two parts whose limits as (ε, τ)! (0, 0) are given by
(see [17, p. 24]):

I1 =

∫
S′

|u|2χε
|u|2 + τ2

RL ∧ ω′n−1 (ε,τ)!(0,0)
−−−−−−−! c1(L ) ∧ [ω′]n−1 = deg(F )

I2 = −
∫
S′

|u|2χε
|u|2 + τ2

1

n

r|u|2

|u|2
ω′n

(ε,τ)!(0,0)
−−−−−−−! − r

n
[ω′]n = − r

n
deg(TS′(− log(B))).

So we get the wanted inequality:

deg(F ) ≤ rk(F )

n
deg(TS′(− log(B))).

Step 3: Digression on extension of vector bundles

Let E1 and E2 be two holomorphic bundles over S′. Let ψ ∈ A0,1(End(E1, E2))
be a ∂̄-closed Hom(E1, E2)-valued (0, 1)-form. Then ψ defines cohomology class [ψ] in
H0,1

∂̄
(S′,A(E∗1 ⊗ E2)) ∼= H1(S′, E∗1 ⊗ E2) which determines an extension, denoted by E :=

E ([ψ]), of E1 by E2:
0 −! E2 −! E −! E1 −! 0. (27)

Choose Hermitian metrics h1 on E1 and h2 on E2. Denote by D1 and D2 the unique Chern
connections associated to h1 and h2. Then the (0, 1)-part of D1 and D2 give holomorphic
structure on E1 and E2. Define a Hom(E2, E1)-valued (1, 0)-form ψ̄ by:

h2(ψ(v), w)− h1(v, ψ̄(w)) = 0 for any v ∈ E1, w ∈ E2. (28)

Consider the Hermitian metric on the complex vector bundle E1⊕E2 given by h := h1⊕h2.
Then the Chern connection associated to h on the holomorphic vector bundle E is given by
the following expression, whose (0, 1)-part gives the holomorphic structure of E :

D =

(
D1 −ψ̄
ψ D2

)
, D0,1 =

(
∂̄E1 0
ψ ∂̄E2

)
. (29)

The extension class of the exact sequence (27) can also be given by the Čech cohomology
as used in the proof of Proposition 2.10. We now explain how the extension sheaf E deter-
mines a holomorphic co-cycles φαβ ∈ End(E1, E2)(Uα ∩Uβ) which determines the extension
class in H1(S′, E∗1 ⊗E2). First note that as complex vector bundles (without considering the
holomorphic structure), E is isomorphic to E1⊕E2. If vα = {vα,i} and wα = {wα,r} are local
holomorphic frames of E1 and E2 respectively, then we can assume that the holomorphic
frames of E are given by {v′α, wα} such that:

(v′α, wα) = (vα, wα)

(
IE1

0

ζ̃α IE2

)
where ζ̃α = ((ζ̃)ri ) is a rk(E1)× rk(E2) matrix-valued function which determines a homomor-
phism E1 ! E2: ζα(vα,i) = (ζ̃α)riwα,r. Moreover, because v′α, wα are holomorphic frames,
we see that the holomorphic structure of E is given by:

∂̄E =

(
∂̄E1 0

∂̄ζ̃α ∂̄E2

)
=:

(
∂̄E1 0

ψ̃α ∂̄E2

)
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If MEi
αβ are transition matrices between holomorphic frames of Ei over Uα ∩Uβ , then the

transition matrix between holomorphic frames of E , defined by: (v′β , wβ) = (v′α, wα)ME
αβ , is

then given by:

ME
αβ =

(
ME1

αβ 0

ME2

αβ ζ̃β − ζ̃αM
E1

αβ ME2

αβ

)
=

(
ME1

αβ 0

φ̃αβM
E1

αβ ME2

αβ

)
.

where φ̃αβ = (ME2

αβ )ζ̃β(ME1

αβ )−1 − ζ̃α is nothing but the matrix of ζβ − ζα under the frames

{vα,i} and {wα,r}. Because ME
αβ is holomorphic on Uα ∩ Uβ , we indeed have φαβ ∈

End(E1, E2)(Uα ∩ Uβ).
Conversely starting from any φ = (φαβ), by using the partition of unity we can find a

collection {ζα} with ζα ∈ A(End(E1, E2))(Uα) with φαβ = ζβ−ζα. Since ∂̄ϕαβ = 0, we get a
globally defined End(E1, E2)-valued (0, 1)-form ψ = ∂̄ζα = ∂̄ζβ . Clearly, {φαβ} is identified

with ψ under the Dolbeaut isomorphism H1(S′, E∗1 ⊗ E2) ∼= H0,1

∂̄
(S′,A(End(E1, E2)). We

will use the equivalence of these two descriptions of the extension bundle implicitly in our
discussion. See [10, V.14] for more discussions.

Step 4: Proof of the second statement of Theorem 3.1

By the discussion in Proposition 2.18, we just need to show the following

Theorem 3.3. Under the same assumption as Theorem 3.1, let ES′ be the extension of
TS′(− logB) by OS′ with the extension class λ·c1(TS′(− log(B))). Then ES′ is slope semistable
with respect to σ∗S(−(KS + ∆)).

The curvature of D is given by:

R =

(
RE1 − ψ̄ ∧ ψ −D1 ◦ ψ̄ − ψ̄ ◦D2

ψ ◦D1 +D2 ◦ ψ RE2 − ψ ∧ ψ̄

)
=:

(
A −B̄
B C

)
. (30)

In the following calculations, we will work on S′ \ Supp(B) where σS is étale and ω′ = σ∗Sω
is a smooth Kähler-Einstein metric. For the simplicity of notations, we don’t distinguish
ω =
√
−1
∑
i,j gij̄dz

i ∧ dz̄j on S \ (∆∪H) with ω′ =
√
−1
∑
i,j g

′
ij̄
dwi ∧ dw̄j over S′ \B. We

then have:

gij̄Rij̄ =

(
gij̄Aij̄ −gij̄B̄ij̄
gij̄Bij̄ gij̄Cij̄

)
=

(
trωA −trωB̄
trωB trωC

)
. (31)

It will be convenient to write the above data using local coordinate charts and holomorphic
frames. Choose local coordinate {zi}1≤i≤n and holomorphic frames {vp}1≤p≤rk(E1) and
{wr}1≤r≤rk(E2). We can write ψ ∈ A0,1(End(E1, E2)) as

ψ(vp) = ψrpwr with ψrp = ψrpj̄dz̄
j .

Then by (28) we have the following expression for ψ̄:

ψ̄(ws) = ψ̄qsvq, ψ̄qs = (h1)qp̄ψrp(h2)rs.

We can calculate explicitly:

B(vp) = (ψ ◦D1 +D2 ◦ ψ)(vp) = ψ((θ1)qpvq) +D2(ψrpwr)

= −(θ1)qp ∧ ψrqwr + dψrpwr − ψrp(θ2)srws

=
(
dψrp + (θ2)rsψ

s
p + ψrq ∧ (θ1)qp

)
wr =: Brpwr;

and over S′ \ Supp(B):

trωA = gij̄(RE1

ij̄
)qp − gij̄(h1)qγ̄ψr

γī
(h2)rsψ

s
pj̄ (32)

trωC = gij̄(RE2

ij̄
)sr + gij̄ψspj̄(h1)pq̄ψt

qī
(h2)rt. (33)

Now we specialize the above construction to the case where (E1, h1) = (TS′ , g
′ = σ∗Sg) and

(E2, h2) = (OS′ , b) with b ∈ R>0, ψ = σ∗S
(
a · gij̄dzi ∧ dz̄j

)
= a√

−1
· σ∗Sω ∈ H

0,1

∂̄
(Ω1

S′(logB))

with a ∈ C. Then the following properties hold over S′ \ Supp(B):
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1. (RE1

ij̄
)qp = R q

ij̄p
dzi ∧ dz̄ so that gij̄(RE1

ij̄
)qp = Ric(ω)qp.

2. B = 0 and hence trωB = 0:

Brp = d
(
agpj̄dz̄

j
)

+ agqj̄dz̄
j ∧ gqs̄∂igps̄dzi

= a
(
∂igpj̄dz

i ∧ dz̄j + ∂igpj̄dz̄
j ∧ dzi

)
= 0.

3. Substituting into (32)-(33), we get the following identities over S′ \ Supp(B):

trωA = Ricqp − gij̄gqs̄ags̄i b agpj̄ = Ricqp − b|a|2δqp
= (1− b|a|2)δqp. (34)

trωC = gij̄agpj̄g
pq̄agqī b = nb|a|2. (35)

By choosing a = λ
√
−1 and b = 1

(n+1)λ2 , we get:

trωA =
n

n+ 1
δqp, trωC =

n

n+ 1
. (36)

So we get:

gij̄RE
ij̄ =

n

n+ 1
idE . (37)

We can now carry out similar argument as before. Let F be any subsheaf of E of rank r and
let L = det(F )∗∗. The injection F ! E determines a nonzero section u of ∧rE ⊗L −1.
Denote by hE the Hermitian metric h′ ⊕ 1

(n+1)λ2 on E . Fix a smooth Hermitian metric hL

on L . Then the point is again that |u|2
hE⊗h−1

L

is bounded. The inequality (38) becomes:

−
∫
S′

log(|u|2 + τ2)
√
−1∂∂̄χε ∧ ω′n−1 ≥

∫
S′

|u|2χε
|u|2 + τ2

(
RL − (R∧

rE u, u)

|u|2

)
∧ ω′n−1. (38)

Using (37) we get,

trω′R
∧rE =

n

n+ 1
r · id∧rE .

As before, as ε ! 0, the left-hand-side goes to 0. The right-hand-side decomposes into two
parts with limits given by:

I1 =

∫
S′

|u|2χε
|u|2 + τ2

RL ∧ ω′n−1 (ε,τ)!(0,0)
−−−−−−−! c1(L ) ∧ [ω′]n−1 = deg(F )

I2 = −
∫
S′

|u|2χε
|u|2 + τ2

1

n

n

n+ 1
r

(u, u)

|u|2
ω′n = − r

n+ 1

∫
S′

|u|2χε
|u|2 + τ2

ω′n

(ε,τ)!(0,0)
−−−−−−−! − r

n+ 1
[ω′]n = − r

n+ 1
deg(E ) = − r

n+ 1
deg(TS′(− log(B)))

So we get the wanted inequality:

deg(F ) ≤ rk(F )

n+ 1
deg(E ).

Remark 3.4. Similar to the smooth case, with the orbifold (or conical) Hermitian-Einstein
metrics at hand, one should be able to prove a stronger polystability result. Since we don’t
need it in this paper, we will be satisfied with the semistability result.

Theorem 3.5. With the above notations, assume the log smooth Fano-pair (S,∆) is K-
semistable. Then the orbifold co-tangent sheaf TS(− log ∆) is slope semistable with respect
to −(KS + ∆).

Let E be the extension of the orbifold tangent sheaf TS(− log ∆) by the structure sheaf
OS with the extension class λ · c1(−(KS + ∆)) and λ ∈ Q+. Then E is slope semistable with
respect to −(KS + ∆).
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To prove this theorem, by choosing an auxiliary very ample divisor H we know that the
log Fano pair (S,∆t) := (S,∆ + 1−t

m H) is K-stable for any t ∈ (0, 1) ∩Q such that Theorem
3.1 applies. As t ! 1, the semistability inequality of Ω1

S(∆t) will give us the semistability
inequality of Ω1

S(∆). For this to work, we note that the orbifold structure of (S,∆) is a
orbifold sub-structure of (S,∆t) in the sense that the global adapted morphism for (S,∆t)
also induces a global adapted morphism of (S,∆).

Proof. Choose a sufficiently ample divisor H ∈ |m(−KS + ∆)| for m sufficiently divisible.
Then by similar calculation as in [30], we know that for any t ∈ (0, 1)∩Q, (S,∆ + 1−t

m H) =:
(S,∆t) is K-polystable (actually it’s uniformly K-stable). By Theorem 3.1, TS(− log(∆t)) is
semistable with respect to −(KS + ∆). It’s well known that a sheaf E is semistable if and
only if its dual E ∨ is semistable. So we know that Ω1

S(log(∆t)) is semistable.
Now choose an adapted finite morphism σtS : (S′,∆′t)! (S,∆t) with ∆′t = ∆′ + 1−t

m H ′.
We can assume that σtS : (S′,∆′)! (S,∆) is an adapted finite morphism that is compatible
with the canonical orbifold structure of (S,∆) (see Remark 2.19). Then we have a natural
inclusion:

(σtS)∗Ω1
S(log(∆)) ↪−! (σtS)∗Ω1

S(log(∆t)).

Let F be any rank r orbifold subsheaf of Ω1
S(log(∆)). Then F ′ := (σtS)∗F is a subsheaf of

(σtS)∗Ω1
S(log(∆)). By the above inclusion, F ′ is also a sub sheaf of (σtS)∗Ω1

S(log(∆t)) which
is semistable with respect to (σtS)∗(−(KS + ∆t)). So we get:

deg(F )

rk(F )
=

1

deg(σtS)

deg(F ′)

rk(F ′)
≤ 1

deg(σtS)

(σtS)∗((KS + ∆t) · (σtS)∗(−(KS + ∆t))
n−1

n

= −tn (−(KS + ∆))n

n
= tn · deg(Ω1

S(log(∆))

n
.

By letting t ! 1, we see that Ω1
S(log(∆)) is semistable. As a consequence, its dual

TS(− log(∆)) is also semistable.
Let E ∨t be the extension sheaf of OS′ by (σtS)∗(Ω1

S(log(∆t))). By Theorem 3.1, E ∨t is
semistable. There is a natural map E ∨ ! E ∨t . Using the same argument as above, we get
the second statement of Theorem 3.5.

Remark 3.6. With the help of the properness of log-Mabuchi energy established in [30,
Theorem 2.6] (following [2]), it’s easy to get that, under the assumption of Theorem 3.5, for
any t ∈ (0, 1), there exists a conical Kähler metric ωt ∈ 2πc1(−(KS + ∆)) satisfying:

Ric(ωt) = tωt + (1− t)ω̂0,

where ω̂0 is a fixed conical Kähler metric on the smooth log pair (S,∆) (see [26]). One can
also carry out the proof of Theorem 3.5 by using such twisted conical Kähler-Einstein metrics
similar to [37] and [17, Proof of Theorem 4.1].

3.2 A result about singular log-Fano pairs

Let (S,∆) be a log-Fano pair with klt singularities. Let µS : (S̃, ∆̃) ! (S,∆) be a log
resolution such that ∆̃ +

∑
iEi is simple normal crossing. We can write:

KS̃ + ∆̃ = µ∗(KS + ∆) +
∑
j

cjEj with cj > −1. (39)

The goal of this section is to prove the following technical result:

Proposition 3.7. Assume that S is Q-factorial and that there exists a log resolution with
ci ∈ (−1, 0] for all i. Then the orbifold tangent sheaf TS̃(− log(∆̃) is slope semistable with
respect to µ∗S(−(KS + ∆).

Proof. We just need to show Ω1
S̃

(log(∆̃)) is semistable with respect to µ∗S(−(KS + ∆)).
Choose θi ∈ (0, 1)∩Q such that −µ∗(KS + ∆)−

∑
i θiEi is ample. Choose m sufficiently

divisible and H ∈ |−m(µ∗S(KS + ∆)−
∑
i θiEi)| be a very general smooth divisor such that
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H+∆̃+E has simple normal crossings. Then by the same proof as [30, Proof of Proposition
3.1], we can show that if m� 1 then (S̃, A(t,ε))) is K-stable where

A(t,ε) =
1− t
m

H + ∆̃ +
∑
j

((−cj) + tεθi + (1− t)θi)Ej =:
1− t
m

H + ∆̃ +
∑
j

αjEj .

Note that by assumption, αj ∈ [0, 1) for 0 < 1 − t � 1 and 0 < ε � 1. Let σ
(t,ε)

S̃
:

(S′, A′(t,ε)) ! (S̃, A(t,ε)) be an adapted morphism which is compatible with the canonical

orbifold structure of (S,A(t,ε)). Then σ
(t,ε)

S̃
: (S′,∆′) ! (S̃, ∆̃) is compatible with the

canonical orbifold structure of (S̃, ∆̃) and there is a natural inclusion

(σ(t,ε))∗Ω1
S̃

(log(∆̃)) ↪! (σ(t,ε))∗Ω1
S̃

(log(A(t,ε))).

By Theorem 3.5, (σ
(t,ε)

S̃
)∗Ω1

S̃
(log(A(t,ε))) is semistable with respect to (σ

(t,ε)

S̃
)∗(−(KS̃ +

A(t,ε))).

For any rank r sub sheaf F of Ω1
S̃

(log(∆̃)), F ′ = (σ
(t,ε)

S̃
)∗F is a subsheaf of (σ

(t,ε)

S̃
)∗Ω1

S̃
(log(∆̃)).

deg(F )

rk(F )
=

1

deg(σ
(t,ε)

S̃
)

deg(F ′)

rk(F ′)

≤ 1

deg(σ
(t,ε)

S̃
)

((σ
(t,ε)

S̃
)∗((KS̃ +A(t,ε))) · ((σ

(t,ε)

S̃
)∗(−(KS̃ +A(t,ε))))

n−1

n

= −tn
(µ∗S(−(KS + ∆))− ε

∑
i θiEi)

n

n
.

Letting (t, ε)! (1, 0) and noticing that:

deg(Ω1
S̃

(log(∆̃))) = (KS̃ + ∆̃) · (µ∗S(−(KS + ∆)))n−1 = −(µ∗S(−(KS + ∆)))n

we get the wanted inequality:

deg(F )

rk(F )
≤

deg(Ω1
S̃

(log(∆̃)))

n
,

which implies Ω1
S̃

(log(∆̃)) is semistable with respect to µ∗S(−(KS + ∆)).

3.3 Log Calabi-Yau case

In this section, we sketch the proof of Theorem 1.4 and leave the details to the reader, since
it is very similar to the proof of Theorem 3.1. First it is known that there is a Kähler Ricci-
flat metric ωCY in the cohomology class 2πc1(L) with on the log smooth pair (S,∆). By
[16, Theorem 6.3] ωCY has cone singularities along ∆i if δi ∈ (0, 1) and cusp singularities if
δi = 1. In other words, ωCY is locally quasi-isometric to the model metric:

m∑
k=p+1

√
−1dzk ∧ dz̄k
|zk|2δk

+

n∑
k=m+1

√
−1dzk ∧ dz̄k

|zk|2(− log |zk|2)
+

p∑
k=1

√
−1dzk ∧ dz̄k.

Use the same notations as proof of Theorem 3.1, we let g be the metric associated to
ωCY and g′ the pull back of g by the Galois covering σS : S′ ! S. Then σ∗Sω is locally
quasi-isometric to:

m∑
k=p′+1

w−2dk
k dwk ∧ dw̄k +

n∑
k=m+1

√
−1dwk ∧ dw̄k

|wk|2(− log |wk|2)
+

p′∑
k=1

√
−1dwk ∧ dw̄k.

Since the section u of ∧r(TS′(− logB)) ⊗ (∧rF )−1 associated to any rank r subsheaf F of
TS′(− logB)) still has a bounded norm on S′, the first statement as in proof of Theorem 3.1
can be proved in similar way as before following the argument in [17, p.23].
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For the second statement, we let (E1, h1) = (TS′ , g
′) and (E2, h2) = (OS′ , b), ψ = g′,

a = 1 and b any positive constant. Then (34)-(35) becomes:

trω′A = −b · δβα, trω′C = nb. (40)

In particular
trω′R

E = −b · idE + (0⊕ (n+ 1)b) =: −b · idE + η.

Then we have:
trω′R

∧rE = (−b · id)∧
r

+ η∧
r

= −b · r · id∧rE + η∧
r

.

Note that η∧
r

= 0 if r > 1 and in general we always have:

(η∧
r

u, u)

|u|2
≤ λmax(η∧

r

) ≤ (n+ 1)b.

As in (38), we have the following inequality:

−
∫
S′

log(|u|2 + τ2)
√
−1∂∂̄χε ∧ ω′n−1 ≥

∫
S′

|u|2χε
|u|2 + τ2

(
RL − (R∧

rE u, u)

|u|2

)
∧ ω′n−1. (41)

As ε! 0, the left-hand-side goes to 0. The right-hand-side decomposes into three parts with
estimates:

I1 =

∫
S′

|u|2χε
|u|2 + τ2

RL ∧ ω′n−1 (ε,τ)!(0,0)
−−−−−−−! c1(L ) ∧ [ω′]n−1 = deg(F )

I2 = −
∫
S′

|u|2χε
|u|2 + τ2

1

n
(−b · r) (u, u)

|u|2
ω′n =

r · b
n

∫
S′

|u|2χε
|u|2 + τ2

ω′n

(ε,τ)!(0,0)
−−−−−−−!

r · b
n

[ω′]n =
r · b
n

(σ∗SL)·n

I3 = −
∫
S′

|u|2χε
|u|2 + τ2

(η∧ru, u)

|u|2
1

n
ω′n ≥ −n+ 1

n
b

∫
S′
ω′n.

So we get the inequality:

deg(F ) ≤ b
rk(F )

n
(σ∗SL)·n +

n+ 1

n
b(σ∗SL)·n.

Note that deg(E ) = deg(T 1
S′(− log(B)) = 0. By letting b! 0, we get the wanted inequality:

deg(F )/rk(F ) ≤ 0.

4 Applications

4.1 Local Euler numbers for 2-dimensional log canonical cones

Let (X,D, x) be a log terminal singularity and let ValX,x denote the space of real valuations
on OX whose center is at x. For any v ∈ ValX,x, denote by A(X,D)(v) its log discrepancy
(see [20, 5]) and by vol(v) its volume (see [13]). Then we recall:

Definition 4.1 (see [27, 29]). The normalized volume of a log terminal singularity (X,D, x)
is defined to be:

v̂ol(x,X,D) := inf
v∈ValX,x

A(X,D)(v)nvol(v). (42)

It was proved in [27] that v̂ol(x,X,D) > 0 if (X,D, x) is log terminal. H. Blum [4] proved
that the infimum in (42) is actually obtained. The normalized volume of cone singularities
over K-semistable log pairs can be calculated exactly:

Theorem 4.2 ([28, 29, 31]). Let (S,∆) be a log-Fano pair and L an ample Q-Cartier divisor
such that −(KS + ∆) = λ · L for λ ∈ Q>0. Let X = C(S,L) be the corresponding orbifold
affine cone and D the divisor on X corresponding to ∆. Then (S,∆) is K-semistable if and

only if v̂ol(x,X,D) = λn+1Ln = λ(−(KS + ∆))n.
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We need a more general result which deals with the case when a klt singularity degenerates
to a K-semistable cone.

Theorem 4.3 ([31]). Let (X,D, x) be a klt singularity and v = ordS ∈ ValX,x be a divisorial
valuation whose associated graded ring is the coordinate ring of a log Fano cone singularity
(X0, D0, x0) (S is called a Kollár component in [31]). Assume (X0, D0, x0) is K-semistable.
Then we have the identity:

v̂ol(x,X,D) = v̂ol(x0, X0, D0) = AX,D(S)n · vol(ordS). (43)

Proof of Proposition 1.8. Assume (X,D) be an orbifold cone over (P1,∆ =
∑
i δipi) with

the orbifold line bundle denoted by L. Choose k sufficiently divisor such that kL is genuine
line bundle. Denote by (Z,DZ , z) the ordinary affine cone over (P1,∆) with the polarization
kL. Then we get a degree k map σ : (X,D, x)! (Z,DZ , z) with σ∗(KZ +DZ) = KX +D.
Because (S,∆) is K-semistable, by the above theorem we have, for n = 1:

v̂ol(x,X,D) = λn+1Ln = k · (λk−1)n+1(kL)n = k · v̂ol(z, Z,DZ).

By Lemma 2.6, eorb(x,X,D) = k · eorb(z, Z,DZ). If the conjecture holds for (Z,DZ , z), then
it holds for (X,D, x). So we can assume L is a genuine line bundle.

Now we apply the construction in section 2.3 to (S,∆) = (P1,
∑
i δipi). Then X̃ is just

the blow-up of x ∈ X and (S̃, ∆̃) = (S,∆). Let σS : S′ ! S be a branched covering of degree
N such that σ∗S∆ is a Weil divisor.

By Corollary 2.12, σ∗
X̃

Ω1
X̃

(log(D̃ + S)) is equal to π∗S′E where E is the extension of OS′
by Ω1

S′(log(B)) with the extension class given by c1(σ∗SL). Because (S,∆) is K-semistable,
by Theorem 3.5, Ω1

S′(log(B)) is slope semistable. So by Definition 2.4 and Theorem 2.5, we
have

eorb(x,X,D) = −
c2(µY , σ

∗
X̃

Ω1
X̃

(log(D̃ + Ex))

N
=

c1(E )2

4N deg(σ∗SL)
.

Note that degS′(σ
∗
SL) = N degS(L) and

c1(E ) =

∫
S′
c1(E ) =

∫
S′
c1(Ω1

S′(log(B))) =

∫
S′
c1(KS′ +B)

=

∫
S′
c1(σ∗S(KS + ∆)) = −λ · degS′(σ

∗
SL).

So we easily get the wanted identity:

eorb(x,X,D) =
λ2N2 degS(L)2

4N2 degS(L)
=
λ2 degS(L)

4
=

v̂ol(x,X,D)

4
.

Proof of Proposition 1.10. This is proved in the same way as Proposition 1.8 by replacing
Theorem 3.5 by Theorem 1.4 and noticing that c1(E) = c1(−(KS + ∆)) = 0.

Now we specialize to the case (X,D, x) = (C2,
∑m
i=1 δiLi, 0) where Li = {biz1−aiz2 = 0}

are lines passing through 0 ∈ C2. Then the natural C∗-action on C2 makes (X,D, x) an affine
cone over (P1,

∑
i δipi) with pi = [ai, bi] ∈ P1. Without the loss of generality, we assume

0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δm ≤ 1 and denote δ =
∑m
i=1 δi and δ′ =

∑m−1
i=1 δi = δ − δm. We have

the following cases:

1. δ > 2. (C2, D) is not log canonical. Then by [24, Theorem 8.7], eorb(0;C2, D) = 0.

2. δ = 2. This is the log-Calabi-Yau case. By Proposition 1.10, we get eorb(0;C2, D) = 0.

3. δ < 2 and δm ≥ δ′, by [24, Theorem 8.7], eorb(0;C2, D) = (1− δ + δm)(1− δm) which
is 0 if δm = 1 (log canonical case).

If δm < 1, then (C2, D) is klt and is unstable with respect to the natural rescaling vector
field. Without loss of generality, we can assume pm = {0} ∈ P1 = C ∪ {∞}. There
is then a C∗-equivariant degeneration of (C2, D) to the log-Fano cone (C2,

∑
iD
′
i =

δm{0}+ δ′{∞}) with the C∗-action generated by (1− δ′)z1
∂
∂z1

+ (1− δm)z2
∂
∂z2

. This
corresponds to the jumping of metric tangent cone as explained in [3, p.34].
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It’s easy to check that the quotient of (C2, D′) is given by (P1, γ({0}+ {∞})) where γ
is determined by the following identities (see Example 1.7):

1− δ′

1− δm
=
b

a
, a, b ∈ N, gcd(a, b) = 1, γ = 1− 1− δ′

b
= 1− 1− δm

a
.

Since (C2, γ(pm + p̄m)) is K-semistable and hence the log Fano cone (C2, D′) is also
K-semistable, by Theorem 4.3 we know that (use Theorem 4.2 with λ = b(1 − δm) +
a(1− δ′))

v̂ol(0;C2, D)/4 = v̂ol(0;C2, D′)/4 = (1− δ′)(1− δm) = (1− δ + δm)(1− δm).

4. δ < 2 and δm < δ′. Then (P1,
∑
i δipi) is K-stable (called the “stable regime” in [3]) .

So by Proposition 1.8, eorb(0;C2, D) = v̂ol(0;C2, D)/4 = (2− δ)2/4.

Proof of Corollary 1.9. (X,D, x) is an orbifold cone over (P1,
∑
i δipi) with the orbifold line

bundle L. By choosing k sufficiently divisible, kL is a genuine line bundle. Let (Z,DZ , z)
be the affine cone over (P1,

∑
i δipi) with polarization kL. On the other hand kL = dOP1(1)

for some d ∈ Z>0 and there is a Galois covering of degree d: (C2,
∑
i δiLi, 0) ! (Z,DZ , z)

where Li are lines given by pi ∈ P1. By Lemma 2.6, we then have:

eorb(x,X,D) = k · eorb(z, Z,DZ) =
k

d
eorb(0,C2,

∑
i

δiLi).

By Theorem 4.2 and Theorem 4.3, we have the same relation for v̂ol/4 (see also [32, Theorem
1.7]). So the statement follows from the discussion above for the case of (0,C2,

∑
i δiLi).

4.2 Logarithmic Miyaoka-Yau inequalities for K-semistable pairs

In this section, we give the proof of Theorem 1.12 and Theorem 1.13. First recall the well-
known Bogomolov-Gieseker inequality:

Theorem 4.4 (see [34, 4]). Let S′ be a projective manifold and let H be a nef line bundle
on S′. If E is any reflexive coherent sheaf of rank r that is stable with respect to H, then E
verifies:

∆(E) ·Hn−2 ≥ 0, (44)

where ∆(E) is the Bogomolov discriminant:

∆(E) := 2rc2(E)− (r − 1)c1(E)2.

Now we let E to be the extension of orbifold tangent sheaf TS(− log(∆)) by OS with
the extension class c1(−(KS + ∆)). Let σS : S′ ! S be the ramified covering as in the
commutative diagram (19). Then σ∗SE = ES′ where ES′ is the extension of σ∗STS(− log(∆)) =
TS′(− log(B)) by OS′ with the extension class σ∗Sc1(−(KS + ∆)) = c1(−(KS′ + B)) as in
Theorem 3.3. By Theorem 3.5, ES′ is slope semistable with respect to −(KS′ +B). On the
other hand, we get (cf. [17, pp.29]):

∆(ES′) = 2(n+ 1)σ∗S(c2(S,∆))− nσ∗S(c1(S,∆))2.

Based on the fact in Proposition 2.17, Theorem 1.12 follows immediately from Theorem 3.5
by applying Theorem 4.4 to ES′ .

Theorem 1.13 follows the same argument by replacing Theorem 1.3 by Theorem 1.4, and
noticing that c1(S,∆) = 0 if (S,∆) is log-Calabi-Yau.

Remark 4.5. We end this paper by making some general remarks of the above proof of the
Miyaoka-Yau inequalities. Firstly one can weaken the log-smooth assumption under suitable
situations. For example one can replace the log smooth assumption by the conditions (i) or
(ii) in [17, Theorem B] at least in the log-Calabi-Yau case. So one sees that the advantage
of the above proofs is that we don’t need the detailed information of the curvatures of the
singular Kähler-Einstein metrics. The disadvantage however is that the equality case is
not immediately clear. However methods used [14] for characterizing the identity case of
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Miyaoka-Yau inequalities on singular canonically polarized varieties might also be useful for
studying the identity case in the singular Fano/Calabi-Yau case.

On the other hand, if one tries to prove the Miyaoka-Yau type inequality directly us-
ing Kähler-Einstein metrics as in Yau’s proof, one needs enough regularity of the singular
Kähler-Einstein metrics to identify the correction to the L2-norm of the traceless Rieman-
nian curvature associated to any singular point, which is in general quite difficult at present
for general log canonical pairs. In the case when (S,∆) is log smooth with irreducible ∆,
Song-Wang [36] used the regularity results (e.g. polyhomogeneity) from [21]. More generally
when ∆ is simple normal crossing, the polyhomogeneity property for Kähler-Einstein met-
rics on (S,∆) was announced by Rubinstein-Mazzeo. In the case of log canonical surfaces,
Borbon-Spotti conjectured in [3] that the correction term associated to any point is precisely
one less than the volume density of the Kähler-Einstein metric and, as mentioned in the
introduction, that the volume densities should match Langer’s local Euler numbers (at least
for log terminal surface singularities). The main part [3] is to study the behavior of Kähler-
Einstein metrics near the singularities when the boundary divisors have good configurations
(more precisely when the metric cone at any point is isomorphic to the germ of the point
itself).
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