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Abstract

In some applications, it is reasonable to assume that geodesics (rays) have
a consistent orientation so that the Helmholtz equation can be viewed as an
evolution equation in one of the spatial directions. With such applications
in mind, starting from Babich’s expansion, we develop a new high-order
asymptotic method, which we dub the fast Huygens sweeping method, for
solving point-source Helmholtz equations in inhomogeneous media in the
high-frequency regime and in the presence of caustics. The first novelty of
this method is that we develop a new Eulerian approach to compute the
asymptotics, i.e. the traveltime function and amplitude coefficients that
arise in Babich’s expansion, yielding a locally valid solution, which is ac-
curate close enough to the source. The second novelty is that we utilize
the Huygens-Kirchhoff integral to integrate many locally valid wavefields to
construct globally valid wavefields. This automatically treats caustics and
yields uniformly accurate solutions both near the source and remote from
it. The third novelty is that the butterfly algorithm is adapted to acceler-
ate the Huygens-Kirchhoff summation, achieving nearly optimal complexity
O(N logN), where N is the number of mesh points; the complexity prefac-
tor depends on the desiblack accuracy and is independent of the frequency.
To blackuce the storage of the resulting tables of asymptotics in Babich’s
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expansion, we use the multivariable Chebyshev series expansion to compress
each table by encoding the information into a small number of coefficients.

The new method enjoys the following desiblack features. First, it pre-
computes the asymptotics in Babich’s expansion, such as traveltime and
amplitudes. Second, it takes care of caustics automatically. Third, it can
compute the point-source Helmholtz solution for many different sources at
many frequencies simultaneously. Fourth, for a specified number of points
per wavelength, it can construct the wavefield in nearly optimal complex-
ity in terms of the total number of mesh points, where the prefactor of the
complexity only depends on the specified accuracy and is independent of fre-
quency. Both two-dimensional and three-dimensional numerical experiments
have been carried out to illustrate the performance, efficiency, and accuracy
of the method.

1. Introduction

We consider the point-source Helmholtz equation in the m-dimensional
space Rm:

∇ · (µ∇u) + ω2ρu = −δ(r − r0), (1)

with the Sommerfeld radiation condition imposed at infinity, where r0 is
the source location, position r = [x1, · · · , xm]T , the gradient operator ∇ =
[∂x1 , · · · , ∂xm ]T , ω is the angular frequency, and both variables ρ and µ are
analytic and positive functions of position r, characterizing certain physi-
cal parameters of the medium. The point-source solution, also called the
Green’s function excited by r0, is used in a variety of applications, such as
medical imaging, seismic imaging, underwater acoustics, and synthetic aper-
ture radar. Since in the high frequency regime, the popular finite-difference
or finite-element methods require extremely refined grids of mesh points to
prevent so-called pollution or dispersion errors [5, 4], we seek more effective
methods to compute this point-source Helmholtz solution. In this paper,
we develop a high-order, high-frequency, asymptotic method, which we call
the fast Huygens sweeping method, for solving the Helmholtz equation (1) in
the high frequency regime and in the presence of caustics, based on Babich’s
rarely used asymptotic ansatz described in [3]. This ansatz is the Fourier
transform in time of the one used by Hadamard [20] as outlined by Courant
and Hilbert [15], Chapter VI, Section 15.6. Underlying this new method
there are three critical elements: a novel Babich-ansatz based formulation
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for computing locally valid solutions, the Huygens secondary-source principle
for constructing globally valid solutions, and an adapted butterfly algorithm
to expedite the whole process.

The usual asymptotic expansion of the point-source solution to equation
(1) is sought as

u(r; r0) = eiωτ
∞∑
s=0

As(r; r0)
1

(iω)s−(m−1)/2
, (2)

where τ is the travel time from r0 to r satisfying the eikonal equation

|∇τ(r; r0)| = n(r), (3)

with a point source boundary condition τ(r0; r0) = 0, the refractive index
n =

√
ρ/µ, and the {As} satisfy a recursive system of PDEs along the ray,

2µ∇τ · ∇As + As∇ · (µ∇τ) = −∇ · (µ∇As−1), (4)

for s = 0, 1, · · · , with A−1 ≡ 0. However, one difficulty arises immediately:
how to choose the initial data for those {Ai}. Moreover, when m = 2, this
usual ray series does not yield an accurate solution close to the source. For
constant µ, the problem of initializing {Ai} when m = 3 have been solved
in [2] and is left incomplete when m = 2; in practice, such difficulties were
handled by initializing {Ai} slightly away from the point source by using the
solution for a medium with a constant refractive index equal to that at the
source point [56, 45, 30, 34, 32, 33, 44]; the resulting numerical asymptotic
solution is not uniform near the source. To resolve the difficulties, Babich [3]
proposed a ray series, essentially the Fourier transform in time of Hadamard’s
method for the wave equation, defined in terms of Hankel functions of the
first kind, where the initial data for the frequency-independent coefficients,
or asymptotics, are easily specified by comparing with the exact solution for
a uniform medium near the source. By computing these, the new expansion
yields uniformly accurate solutions in a region containing the source and up
to but not including the first focal point (first contact with a caustic) on each
ray.

The usefulness of this Babich’s ansatz for numerical simulation has been
justified in our recent work [48] when µ = 1. In this paper, we extend the
application of Babich’s ansatz to the more general self-adjoint point-source
Helmholtz equation (1) with variable µ; this is the first major contribution.
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Moreover, we further incorporate this generalized ansatz into the Huygens-
Kirchhoff integral so that caustics can be treated implicitly, and the resulting
integral is further evaluated rapidly by using the fast butterfly algorithm; this
is the second major contribution.

The usual geometric-optics series (2), as illustrated in many contexts
[6, 17, 30, 32, 44], is not able to capture caustics, which occur with high
probability for wave propagation in inhomogeneous media. Babich’s ansatz
cannot overcome this issue either since it requires the traveltime τ to be
smooth [3], which fails at caustics. To treat caustics, we will use the Huy-
gens secondary-source principle. It has been shown that in isotropic media,
as consideblack here, which are smooth, the squablack eikonal solution of
equation (3) is also smooth in a neighborhood of the source r0 [2, 37, 51],
implying that there is a neighborhood of the source which is free of caustics,
and hence Babich’s ansatz constructs a locally valid asymptotic solution.
Based on such an observation and the Huygens secondary-source principle,
we are able to develop a Huygens sweeping algorithm to construct a glob-
ally valid solution by using the Huygens-Kirchhoff integral to patch together
many locally valid solutions, so that caustics are automatically taken care of.

To go beyond caustics, we will make some assumptions for this point-
source Helmholtz equation under consideration. For some applications, such
as seismic imaging [14], underwater acoustics [21], and acoustical oceanog-
raphy [10], it is natural to assume that a set of geodesics (rays) have a
consistent direction so that the Helmholtz equation (1) may be viewed as
an evolution equation. Thus along this direction, we partition the computa-
tional domain into layeblack subdomains such that a layer-by-layer sweeping
solver can be developed using Huygens’ principle to construct a globally valid
solution. Specifically, the first layer is identified as a local neighborhood of
r0, where Babich’s expansion is valid. Next, we identify a neighborhood
outside the first layer as the second layer so that Babich’s expansion for the
Green’s function excited by any secondary source on the first-layer boundary
is caustic-free in the second layer. By using the Huygens-Kirchhoff integral
to integrate these locally valid Green’s functions over the first-layer bound-
ary, we construct the wavefield in the second layer. Repeating this sweeping
process, we construct a globally valid solution in the whole computational
domain. In this way caustics are treated automatically.

The question now is how to implement the above sweeping strategy ef-
ficiently. To tackle this challenging problem, we must surmount several ob-
stacles. The first obstacle is in the Babich-expansion ansatz in that the
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traveltime function satisfying the eikonal equation has an upwind singularity
at the primary source so that it is difficult to compute this function with high-
order accuracy; moreover, the occurrence of the Laplacian of the traveltime
in the transport equations makes the task more challenging. To deal with
this obstacle, we use the newly developed high-order schemes [30, 33, 34, 48]
for computing first-arrival traveltimes.

The second obstacle is how to store the many tables of asymptotics that
we will generate for the many secondary sources. This storage issue is crit-
ical as we are aiming at solving Helmholtz equations in both 2-D and 3-D
cases. We blackuce data storage by expressing each asymptotic in terms of a
multivariable Chebyshev series expansion. Thus we compress each table into
a small number of Chebyshev coefficients. Computationally, such compres-
sion leads to a significant storage blackuction and efficient access to memory.
Computationally, this strategy has been exploblack in [1] and used in [32].

The third obstacle is how to carry out efficiently the dense matrix-vector
products requiblack by the Huygens-Kirchhoff integration. Let J be the
number of mesh points along each coordinate direction of the computational
domain, so that the total number of mesh points is N = Jm in the m-
dimensional case. Because we are interested in the asymptotic solution ev-
erywhere in the computational domain, the solution at observation points
(receivers) in the m-D case corresponds to the result of some matrix-vector
products. In 2-D cases straightforward implementation of the above matrix-
vector products requires O(N) operations for each 1-D straight line of re-
ceivers, and the total computational cost will be O(N3/2) as we need to carry
out such matrix-vector products for roughly N1/2 planes of receivers; in 3-D
cases straightforward implementation of the above matrix-vector products
requires O(N4/3) operations for each plane of receivers, and the total com-
putational cost will be O(N5/3) as we need to carry out such matrix-vector
products for roughly N1/3 planes of receivers. Such computational cost is far
too high to make our strategy practical. To tackle this difficulty, we adapt
to our application the multilevel matrix decomposition based butterfly algo-
rithm [36, 39, 12, 59, 16, 32, 44, 43]. The resulting butterfly algorithm allows
us to carry out the requiblack matrix-vector products with the total compu-
tational cost of O(N logN) complexity, where the proportionality constant
depends only on the specified accuracy and is independent of the frequency
parameter ω. Such low-rank rapid matrix-vector products are responsible
for the adjective “fast” in the name “fast Huygens-sweeping method” of our
method.
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The fast Huygens sweeping method also has two unique advantages which
may be attributed to the precomputed tables of traveltimes and amplitudes.
First, because the traveltime and amplitudes are independent of the fre-
quency, the precomputed tables can be used to construct the wavefield for
a given primary source at arbitrary frequencies. Second, those tables can
be used to construct the wavefield at many other primary sources for ar-
bitrary frequencies as well. These two merits are much desiblack in many
applications, such as seismic imaging and inversion.

1.1. Related work

The high-order schemes for the eikonal and transport equations that we
are using here were developed in [30, 33, 34], which in turn are based on
Lax-Friedrichs sweeping [24, 61, 62, 55, 50, 48], weighted essentially non-
oscillatory (WENO) finite-difference approximation [40, 28, 23, 22], and fac-
torization of the upwind source singularities [41, 60, 19, 30, 34, 31, 33]. To
treat the upwind singularity at the point source, an adaptive method for the
eikonal and transport equations has been proposed in [45] as well.

The idea of compressing a traveltime table into a small number of coeffi-
cients in a certain basis has been used frequently in seismic imaging by the
geophysical community. Here we use the tensor-product based Chebyshev
polynomials as the basis to compress the tables of traveltime, amplitudes
and related ingblackients involved in the sweeping process, as inspiblack by
the work in [1].

To construct a globally valid asymptotic Helmholtz solution even in the
presence of caustics, there exist three possible approaches in the literature.
The first approach is based on Ludwig’s uniform asymptotic expansions at
caustics [29, 11], which require that the caustic structure be given. The
second approach is based on the Maslov canonical operator theory [35].
Although the Maslov theory is beautiful, it is not so useful as it requires
identifying where caustics occur first before the theory can be applied; in
practice, caustics can occur anywhere along a central ray in an inhomoge-
neous medium with a high probability as shown in [57]. The third approach
is based on Gaussian beam methods [13, 42, 49, 58, 27, 53, 52]. Although
Gaussian beam methods can treat caustics automatically along a central ray,
the method itself suffers from expensive beam summation and exponential
growth of beam width as analyzed and illustrated in [27, 46, 47, 25, 26, 38, 52],
and such shortcomings sometimes have hindeblack applications of Gaussian
beam methods to complicated inhomogeneous media. In addition, Benamou
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et al. [7, 8] designed an Eulerian geometrical-optics method for computing
high-frequency electromagnetic fields in the vicinity of fold caustics. Our
proposed new method is different from the above approaches.

The origin of the multilevel-matrix decomposition based butterfly algo-
rithm can be traced back to the work [36], and it has been further developed
in [39, 59, 12, 16]. In this work, we are using the version of the fast but-
terfly algorithm first developed in [12] and further analyzed in [16]. This
fast butterfly algorithm was then adapted for Helmholtz equations [32, 44]
and for Maxwell’s equations [43]. The significance of the fast butterfly algo-
rithm for high-frequency wave computation was illustrated in a recent work
[18]. Engquist and Zhao [18] showed that the ε-approximate separability of
G(r; r0) = A(r; r0)eiωτ(r;r0) has ω-dependent lower and upper bounds when
r ∈ X and r0 ∈ Y with X ⊂ R3 and Y ⊂ R3 disjoint and compact. This
result has two implications. The first implication is that when ω is fixed,
the matrix corresponding to the discretized Green’s function will have fi-
nite ε-numerical ranks no matter how dense the sampling is; consequently,
low rank structures exist in the corresponding matrix when the wavefield is
over-resolved per wavelength, which is not optimal in practice. The second
implication is that when ω increases, the ε-numerical rank for the correspond-
ing matrix increases as well so that no obvious low-rank structure exists when
the wavefield is resolved with a fixed number of points per wavelength. To
create low-rank structures in the corresponding matrix, we have to set up the
two sets X and Y in an ω-dependent manner which is exactly the departure
point for fast butterfly algorithms in [12, 32, 44, 43] and in the current paper.

1.2. Plan of the paper

In section 2, by introducing Babich’s expansion, we propose a novel for-
mulation to construct a locally valid solution of equation (1). To construct
the globally valid solution, we develop a Huygens-principle based sweeping
algorithm in section 3. In sections 4 and 5, we present details of numerical
implementations, along with a complexity analysis of our sweeping algorithm.
Extensive numerical experiments are carried out in section 6 to illustrate the
performance, efficiency and accuracy of our new method.
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2. Babich’s expansion based local solution

2.1. Babich’s expansion

Using Babich’s ansatz [3] we seek an asymptotic solution to equation (1)
as ω →∞ in a deleted neighborhood of r0 in the following form

u(r;ω) =
∞∑
s=0

vs(r)fs+1−m
2

(τ(r);ω), (5)

where τ is the traveltime from r0 to r,

fp(τ, ω) = i

√
π

2
eipπ

(
2τ

ω

)p
H(1)
p (ωτ) = i

√
π

2

(
2τ

ω

)p
H

(1)
−p (ωτ),

H
(1)
p is the p-th Hankel function of the first kind, and the {vs}, for s ≥ 0, are

assumed to be smooth functions in the source neighborhood.
Substituting equation (5) into equation (1), and using the formulas [3]

1

τ

∂fp(τ ;ω)

∂τ
= −2fp−1(τ ;ω), (6)

ω2fp(τ ;ω) = 4(1− p)fp−1(τ ;ω)− 4τ 2fp−2(τ ;ω), (7)

we obtain

∞∑
s=−∞

fs+1−m/2[4vs+2µτ
2|∇τ |2 − 4vs+2ρτ

2 − 2∇ · (vs+1µτ∇τ)

− 2µτ∇τ · ∇vs+1 − 4(s+ 1−m/2)ρvs+1 +∇ · (µ∇vs)] = 0,

(8)

where we have made the convention that vs ≡ 0 when s ≤ −1.
Meanwhile, since for large ω [3],

fp+1(τ ;ω)

fp(τ ;ω)
= O

(
1

ω

)
, (9)

the coefficient of every fs+1−m/2 in equation (8) must be zero so that we get,
for s = −2,−1, · · · ,

4vs+2µτ
2|∇τ |2 − 4vs+2ρτ

2 − 2∇ · (vs+1µτ∇τ)

−2µτ∇τ · ∇vs+1 − 4(s+ 1−m/2)ρvs+1 +∇ · (µ∇vs) = 0.
(10)
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In particular, when s = −2, remembering that v−2 ≡ v−1 ≡ 0, we obtain

4v0τ
2(µ|∇τ |2 − ρ) = 0, (11)

which leads to the same eikonal equation (3), when we define

n =

√
ρ

µ
. (12)

Then for general s ≥ −1, equation (10) blackuces to a recursive system of
transport equations

4µτ∇τ · ∇vs+1 + vs+1 [2(2s+ 2−m)ρ+ 2∇ · (µτ∇τ)] = ∇ · (µ∇vs). (13)

2.2. Interpretation as energy conservation when s = −1

We now study equation (13) for the leading term, i.e., for s = −1,

4µτ∇τ · ∇v0 + v0 [−2mρ+ 2∇ · (µτ∇τ)] = 0. (14)

Notice that the amplitude of the leading term in equation (5) is not v0 but v0

multiplied by the leading amplitude for ω large of f1−m/2. But this amplitude
is

O
(
τ 1−m/2τ−1/2

)
= O(τ

1−m
2 ), (15)

where the extra τ−1/2 is attributed to

|H(1)
1−m/2(ωτ)| '

√
2

πω
τ−1/2,

for large ω. Therefore, the true leading amplitude is (proportional to) u0 =

v0τ
1−m

2 . We set v0 = τ
m−1

2 u0 in equation (13) and get

4µτ∇τ · ∇u0 + 2u0τ∇µ · ∇τ + 2u0µτ∆τ = 0, (16)

which can be further simplified to

2µ∇τ · ∇u0 + u0∇ · (µ∇τ) = 0. (17)

Finally, on multiplying by u0, we get

∇ · (µu2
0∇τ) = 0, (18)
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or
∇ · (ρu2

0 c
2∇τ) = 0, (19)

where c = 1
n

=
√

µ
ρ

is the magnitude of ray velocity.

As c2∇τ is the ray velocity vector, if we think ρu2
0 as the energy density,

then ρu2
0c

2∇τ becomes the energy flux vector. Thus, the divergence of the
energy flux is zero so that energy is conserved to leading order, and energy
flux is conserved along tubes of rays as it should be. This also verifies that
equation (13) leads to the conventional transport equation (4) with s =
0 for the leading amplitude A0, which always has this energy-conservation
interpretation due to

∇ · (µA2
0∇τ) = 0. (20)

Unlike the true amplitudes {As}∞s=0, starting values of which are hard to
obtain, those “non-real” amplitudes {vs}∞s=0 can be well-initialized, as will
be discussed below.

2.3. Computing vs
It has been shown that in an isotropic medium, as consideblack here,

unlike τ non-differentiable at r0, τ 2 is analytic in the source neighborhood [33]
so that by the simple relation ∇τ 2 = 2τ∇τ , we can transform equation (13)
into the following transport equations with analytic coefficients in terms of
τ 2,

2µ∇τ 2 · ∇vs+1 + vs+1

[
2(2s+ 2−m)ρ+∇ · (µ∇τ 2)

]
= ∇ · (µ∇vs), (21)

for s = −1, 0, · · · , which, from numerical perspectives, is superior to equation
(13). To compute {vs}s≥0, proper initial conditions of vs at r0 must be
imposed. In the following, we shall assume that the traveltime τ is found in
the source neighborhood by the method of characteristics.

2.3.1. Analytic form of v0

By ray theory or method of characteristics, along a ray traced out from
the source r0 to r, the directional derivative operator along the traveltime τ
satisfies

n2 ∂

∂τ
= ∇τ · ∇. (22)

Therefore, equation (21) becomes

4ρτ
∂vs+1

∂τ
+ vs+1

[
2(2s+ 2−m)ρ+∇ · (µ∇τ 2)

]
= ∇ · (µ∇vs). (23)
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Clearly, when µ = 1, ρ = n2, and so equation (23) exactly coincides with
Babich’s equation (6) in [3], which is

4n2τ
∂vs+1

∂τ
+ vs+1

[
2(2s+ 2−m)n2 + ∆τ 2)

]
= ∆vs. (24)

Taking s = −1 in equation (21), we get

∇τ 2 · ∇v0 + v0

[
∇ · (µ∇τ 2)

2µ
−mn2

]
= 0. (25)

Correspondingly, equation (23) becomes

∂v0

∂τ
+ v0

[
∇ · (µ∇τ 2)− 2mρ

4τρ

]
= 0, (26)

or,
∂ log v0

∂τ
= −∇ · (µ∇τ

2)− 2mρ

4τρ
. (27)

Thus, we obtain a general solution for v0

v0(τ) = v0|τ=0 exp

(
−
∫ τ

0

∇ · (µ∇τ ′2)− 2mρ

4τ ′ρ
dτ ′
)
, (28)

which coincides with Babich’s equation (7) in [3] when µ = 1. Moreover, in
a source neighborhood where τ 2 is analytic, v0 is analytic and unique if the
starting value v0|τ=0 is specified.

We now determine v0(r0) = v0|τ=0. Near the source r0, the wavefield u
has the following asymptotic form [3]

u(r) '

{
− 1

2πµ0
log |r − r0| m = 2,

Γ(m/2)

(m−2)2πm/2µ0
|r − r0|2−m m ≥ 3,

(29)

where µ0 = µ(r0). Meanwhile, knowing that τ(r) ' n0|r − r0| with n0 =
n(r0), we may obtain from the Hankel based ansatz (5) that

u(r) ' v0(r0)

√
πi

2

(
2τ

ω

)1−m/2

H
(1)
m/2−1(ωτ)

'

{ −v0(r0)√
π

log |r − r0| m = 2,
Γ(m/2)n2−m

0 v0(r0)

(m−2)
√
π

|r − r0|2−m m ≥ 3,

(30)
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where we have used the asymptotic form of the Hankel function, as r → r0,

H
(1)
m/2−1 '

{
2
π

log |r − r0| m = 2,

− Γ(m/2)
(m/2−1)π

(
2
ωτ

)m/2−1
m ≥ 3.

(31)

Consequently, one gets

v0(r0) =
nm−2

0

2µ0π(m−1)/2
, (32)

for m ≥ 2. Equipped with such an initial condition, equation (25) can be
solved for v0.

2.3.2. Analytic form of vs for s ≥ 1

To solve equation (23) for s ≥ 0, we first consider its homogeneous solu-

tion v
(0)
s , solving

4ρτ
∂v

(0)
s+1

∂τ
+ v

(0)
s+1

[
2(2s+ 2−m)ρ+∇ · (µ∇τ 2)

]
= 0. (33)

It can be rewritten as by equation (27),

∂ log v
(0)
s+1

∂τ
= −2(2s+ 2−m)ρ+∇ · (µ∇τ 2)

4τρ

= −s+ 1

τ
− ∂ log v0

∂τ

=
∂ log τ−(s+1)v0

∂τ
.

(34)

Therefore, let v
(0)
s+1 = τ−(s+1)v0, motivating us to seek the inhomogeneous

solution in the form

vs+1 = wv
(0)
s+1 = wv0τ

−(s+1),

where the unknown w is a function of τ . Substituting this into equation (23)
and taking equation (33) into account, we see that

4ρτ−sv0
∂w

∂τ
= ∇ · (µ∇vs), (35)
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leading to

w =

∫ τ

0

τ ′s∇ · (µ∇vs)|τ ′
4ρv0(τ ′)

dτ ′ + cs+1, (36)

and finally

vs+1(τ) = τ−(s+1)v0(τ)

[∫ τ

0

τ ′s∇ · (µ∇vs)|τ ′
4ρv0(τ ′)

dτ ′ + cs+1

]
, (37)

where cs+1 ≡ const. on each ray.
To determine the value of cs+1, we analyze the asymptotic behavior of

vs+1 near r0. As r → r0, or τ → 0, one can easily see that

vs+1(r) '

{
cs+1v0(r0)τ−(s+1) if cs+1 6= 0,
∇·(µ∇vs)
4(s+1)ρv0

∣∣∣
r=r0

if cs+1 = 0.
(38)

Clearly, to ensure the continuity of vs+1 at the source r0, we have to choose
cs+1 = 0 so that we see from equation (37) that vs+1 is totally determined
by vs and τ for s ≥ 0. In other words, once v0 and τ are known, vs as well
as its starting value vs(r0) is uniquely determined. In the source neighbor-
hood where τ 2 is analytic, vs is also analytic according to [3]. We point out
that there appears to be an error in Babich’s equation (8) in [3], to which
equation (37) should blackuce when µ = 1 and ρ = n2.

In the rest of this paper, we will mainly use the Babich ansatz truncated
after the second term:

u(r;ω) ≈
√
πi

2

(
2τ

ω

)1−m/2(
v0(r)H

(1)
m/2−1(ωτ) + v1(r)

(
2τ

ω

)
H

(1)
m/2−2(ωτ)

)
.

(39)
Consequently, one first needs to solve the point-source eikonal equation (3)
for τ , then the homogeneous transport equation (25) for v0, and finally the
inhomogeneous transport equation (21) with s = 0, i.e.,

∇τ 2 · ∇v1 + v1

[
(2−m)n2 +

∇ · (µ∇τ 2)

2µ

]
=
∇ · (µ∇v0)

2µ
, (40)

for v1. Numerical methods for computing τ , v0 and v1 will be discussed later.
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2.4. Local validity of the Babich ansatz

In an inhomogeneous medium with variable refractive index n, the solu-
tion τ to equation (3) is non-smooth in general, due to ray focusing away
from the source r0. As a result, caustics develop and τ becomes multi-valued.
Caustics are lower dimensional manifolds enveloped by the rays. When caus-
tics form, we usually consider the viscosity solution of equation (3) instead,
which is singled out at each point as the minimum among the multiple values
of τ , if they exist. However, in the vicinity of caustics, the viscosity solu-
tion is non-differentiable and the coefficients in equation (21) relating to τ
become discontinuous so that the ray ansatz of Babich does not give a good
approximation to the wavefield. The {vs}s≥0 lose analyticity at caustics.
The Hankel-based series (5) is then not smooth and hence fails to charac-
terize the wavefield at caustics, which is independently known to be smooth
everywhere.

Fortunately, in isotropic media such as consideblack here there is a neigh-
borhood of the source in which no caustics occur except the source itself.
There is therefore a certain neighborhood of the source r0 within which
the ansatz (5) yields a locally valid asymptotic solution to the point-source
Helmholtz equation (1). A natural question arises: can we extend the locally
valid asymptotic solution beyond this region of local validity? The Huygens
principle states that the wavefield away from a domain enclosing the source
r0 is determined by wavefields on the boundary of the domain. Therefore,
the global wavefield can be generated by accumulating local wavefields layer
by layer when we use Huygens-Kirchhoff integrals to integrate many locally
valid Green’s functions to construct the primary wavefield in each layer. In
this way, we construct a globally valid solution, uniformly accurate both near
the source and remote from it, even in the presence of caustics. Even though
the primary wavefield we are constructing may contain caustics, our layer-
by-layer method is successful because the contributing Green’s functions do
not contain caustics.

2.5. The Babich ansatz versus the usual geometrical optics ansatz

In [32], the usual geometrical-optics (GO) ansatz was employed to con-
struct wavefields with caustics. The leading term of equation (2) yields the
GO ansatz

uGO(r;ω) = A0(r; r0)eiωτ (iω)(m−3)/2, (41)
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where the traveltime τ satisfies the eikonal equation (3) and the leading
amplitude A0 is governed by equation (4) at s = 0,

2µ∇τ · ∇A0 + A0∇ · (µ∇τ) = 0. (42)

According to [32], in an homogeneous medium with µ = µ0 and ρ = ρ0 =
n2

0µ0, the outgoing radiating point-source solution satisfies

A0 =
1

4µ0

(n0

2

)(m−3)/2
(

1

π|r− r0|

)(m−1)/2

, (43)

so that in an inhomogeneous medium, we impose on A0 the following source
condition

lim
r→r0

(
A0/

[
1

4µ0

(n0

2

)(m−3)/2
(

1

π|r− r0|

)(m−1)/2
])

= 1, (44)

where we recall that µ0 = µ(r0) and n0 = n(r0).
Comparing equation (44) and equation (32), we conclude that Babich’s

expansion is superior to the usual GO ansatz both theoretically and numer-
ically. Theoretically, near the source r0, uGO does not capture the correct
source singularity when m = 2 as shown in equation (29), while the leading
term of Babich’s expansion (5) exhibits correct source singularities uniformly
for all m.

Numerically, since A0 is unbounded at the source r0, we have to solve the
transport equation (42) by initializing A0 slightly away from the source which
in turn degrades the accuracy of computed A0 and the overall accuracy of
uGO. On the other hand, since the leading coefficient v0 in Babich’s expansion
is analytic in the region around r0 where τ 2 is analytic, v0 can be initialized
close to the source r0, which in turn enables us to compute v0 to high-order
accuracy efficiently and effectively as shown in our numerical examples.

3. Huygens-principle based global solution

3.1. Huygens-Kirchhoff formula

Supposing that u is known on the boundary S of a bounded domain
enclosing r0, as shown in Figure 1(a), we develop the Huygens-Kirchhoff
formula below to construct u in the exterior domain Ωext of S.
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Figure 1: A 2-D view of the Huygens principle. (a) Bounded secondary source surface S;
(b) Unbounded secondary-source planar surface S.

Let r′ = [x′1, · · · , x′m]T and L be the differential operator

L = ∇′ · (µ(r′)∇′) + ω2µ(r′)n2(r′),

where∇′ = [∂x′1 , · · · , ∂x′m ]T . Then the Green’s function excited by r, G(r′; r)
satisfies

LG(r′; r) = −δ(r′ − r), (45)

and we have for sufficiently large R > 0,

−u(r; r0) =

∫
V

−δ(r′ − r)u(r′; r0)dr′

=

∫
V

[
∇′ · (µ(r′)∇′G(r′; r)) + ω2n2(r′)µ(r′)G(r′; r)

]
u(r′; r0)dr′

=

∫
V

[∇′ · (µ(r′)∇′G(r′; r))u(r′; r0)−∇′ · (µ(r′)∇u(r′))G(r′; r)]dr′

=

∫
S∪∂B(r0,R)

µ(r′) [G,ν′(r
′; r)u(r′)−G(r′; r)u,ν′(r

′)] dS(r′),

(46)

where V = Ωext ∩ B(r0, R) and ν ′ is the outer unit normal vector to the
surface S ∪ ∂B(r0, R). Here and in what follows we use the subscript ,ν′ for
the directional derivative ν ′ · ∇′ evaluated at r′. We also define ν ′ = ν(r′).
Letting R → ∞ and remembering the Sommerfeld radiation condition, the
integral on ∂B(r0, R) vanishes so that we get the Huygens-Kirchhoff formula:
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for r ∈ Ω,

u(r; r0) =

∫
S

µ(r′) [G(r′; r)u,ν′(r
′)−G,ν′(r

′; r)u(r′)] dS(r′). (47)

Similarly, one can arrive at this formula when S is an unbounded surface,
e.g., a plane z = z∗ as shown in Figure 1(b), where we assume that u is
already given in the upper half plane.

Since the operator L is self-adjoint, the Green’s function satisfies the
natural reciprocity:

G(r′; r) = G(r′; r). (48)

This shows that the two arguments in G and G,ν in equation (47) can be ex-
changed so that numerically computing the Green’s function becomes more
efficient since, as a manifold of source locations, the surface S has one di-
mension less than the volume Ω. Consequently, we have for any r ∈ Ω,

u(r; r0) =

∫
S

µ(r′) [G(r; r′)u,ν′(r
′)−G,ν′(r; r′)u(r′)] dS(r′). (49)

3.2. Computing the normal derivative G,ν′

Using the two-term Babich approximation to approximate G(r; r′), we
get the approximation of its normal derivative as follows,

G,ν′(r; r′) ≈
√
πi

2
(2/ω)1−m/2

[(
τ 1−m/2v0H

(1)
m/2−1(ωτ)

)
,ν′

−2i/ω
(
τ 2−m/2v1H

(1)
m/2−2(ωτ)

)
,ν′

]
=

√
πi

2
(2/ω)1−m/2

{[
ωτ 1−m/2v0

(
H

(1)
m/2 +H

(1)
m/2−2

)
/2

+(1−m/2)τ−m/2v0H
(1)
1−m/2 − iτ

2−m/2v1

(
H

(1)
m/2−1 +H

(1)
m/2−3

)]
τ,ν′

+ τ 1−m/2H
(1)
m/2−1v0,ν′ +O(1/ω)

}
,

(50)

where the O(1/ω)-term can be discarded at high frequencies. Clearly, com-
puting the normal derivative requires two more derivative terms

τ,ν′(r; r′) :=∇′τ(r; r′) · ν(r′),

v0,ν′(r; r′) :=∇′v0(r; r′) · ν(r′).
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3.2.1. Computing τ,ν′

We start by computing τ,ν′ . It satisfies

∇τ(r; r′) · ∇τ,ν′(r; r′) =
1

2
∇′(∇τ(r; r′) · ∇τ(r; r′)) · ν(r′)

=
1

2
∇′(n2(r)) · ν(r′)

= 0,

(51)

with a point source condition

lim
r→r′

[
τ,ν′(r; r′)− n(r′)

|r′ − r|
(r′ − r) · ν(r′)

]
= 0,

obtained by taking into account that τ(r; r′) ' n(r′)|r−r′| as r → r′. Since
equation (51) shows that the derivative of τ,ν′ along a ray is zero, τ,ν′ remains
constant along the ray and is equal to its initial value

τ,ν′(r; r′) = −n(r′)t′ · ν ′ = −n(r′) cos θ′, (52)

where t′ is the takeoff direction of the ray from r′ to r, and θ′ is the angle
between t′ and ν ′.

To resolve the singularity of τ,ν′ at r = r′, we compute Φ = ττ,ν′ instead,
solving

∇τ 2 · ∇Φ = 2(∇τ · ∇τ)ττ,ν′ + τ 2∇τ · ∇τ,ν′ = 2n2Φ, where Φ = ττ,ν′ ,
(53)

with a point source condition

lim
r→r′

[
Φ(r; r′)− n2(r′)(r′ − r) · ν(r′)

]
= 0. (54)
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3.2.2. Computing v0,ν′

Let us now turn to the consideration of v0,ν′ . By equation (25), we have

∇τ 2 · ∇v0,ν′(r; r′) = ∇τ 2(r; r′) · ∇(∇′v0(r; r′) · ν ′(r′))
= (τ 2 · ∇v0),ν′ −∇

(
(τ 2),ν′

)
· ∇v0

= −
(
v0

[
∇ · (µ∇τ 2)

2µ
−mn2

])
,ν′
− 2∇Φ · ∇v0

= −
[
∇ · (µ∇τ 2)

2µ
−mn2

]
v0,ν′ − v0

[
∇ · (µ∇τ 2)

2µ

]
,ν′
− 2∇Φ · ∇v0

= −
[
∇ · (µ∇τ 2)

2µ
−mn2

]
v0,ν′ − v0

[∇ · (µ∇τ 2
,ν′)

2µ

]
− 2∇Φ · ∇v0

= −
[
∇ · (µ∇τ 2)

2µ
−mn2

]
v0,ν′ − v0

[
∇ · (µ∇Φ))

µ

]
− 2∇Φ · ∇v0,

(55)

thereby leading to the governing equation for v0,ν′ :

∇τ 2 ·∇v0,ν′+v0,ν′

[
∇ · (µ∇τ 2)

2µ
−mn2

]
= −v0

∇ · (µ∇Φ)

2µ
−2∇Φ ·∇v0, (56)

with a point source condition

lim
r→r′

v0,ν′(r; r′) = v0,ν′(r; r′)|r=r′ , (57)

to be determined by v0.
To use the Huygens-Kirchhoff formula (49) for computing u in Ωext, we

need to construct G(r; r′) and G,ν′(r; r′) by computing the following five
ingblackients sequentially: τ 2(r; r′) (not τ as it is not smooth at the source),
v0(r; r′), v1(r; r′), Φ(r; r′) and v0,ν′(r; r′) at any r ∈ Ωext and r′ ∈ S, which
will be referblack in what follows as the Babich ingblackients.

3.3. Layer-by-layer sweeping: continuous case

As discussed before, the Babich ansatz (5) is valid locally so that com-
puted G and G,ν′ by equations (39) and (50), respectively, are only accurate
in a short-wave distance away from the source surface S so that we may only
construct the wavefield in a layer within the short-wave distance away from
S by the Huygens-Kirchhoff formula (49). Nevertheless, by repeating such
process, one still can construct a globally valid solution layer by layer. We
now present the layer-by-layer sweeping algorithm.
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Algorithm 1. Layer-by-layer Sweeping Algorithm.

1. For the primary source r0, identify the first layer Ω0 as a region en-
closing r0, where the Babich approximation (39) is valid, and compute
the wavefield u by equation (39) in Ω0.

2. In the exterior of Ω0, identify the second layer Ω1 as a common neigh-
borhood where the Babich approximation (39) remains valid for the
Green’s function excited by any secondary-source point on the boundary
of Ω0, S0 = ∂Ω0, named by the first secondary-source surface. Conse-
quently, the Green’s function as well as its normal derivative become
available by the Babich approximations (39) and (50).

3. Compute u in Ω1 by the Huygens-Kirchhoff formula (49) with S = S0

and Ωext = Ω1.

4. Repeating steps 2 and 3, we get a sequence of layers {Ωj}j≥1 so that the
Green’s function and its normal derivative at the secondary-source sur-
face Sj−1 = ∂Ωj−1 are available in Ωj. Repeatedly using the Huygens-
Kirchhoff formula in all layers {Ωj}, we sweep the wavefield u layer-
by-layer so that a globally valid solution is constructed.

In the following, we will present details on implementing Algorithm 1
and will only focus on the two- or three- dimensional space, i.e., m = 2 or 3.
For the sake of clarity, we will name the Cartesian axes in R2 by x and z, in
R3 by x, y and z.

4. Lax-Fblackrichs WENO schemes for the Babich ingblackients

4.1. Numerical schemes

To compute the wavefield u by the primary source r0 or the Green’s
function G by a secondary source, we have to solve the eikonal equation (3)
first as τ appears as coefficients in the governing equations (25) and (40). In
general, if we desire a 1st-order accurate v1, we need a 3rd-order accurate
v0 due to the term ∇·(µ∇v0)

µ
in equation (40). This in turn indicates that we

have to compute a 5th-order accurate τ .
Since τ itself is non-differentiable at r0, all high-order upwind numeri-

cal schemes on discretizing the point-source eikonal equation (3) itself yields
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only 1st-order accuracy near the source, which further propagates over the
whole computational domain due to the upwinding nature of the underlying
schemes. To resolve this issue, we follow the factorization approach in [41, 60,
19, 30, 34, 31, 33], rewriting τ as the product of a known non-differentiable
term (e.g. n0|r−r0|) and an unknown which is analytic in a source neighbor-
hood. Next, by employing the existing high-order Lax-Fblackrichs Weighted
Essentially Non-Oscillatory (LxF-WENO) schemes [24, 61, 30, 33, 34, 48]
to compute the unknown, we obtain a solution converging to the viscosity
solution of equation (3) with high accuracy in the smooth region of τ 2. Such
high-order LxF-WENO schemes can be easily adapted to solve the other
first-order hyperbolic equations, such as equations (25), (40), (53) and (56).

In this paper, we use the 5th-, 3rd- and 1st-order LxF-WENO schemes
developed in [48] to solve equations (3), (25) and (40), respectively, yielding
a 5th-order accurate τ , a 3rd-order accurate v0 and a 1st-order accurate
v1. Consequently, the primary wavefield or the Green’s function excited by
a secondary source can be constructed. In addition, we use the 3rd-order
and 1st-order LxF-WENO schemes in [48] to compute a 3rd-order accurate
Φ and a 1st-order accurate v0,ν′ , respectively, so that the normal-derivative
term G,ν′ can be constructed.

In the implementation, to use a P -th order LxF-WENO scheme to solve
any of the five point-source equations (3), (25), (40), (53), and (56), one
needs to initialize a P -th order accurate solution in a neighborhood of size
(P + 1)h centeblack at the source where h is the grid size used in LxF-
WENO schemes. During each iteration, values of the targeted variable in
this neighborhood are fixed while those elsewhere are updated by the related
scheme until convergence is achieved. In the next section, following closely
[48], we present details on initializing the five Babich ingblackients near the
source.

4.2. Initialization of the Babich ingblackients

Without loss of generality, we consider initializing the five Babich ing-
blackients near the primary source r0 and taking r0 = 0. Define Ψ(r) =
n2(r) and U(r) = log µ(r). As they are analytic near the source, we can
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rewrite them by their Taylor series about the origin as:

Ψ(r) =
∞∑
k=0

Ψk(r), (58)

U(r) =
∞∑
k=0

Uk(r), (59)

where and hereafter in this section the term with subscript k denotes a ho-
mogeneous polynomial of degree k.

As τ 2 is analytic in the source neighborhood, we denote its Taylor series
by

τ 2(r) =
∞∑
k=0

Tk(r). (60)

According to [33], by substituting equations (58) and (60) into the squablack
eikonal equation, we obtain recursive formulas for {Tk} when k ≥ 3:

(P − 1)Ψ0TP =
P−2∑
k=1

ΨkTP−k −
1

4

P−2∑
k=2

∇Tk+1 · ∇TP−k+1, (61)

together with initial setups: T0 = T1 = 0 and T2 = Ψ0r
2. For example, by

equation (61), one gets

T3(r) =
1

2
Ψ1(r)r2. (62)

Therefore, if we use the truncated series T̃P̃ (r) =
∑P̃

k=2(r) to approximate
τ 2 near the source, we obtain

|τ(r)−
√
T̃P̃ (r)| = O(|r|P̃+1|), (63)

as |r| → 0+. In our implementation, we take P̃ = 6 to initialize τ .
Next, to initialize v0, we first rewrite it as a Taylor series at the origin:

v0(r) =
∞∑
k=0

Bk(r), (64)

with

B0 =
nm−2

0

2π(m−1)/2µ0

,
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according to the initial condition (32) for v0. Thus, equation (25) can be
rewritten as

∞∑
k=2

∇Tk(r) ·
∞∑
k=1

∇Bk(r) +
∞∑
k=0

Bk(r)
[1

2

∞∑
k=2

∆Tk(r)

+
1

2

∞∑
k=1

∇Uk(r)
∞∑
k=2

∇Tk(r)−m
∞∑
k=0

Ψk(r)
]

= 0.

(65)

By comparing the linear terms of both sides, we obtain

2Ψ0B1 +B0

[
∆T3

2
+

1

2
∇U1∇T2 −mΨ1

]
= 0, (66)

solved by

B1 =− B0

2Ψ0

(
∆T3

2
+

1

2
∇U1 · ∇T2 −mΨ1

)
=− B0

2Ψ0

[
(1− m

2
)Ψ1 + Ψ0U1

]
.

(67)

By comparing the P -th degree terms of both sides of equation (25), we derive
the following recursive formulas for {Bk}k≥2:

2Ψ0PBP =−
P−1∑
k=1

∇Bk · ∇TP+2−k −
1

2

P−1∑
k=0

Bk∆TP+2−k

+m
P−1∑
k=0

BkΨP−k −
1

2

P−1∑
k=0

Bk

(
P−k∑
j=1

∇Uj · ∇TP+2−j−k

)
.

(68)

Therefore, we may use the truncated series B̃P̃ (r) =
∑P̃

k=0Bk(r) to approx-
imate v0 near the source, and we get

|v0(r)− B̃P̃ (r)| = O(|r|P̃+1), (69)

as |r| → 0+. Here, we take P̃ = 3 to initialize v0.
Similarly, to initialize v1, we first rewrite it as its Taylor series at r0:

v1(r) =
∞∑
k=0

Ck(r). (70)
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Then, by comparing the P -th degree terms in equation (40), we obtain the
recursive formulas for {Ck}k≥0:

2Ψ0(P + 1)CP =
1

2

P+1∑
k=1

∇Bk · ∇UP+2−k +
1

2
∆BP+2 −

P−1∑
k=1

∇Ck · ∇TP+2−k

−
P−1∑
k=0

Ck

(
∆TP+2−k

2
+

1

2

P−k∑
j=1

∇Uj · ∇TP+2−k−j + (2−m)ΨP−k

)
.

(71)

Particularly, when P = 0, we have

2Ψ0C0 =
1

2
(∇U1 · ∇B1 + ∆B2) , (72)

which further confirms that the starting value of v1 is determined by v0.

Therefore, we may use the truncated series C̃P̃ (r) =
∑P̃

k=0Ck(r) to ap-
proximate v1 near the source, and we get

|v1(r)− C̃P̃ (r)| = O(|r|P̃+1), (73)

as |r| → 0+. Here, we take P̃ = 2 to initialize v1.
Finally, we deal with initializing Φ(r; r′) and v0,ν′(r; r′) near the source

r′ = 0. Let the power series of Φ at the origin be:

Φ(r) =
∞∑
k=0

Φk(r). (74)

Then, by the point-source condition (54), we get the initial setup for Φ:

Φ0 = 0, Φ1(r) =
(
n2(r′)(r′ − r) · ν(r′)

)∣∣
r′=0

= −Ψ0r · ν0, (75)

where ν0 is the unit normal vector specified at the source. By comparing
the P -th degree terms at both sides of equation (53), we obtain the following
recursive formulas for {Φk}k≥2:

2Ψ0(P − 1)ΦP = 2
P−1∑
k=1

ΦkΨP−k −
P−1∑
k=1

∇TP−k+2 · ∇Φk.
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Therefore, we use the truncated series Φ̃P̃ (r) =
∑P̃

k=0 Φk(r) to approxi-
mate Φ near the source, and we get

|Φ(r)− Φ̃P̃ (r)| = O(|r|P̃+1) (76)

as |r| → 0+. Here, we take P̃ = 4 to initialize Φ.
On the other hand, assuming the power series of v0,ν′ at the origin to be

v0,ν′(r) =
∞∑
k=0

Wk(r), (77)

by the point-source conditions (57) and (67), we obtain the initial setup for
the sequences {Wk}:

W0 = (∇′v0(r; r′) · ν(r′)) |r=r′=0

= (∇′B1(r; r′) · ν(r′)) |r=r′=0

= (−∇B1(r; r′) · ν(r′)) |r=r′=0

=
B0

2Ψ0

[(1−m/2)∇Ψ1 + Ψ0∇U1] · ν0.

(78)

By comparing the P -th degree terms at both sides of equation (56), we
obtain the following recursive formulas for {Wk}k≥1:

2Ψ0PWP =−
P−1∑
k=1

∇Wk · ∇TP+2−k −
1

2

P−1∑
k=0

Wk∆TP+2−k

+m
P−1∑
k=0

WkΨP−k −
1

2

P−1∑
k=0

Wk

(
P−k∑
j=1

∇Uj · ∇TP+2−j−k

)

−
P∑
k=0

Bk

[
∆ΦP+2−k +

P+1−k∑
j=1

∇Uj · ∇ΦP+2−k−j

]

− 2
P+1∑
k=1

∇Bk · ∇ΦP+2−k.

(79)

Therefore, we may use the truncated series W̃P̃ (r) =
∑P̃

k=0 Wk(r) to approx-
imate v0,ν′ near the source, and we get

|v0,ν′(r)− W̃P̃ (r)| = O
(
|r|P̃+1

)
, (80)

as |r| → 0+. Here, we take P̃ = 2 to initialize v0,ν′ .
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5. Layer-by-layer sweeping: discretized case

We now develop the sweeping algorithm in the discretized case. In gen-
eral, the sweeping algorithm can be implemented in two stages: the offline
stage and the online stage. The offline stage mainly deals with decomposing
the computational domain into layers and computing the Babich ingblack-
ients at primary and secondary sources, while the online stage focuses on
updating the wavefield in each layer by the Huygens-Kirchhoff formula.

Suppose now the wavefield propagates mainly along the positive z-direction
so that we can choose those layers to be m-dimensional boxes perpendicular
to the z-axis and extended to infinity along the other axes. The secondary-
source surfaces in turn become (m−1)-dimensional planar surfaces separating
those layers. If u is computed in a bounded m-dimensional box Ω enclosing
r0, those layers and secondary-source surfaces are automatically truncated
to bounded boxes and planar surfaces, respectively.

5.1. Offline stage: domain decomposition and computing the Babich ingblack-
ients

To compute the wavefield in Ω enclosing the source r0, according to Al-

gorithm 1, we first need to decompose Ω into layers {Ωj}
Nlay

j=0 separated by

the secondary-source surfaces {Sj}
Nlay−1
j=0 , where Nlay is the number of layers

in Ω.
At first, we numerically compute the viscosity solution of τ at the primary

source r0 in Ω, and then identify a box neighborhood enclosing r0, where τ 2

is smooth, as the first layer Ω0. Next, rather than taking the boundary of Ω0

to be the first secondary-source surface S0, we move this (m−1)-dimensional
planar surface slightly close to r0 so that the new secondary-source surface S0

is well separated from the next layer Ω1 in the exterior of Ω0. This guarantees
that the Green’s function in equation (49) is never singular. Now, we sample
secondary-source points on S0, and identify a box neighborhood exterior of
Ω0 as the next layer Ω1 so that τ 2 at any sampling point of S0 in Ω1 is

smooth. Repeating such process, we obtain a sequence of layers {Ωj}
Nlay

j=0

and secondary-source surfaces {Sj}
Nlay−1
j=0 . Finally, we compute the Babich

ingblackients at the primary source r0 in Ω0 (of course, only τ 2, v0 and v1

are enough for r0) and at all sampling secondary sources of each Sj−1 in Ωj

for j = 1, · · · , Nlay by the aforementioned high-order LxF-WENO schemes.
Those tables of ingblackients enable us to construct the Green’s function G
and its normal derivative G,ν′ in each layer, and hence the wavefield u can
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be constructed by the Huygens-Kirchhoff formula (49), as will be detailed at
the online stage in section 5.2.

Figure 2: A 2-D sketch of the Huygens sweeping method. “large star”: a primary source;
“small star”: secondary sources; df : the distance from a secondary source plane in one
layer to the next layer; Green’s functions excited by the large star at “circle”, “square”,
and “diamond” points are computed by different approaches.

In practice, we let the distance between each pair of Ωj and Sj−1, denoted
by df > 0, be a constant and independent of ω. In addition, since all the
Babich ingblackients are independent of the frequency ω, the computational
domain Ω can be discretized by a very coarse mesh, independent of ω. Cor-
respondingly, the layer Ωj is discretized by mesh points restricted in Ωj, and
secondary sources on Sj−1 are directly chosen as mesh points restricted on
Sj−1. Therefore, the Babich ingblackients can be computed on the restricted
coarse mesh points in each Ωj at the restricted coarse source points on Sj−1.

The above layer-partition process can be illustrated by Figure 2. First,
at the primary source located at the large star, we compute τ 2 in the whole
computational domain (the dashed rectangle), and then by numerically com-
puting and comparing one-sided first-order partial derivatives of τ 2 (e.g.,
∂±x τ

2, etc.) at each mesh point, we can identify a layer Ω0, the layer 1, where
τ 2 are consideblack to be “smooth” everywhere. Second, instead of choos-
ing the boundary of layer 1 to be the secondary-source line S0, we choose
the straight line which is away from the boundary by distance df to be the
secondary-source line S0, i.e., the line passing through the small stars in layer
1. To identify the next layer, we sample a coarse set of secondary sources
located at those small stars on S0, compute τ 2 at each small star, and then
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identify a region Ω1, the layer 2 such that τ 2 at each small star is smooth
there. Repeating the same procedure, we determine all three layers finally.

5.1.1. Data compression

At the offline stage, once tables of all Babich ingblackients are obtained,
we store these tables on a local hard disk, which can be reloaded afterwards.
However, directly storing these tables requires a great deal of storage, which
is more pronounced in the 3-D case. Since all Babich ingblackients in each
layer are smooth, we follow the approach in [32] to compress each data table
into a linear combination of tensor-product based multivariate Chebyshev
polynomials so that the information in each table can be encoded into a small
number of coefficients. In our setting, there are five scalar tables (except at
the primary source r0) in total to be compressed, including τ 2, v0, v1, Φ and
v0,ν′ .

To expedite reconstruction of information from those compressed tables,
we will follow the low-rank matrices based approach in [32] which is equivalent
to the Orszag partial summation method [9].

5.2. Online stage: wavefields by the Huygens-Kirchhoff summation

Computationally, to apply the Huygens-Kirchhoff formula (49) when S
is an unbounded plane, one needs to truncate the unbounded integration
plane S into a bounded domain S̃. Since Babich’s expansion (5) automati-
cally exhibits outgoing wave behavior and satisfies the Sommerfeld radiation
condition at infinity, such a truncation only affects the accuracy of the wave-
field near the boundary of S̃. Therefore, the Huygens-Kirchhoff formula (49)
with S replaced by any bounded secondary planar surface Sj can be directly
applied to update the wavefield in the layer Ωj+1 for j = 0, · · · , Nlay − 1.
The integral over Sj is further discretized so that a quadrature rule can be
applied to approximate the integral.

In the high-frequency regime, to capture the highly oscillatory behavior
of the wavefield, one has to specify sufficient mesh points to sample the over-
all solution. In principle, the optimal number of mesh points is arguably
four to six points per wavelength in all m dimensions. In the popular fi-
nite difference time domain (FDTD) method or the finite element method
(FEM), it is hard to obtain accurate solutions by using such a “small” num-
ber of mesh points due to the dispersion or pollution error [5, 4]. On the
other hand, since our Babich-ansatz based method carries out frequency-scale
separation explicitly, only frequency-independent Babich’s ingblackients are
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computed by solving PDEs. Because wavefields are assembled directly from
these ingblackients according to the Huygens-Kirchhoff integral, only four to
six points per wavelength are needed to sample wavefields adequately. This
has been verified numerically in [32, 44] for usual geometrical-optics ansatz
based asymptotic solutions.

For a given refractive index n(r), the minimum wavelength in the com-
putational domain Ω is λmin = 2π/(ωnmax), where nmax is the maximum
refractive index in Ω, so that Ω can be uniformly discretized by an optimal
number of points with 4 to 6 points per minimum wavelength. However, since
all Babich ingblackients are independent of the frequency, one can compute
these tables on much coarser meshes with the number of points independent
of frequency rather than on this very fine mesh. Only when we construct
the wavefield in Ω do we need to interpolate those ingblackients onto the fine
mesh.

Starting from these considerations, we are ready to discretize the Huygens-
Kirchhoff formula (49) with S = Sj and Ωext = Ωj+1 for j = 0, · · · , Nlay − 1.
Without loss of generality, we only consider the case when j = 0. Suppose
S0 is uniformly discretized by M points {sj}Mj=1 with a grid size h in each
dimension while Ω1 is uniformly discretized by {ri}Ni=1 with the same grid
size h. Then, by the trapezoidal rule, equation (49) at r = ri becomes

u(ri) ≈ hm−1

M∑
j=1

[G(ri, sj)u,ν′(sj)µ(sj)−G,ν′(ri; sj)u(sj)µ(sj)] , (81)

for i = 1, · · · ,M . In matrix form, it becomes

u = U1f1 +U2f2, (82)

where the N × 1 vector u, the M × 1 vectors f1 and f2, and the N ×M
matrices U1 and U2 are defined in the following,

u = [u(r1), · · · , u(rN)]T , (83)

f1 = hm−1 [u,ν′(s1)µ(s1), · · · , u,ν′(sM)µ(sM)]T , (84)

f2 = −hm−1 [u(s1)µ(s1), · · · , u(sM)µ(sM)]T , (85)

U1 = [(U1)ij] = [G(ri, sj)]1≤i≤N,1≤j≤M , (86)

U2 = [(U2)ij] = [G,ν′(ri; sj)]1≤i≤N,1≤j≤M . (87)
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To ensure that equation (82) attains a specified accuracy and captures
the highly oscillatory behavior of the wavefield in Ω1, we directly take the
mesh points in Ω restricted to S0 as the source points {sj}Mj=1 and to Ω1 as
the receiver points {ri}Ni=1. As the Babich ingblackients at r0 are already
obtained in Ω0, one first interpolates these onto the restricted dense mesh
points in Ω0 so that by equation (39), the wavefield u at mesh points in Ω0,
including {sj}Mj=1, can be constructed. In turn, its normal derivative u,ν′ at
{sj}Mj=1 can be obtained by numerical differentiation. On the other hand,
as the tables of the Babich ingblackients at coarsely discretized mesh points
in layer Ω1 are only computed for coarsely sampled sources on S0, to con-
struct U1 and U2, we first interpolate each table onto the dense mesh points
{ri}Ni=1 in Ω1, and then interpolate those refined tables with respect to source
locations to obtain refined tables at densely sampled sources {sj}Mj=1 on S0

since Babich ingblackients are also continuous functions of source locations.
Consequently, by equation (82), one obtains the wavefield u at the restricted
mesh points {ri}Ni=1 in Ω1 so that u and u,ν′ on the next secondary-source
surface S1 become available. Repeating such process, one constructs u in the
whole computational domain Ω.

However, at high frequencies, if the number of mesh points in each direc-
tion is J = O(ω), then M = O(Jm−1), N = O(Jm), and both the computa-
tional complexity and storage for obtaining u by direct matrix-vector multi-
plications in equation (82) become O(MN) = O(J2m−1), which is extremely
expensive and impractical. To resolve this issue, we adopt a multilevel ma-
trix decomposition based butterfly algorithm [12, 16, 32, 44, 43] to speed up
the multiplications.

5.3. A butterfly algorithm

Equation (82) involves two matrix-vector multiplications that can be re-
formulated as computing

u(r) =
2∑

k=1

∑
s∈Xs

Uk(r; s)fk(s), r ∈Xr ⊂ ΩR. (88)

Here, XS and XR are input source points in the source domain ΩS and
output receiver points in the receiver domain ΩR, respectively, where ΩR and
ΩS are df apart from each other. fk(s) is the representative function of fk in
the sense that fk(sj) is the j-th element of fk for 1 ≤ j ≤ M , and Uk(r; s),
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the representative function of Uk, can be decomposed as

Uk(r; s) = Ak(r; s)eiωτ(r;s), (89)

where according to equations (39) and (50),

A1 =

√
πi

2

(
2τ

ω

)1−m/2(
v0H

(1)
m/2−1(ωτ) + v1

(
2τ

ω

)
H

(1)
m/2−2(ωτ)

)
e−iωτ , (90)

A2 =

√
πi

2
(2/ω)1−m/2

{[
ωτ 1−m/2v0

(
H

(1)
m/2(ωτ) +H

(1)
m/2−2(ωτ)

)
/2

+(1−m/2)τ−m/2v0H
(1)
m/2−1(ωτ)

−iτ 2−m/2v1

(
H

(1)
m/2−1(ωτ) +H

(1)
m/2−3(ωτ)

)]
τ,ν′

+ τ 1−m/2H
(1)
m/2−1(ωτ)v0,ν′

}
e−iωτ ,

(91)

and they together with the traveltime τ are available for r ∈ ΩR and s ∈ ΩS.
For large ωτ , due to the asymptotic form of the Hankel function

H
(1)
k (ωτ) '

√
2

πωτ
e−i(kπ/2−π/4)eiωτ , (92)

for k ∈ {m/2 − 3,m/2 − 2,m/2 − 1,m/2}, the two amplitudes A1 and A2,
though dependent upon ω, are not oscillatory at high frequencies. Based on
the decomposition (89), we can adopt the low-rank separation based butterfly
algorithm [12, 16, 32, 43] to speed up the matrix-vector products in equa-
tion (82). Some modifications can be made so as to make it more suitable to
our applications.

To begin with, we first introduce the multi-dimensional Lagrange basis
with respect to Chebyshev nodes. For a given integer p > 0, the Chebyshev
nodes of order p on the standard one-dimensional box [−1, 1] are defined as

X =

{
xj = cos

(
(j − 1)π

p− 1

)}p
j=1

.

We denote the j-th Lagrange basis function with nodes X at x ∈ [−1, 1] by
LX(x;xj), taking 1 at xj and 0 elsewhere in X, for j = 1, · · · , p. On the
standard m-dimensional box [−1, 1]m, the Chebyshev nodes of order p are m
tensor products of X as:

Xm = {xj1}
p
j1=1 × · · · × {xjm}

p
jm=1.
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Thus, the j = (j1, · · · , jm)-th Lagrange basis function with nodes Xm at x
satisfies:

LXm(x;xj) = LX(x1;xj1) · · ·LX(xm;xjm),

where x = (x1, · · · , xm)T ∈ [−1, 1]m and xj = (xj1 , · · · , xjm)T .
For a general one-dimensional interval [a, b], the Chebyshev nodes of order

p satisfy

Y =

{
yj =

a+ b

2
+
b− a

2
xj

}p
j=1

,

with the j-th Lagrange basis function at y ∈ [a, b] denoted by LY (y; yj).
Meanwhile, on a general m-dimensional box [a1, b1]×· · ·×[am, bm], the Cheby-
shev nodes of order p become the following tensor products:

Y = Y1 × · · · × Ym,

where

Yi = {yji =
ai + bi

2
+
bi − ai

2
xji}

p
ji=1.

Thus, the j-th Lagrange basis function at y = (y1, · · · , ym) is

LY (y;yj) = LY1(y
1; yj1) · · ·LYm(ym; yjm).

In the following, we will denote by CB the set of pm m-dimensional Cheby-
shev nodes in an m-dimensional box B. Following closely the butterfly algo-
rithm in [32, 43], we present the algorithm as follows.

Algorithm 2. The butterfly algorithm:

1. Construct the cluster trees for both receivers and sources. Assume
that the domain of receivers is ΩR = [Lrmin,Lrmax]m, and the domain of
sources is ΩS = [Lsmin,Lsmax]m−1. The domains are discretized such that
the number of sampling points per wavelength is fixed, such as 4 to 6
points per wavelength. When m = 3, the cluster trees for the receivers
and sources are an octree and a quadtree, respectively; when m = 2, the
cluster trees for the receivers and sources are a quadtree and a binary
tree, respectively.

At the root level (denoted as level 0), the boxes for both the source and
receiver cluster trees are assigned to be the corresponding domain di-
rectly. Then the tree construction goes by dyadically subdividing the
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boxes: for an octree (quadtree, binary tree, respectively), each box is
equally divided into 8 (4, 2, respectively) boxes. The construction reaches
and stops at the leaf level (denoted as level L) where the size of each box
is about 2 minimum wavelengths so that approximately O(p) sampling
points are used each dimension with p the order of the Chebyshev nodes.
Hence, except for the leaf level, each box B of an octree (quadtree) has
8 (4, 2, respectively) children boxes, denoted as Bc, and except for the
root level, each box B has a parent box, denoted as Bp. We denote the
resulting two trees as Ts (the source tree) and TR (the receiver tree),
respectively. From now on, we will use the superscript (·)B to denote
the dependence on the box B.

The butterfly algorithm traverses through the two cluster trees in the
following way: for ` = L, · · · , 0, visit level ` in Ts and level L− ` in Tr
by considering each pair {Br, Bs} with Br ∈ Tr and Bs ∈ Ts, l(Bs) = `
and l(Br) = L− `, where l(B) indicates the level of B in a tree.

Moreover, at the root level of the receiver tree and at the leaf level of
the source tree, each pair {Br, Bs} satisfies

w(Br)w(Bs) = (Lrmax−Lrmin)O(2λmin) = O
(

4π(Lrmax − Lrmin)

ωnmax

)
= O

(
1

ω

)
,

where w(B) is the size of box B and nmax is the maximum value of
the refractive index. As moving downward the receiver tree Tr by one
level and simultaneously moving upward the source tree Ts by one level,
w(Br) is divided by 2 while w(Bs) is multiplied by 2, and so

w(Br)w(Bs) = O(1/ω)

is automatically satisfied. For the motivation of such condition on all
box pairs {Br, Bs}, please see [12, 32] for details. In the following, we
mean by the equivalent sources the Chebyshev nodes on the source box
Bs and by equivalent points the Chebyshev nodes on the receiver box
Br.

2. The Upward Pass starts at the leaf level (level L) of the source tree
Ts and ends at the level (denotes as Ls) where the size of the boxes
w(Bs) ≥ O( 1√

ω
). Correspondingly, the level of the receiver tree Tr

varies from the root level (level 0) to the level Lr ≡ L− Ls.
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(1) Initialization. For each pair {Br, Bs} with Br traversing all
boxes at the root level of the receiver tree and Bs traversing all
boxes at the leaf level of the source tree, interpolate two equivalent

densities {f̄Br ,Bs

k } at the equivalent sources CBs = {sBs
j }

pm−1

j=1 in
Bs from the two given input densities {fk} at all sources in XS ∩
Bs:

f̄Br ,Bs

k (sBs
j ) =

∑
s∈Bs∩XS

e−iωτ(rBr
c ;sBs

j )Lm−1
CBs (s; sBs

j )eiωτ(rBr
c ;s)fk(s),

(93)
for k = 1, 2, where rBr

c is the center of the receiver box Br.

(2) Recursion. For ` from L−1 to Ls, for each pair {Br, Bs} with Br
traversing all boxes at level L−` of the receiver tree and Bs travers-
ing all boxes at level ` of the source tree, interpolate equivalent den-

sities {f̄Br ,Bs

k } at equivalent sources CBs = {sBs
j }

pm−1

j=1 from equiv-

alent densities {f̄B
p
r ,B

c
s

k } at equivalent sources CBc
s = {sB

c
s

j }
pm−1

j=1 of
all children clusters of Bs and the parent cluster of Br:

f̄Br ,Bs

k (sBs
j ) =

∑
Bc

s

pm−1∑
q=1

e−iωτ(rBr
c ;sBs

j )Lm−1
CBs (sB

c
s

q ; sBs
j )eiωτ(rBr

c ;s
Bc
s

q )f̄
Bp

r ,B
c
s

k (sB
c
s

q ),

(94)
for k = 1, 2.

3. Switching at the level where the Upward Pass has ended (level Ls of
the source tree and level Lr of the receiver tree), for each pair {Br, Bs}
with Br traversing all boxes at level Lr of the receiver tree and Bs
traversing all boxes at level Ls of the source tree, compute the equivalent
fields {ūBr ,Bs} at equivalent points CBr = {rBr

j }
pm

j=1 from equivalent

densities {f̄Br ,Bs

k } at equivalent sources CBs = {sBs
q }

pm−1

q=1 :

ūBr ,Bs(rBr
j ) =

2∑
k=1

pm−1∑
q=1

Uk(r
Br
j , sBs

q )f̄Br ,Bs

k (sBs
q ). (95)

4. The Downward Pass starts at the level Lr of the receiver tree Tr where
the Upward Pass has ended and ends at level L of the receiver tree.
Meanwhile, the level of the source tree varies from level Ls to level 0.

34



(1). For ` from Lr to L− 2, for each pair {Br, Bs} with Br traversing
all boxes at level ` + 1 of the receiver tree and Bs traversing all
boxes at level L−`−1 of the source tree, interpolate the equivalent
fields {ūBr ,Bs} at equivalent points {rBr

j }
pm

j=1 from equivalent fields

{ūB
p
r ,B

c
s} at equivalent points CBp

r = {rB
p
r

q }
pm

q=1 of the parent level `
of the receiver tree and the children level L− l of the source tree:

ūBr ,Bs(rBr
j ) =

∑
Bc

s

eiωτ(rBr
j ;s

Bc
s

c )

pm∑
q=1

Lm
CB

p
r
(rBr
j ; rB

p
r

q )e−iωτ(r
B
p
r

q ;s
Bc
s

c )ūB
p
r ,B

c
s(rB

p
r

q ),

(96)

where s
Bc

s
c is the center of the source box Bc

s.

(2). For each pair {Br, Bs} with Br traversing all boxes at the leaf
level of the receiver tree and Bs traversing all boxes at the root
level of the source tree, interpolate the equivalent fields {ūBr ,Bs}
at r ∈ XR∩Br from equivalent fields {ūB

p
r ,B

c
s} at equivalent points

CBp
r = {rB

p
r

j }
pm

j=1 of the parent level L− 1 of the receiver tree and
the children level 1 of the source tree:

ūBr ,Bs(r) =
∑
Bc

s

eiωτ(r;s
Bc
s

c )

pm∑
j=1

Lm
CB

p
r
(r; rB

p
r

n )e−iωτ(r;s
Bc
s

c )ūB
p
r ,B

c
s(rB

p
r

j ).

(97)

5. Terminating at the leaf level of the receiver tree, for each box Br, sum
up the equivalent fields over all the boxes of the source tree at the root
level, and then according to equation (88) compute the representative
function u at r ∈ XR ∩Br:

u(r) =
∑
Bs

ūBr ,Bs(r).

Assume that the tree level L is even and that there are O(J) = O(2L)
points in each direction. According to the complexity analysis in [32], we can
obtain that the total complexity of Algorithm 2 is

O
(
p4J5/2 + p5J5/2 + p4J3 + J3 log J

)
. (98)
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5.3.1. MATLAB-based parallelized butterfly algorithm

In Algorithm 2, ΩR and ΩS are assumed to be cubed and squablack,
respectively when m = 3, while ΩR is assumed to be a square when m = 2.
Nevertheless, even if this assumption is not satisfied, following [43] we can ar-
tificially construct a requiblack output receiver-point set XR and a requiblack
input source-point set XS so that Algorithm 2 can be parallelized. Take
the case m = 3 as an example. At first, in the construction of the two cluster
trees, if the domain ΩR (ΩS) is not a cube (square), we will divide it into
cuboids (rectangles) of the same dimensions that are approximately cubic
(squablack) and then subdivide them until the leaf level is reached; second,
the output receiver-points XR (the input source-points XS) should contain
all vertices of boxes at the leaf level of the receiver (source) tree and are
evenly spaced in the receiver (source) domain so that at the leaf level of the
receiver (source) tree, the receiver (source) points in each box Br (Bs) have
the same layout and amount to the same number of points. Therefore, as `
varies from L to 0, at the level ` of the source tree and at the level L − `
of the receiver tree, matrices and vectors encounteblack in each of the five
summations (93)-(97) have dimensions that do not depend on the box pair
{Br, Bs}, indicating that we can execute the summation for all box pairs
{Br, Bs} in parallel.

In our MATLAB implementation, we use the “built-in” parfor (paral-
lelized for) loop in the level of iterations through box pairs {Br, Bs}; if the
number of specified MATLAB workers is Nw, then the involved summa-
tions (93)-(97) for every Nw box pairs are executed simultaneously. Con-
sequently, in comparison with the sequential butterfly algorithm, the paral-
lelized butterfly algorithm blackuces the total complexity from equation (98)
to

O
(
p4J5/2 + p5J5/2 + p4J3 + J3 log J

Nw

)
= O

(
J3 log J

Nw

)
.

However, the input source-point set {si}MS
i=1 (the output receiver-point

set {ri}NR
i=1) may not meet the above requirements, and thus differs from the

requiblack input source-point set XS (the requiblack output receiver-point
set XR) under construction. To resolve such inconsistency, for k = 1, 2, each
prepablack input data fk defined on the input source-point set {si}MS

i=1 can
be used to interpolate for the requiblack input data, namely, two groups of
values of representative functions fk on the requiblack input source-point
set XS; next, by inputting the requiblack data to the parallelized butterfly
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algorithm, we obtain the requiblack output data, namely, the group of values
of the wavefield u on the requiblack output receiver-point set XR; finally,
by interpolating onto the requiblack output receiver-points, we obtain the
wavefield on the targeted receiver-point set {ri}NR

i=1, namely, the vector u in
equation (82).

5.4. Planar layer sweeping algorithm

Considering that the wavefield under construction directs along the z
direction so that layers and secondary-source surfaces become boxes and pla-
nar surfaces, respectively, we have developed the planar-layer based sweeping
algorithm, which can be summarized as the following.

Algorithm 3. Planar layer sweeping algorithm—discretized case.

• Offline stage. Partitioning the computational domain and computing
the Babich ingblackients.

– Partition the computational domain into layers {Ωj}
Nlay

j=0 and secondary-

source planes {Sj}
Nlay−1
j=0 . The number of layers is one more than

the number of secondary source planes since we need not set up a
secondary-source plane in the last layer.

– At the primary source r0, and at each secondary source sam-
pled on Sj, compute the tables of the five Babich ingblackients:
τ 2, v0, v1, Φ and v0,ν′ on a coarse mesh in the layer Ωj+1 for
j = 0, · · · , Nlay − 1. In practice, we only compute those tables
for a coarse set of secondary sources since we can generate ta-
bles for a dense set of secondary sources from the coarse tables by
interpolation.

– The tables for the coarse set of secondary sources are compressed,
then stoblack (on a hard drive), and can be used to construct the
wavefield at all high frequencies and at many different primary
sources.

• Online stage. Given a frequency parameter ω, construct the primary
Green’s function layer by layer.

– At all secondary sources on Sj, the tables of the five Babich in-
gblackients are reconstructed from the compressed tables to con-
struct the Green’s function G and its normal derivative G,ν′ in
layer Ωj+1.
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– For each table, first interpolate the data onto a finer mesh to re-
solve the highly oscillatory behavior of G and then compute the
wavefield u in Ωj+1 by the Huygens-Kirchhoff summation (82) with
a quadrature rule, which is accelerated by the MATLAB-based par-
allelized butterfly algorithm.

– If the sampling of secondary sources on the source plane Sj is
not dense enough, then we can interpolate the tables from given
source locations onto the region or segment bounded by these source
locations. This is feasible because asymptotic ingblackients are
continuous functions of the source location. For instance, when
m = 3, if the four source points sA, sB, sC and sD are vertices of
a rectangular segment ABCD of the mesh on Sj, and if tables at
these four source points are computed and are already interpolated
onto the finer mesh in the corresponding layer, we can interpolate
the four tables to find the table onto the same finer mesh at any
source point in the rectangular region ABCD.

We can use Figure 2 to give a brief illustration of the sweeping pro-
cess, where the whole computational domain, i.e., the dashed rectangle, is
partitioned into three layers, the large star is the primary source, smaller
stars on the same row are secondary sources selected as mesh points on the
same secondary source plane, and each of the two secondary source planes
is within one layer and is df > 0 wide away from the next layer. In layer
1, we directly use the two-term Babich approximation (39) to compute the
wavefield excited by the large star (the primary source r0) at those circle
points (including the smaller stars) so that the wavefield at those smaller
stars (secondary sources) is available. Next, in layer 2, we compute Green’s
functions excited by those smaller stars in layer 1 at the squablack points
so that the Huygens-Kirchhoff summation (82) can be applied to compute
the wavefield at those squablack points. Once the wavefield at those smaller
stars (secondary sources) in layer 2 is available, a similar process can be used
to compute the wavefield at those diamond points in layer 3. Consequently,
the wavefield in the entire computational domain becomes available.

5.5. Complexity analysis

Since the offline and online stages are independent of each other and they
can be done on different meshes, we will analyze the two stages separately.
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In the following analysis, suppose that the computational domain is par-
titioned into Nlay + 1 planar layers, and we set up Nlay secondary source
planes. Among the Nlay+1 layers, we only need to use the Huygens-Kirchhoff
summation (82) to construct the wavefield in the Nlay layers away from the
primary source r0.

5.5.1. Offline stage: computing the Babich ingblackients

At first, since the asymptotic ingblackients are independent of frequency
ω, they can be computed on a very coarse mesh. Second, these ingblack-
ients are not only continuous functions of observation points away from the
source but also continuous functions of the source itself. Therefore, on each
secondary source plane, the asymptotic ingblackients can be computed at
coarsely sampled secondary sources as well. Interpolation can be used later
to generate the Babich ingblackients for densely sampled sources if necessary.

Suppose the computational domain is uniformly and coarsely discretized
by nm0 grid points, amounting to n0 points in each direction. Since the domain

is divided into Nlay+1 planar layers, each layer has roughly O(
nm
0

Nlay+1
) points.

On each of the Nlay secondary source planes, we set up nm−1
0 secondary

sources, and we compute for each secondary source the Babich ingblackients
in a layer so that the computational domain is restricted to that layer. Ac-
cording to [32], by using the high-order LxF-WENO schemes to compute the

Babich ingblackients, the computational complexity is O(
nm
0

Nlay+1
log n0); next,

those asymptotic ingblackients are compressed into data tables of Chebyshev
coefficients, and the complexity is O(

nm
0

Nlay+1
log n0) as well. Consequently,

the overall complexity for generating data tables at all nm−1
0 Nlay secondary

sources is

O
(

2nm0
Nlay + 1

log n0 ·Nlayn
m−1
0

)
= O(n2m−1

0 log n0).

Although the complexity seems to be high, we can store those compressed
data tables on a hard drive and can repeatedly use them for different fre-
quencies and for different primary sources. This feature makes our method
appealing to many applications.

On the other hand, to construct the wavefield, the whole computational
domain is uniformly re-discretized by n1 point in each direction. Thus, in
each layer, we need to reconstruct, from the compressed tables of coefficients,
five Babich ingblackients for those specified secondary sources on roughly
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O(
nm
1

Nlay+1
) points, requiring complexity of O(

nm
1

Nlay+1
) for each ingblackient

and for each secondary source; see [32] for details.

5.5.2. Online stage: constructing global wavefields

Given a source point r0 and a frequency parameter ω, a fine mesh is
requiblack to capture the highly oscillatory wavefield in the computational
domain. From the given refractive index n(r) and ω, we can estimate the
smallest wavelength in the computational domain so that the total number
of waves along each direction can be estimated. In principle, along each di-
rection, taking roughly 4 to 6 grid points in each wave is consideblack to
be enough to capture the oscillations; certainly, it does not hurt if more
points are taken. Therefore, the number of discretization points in the com-
putational domain can be chosen to satisfy the above consideration, and is
assumed to be N = nm2 where n2 is the number of points in each direction.

Once the five Babich ingblackients are available on the specified mesh
inside each layer, we can construct the Green’s function by the butterfly-
algorithm based Huygens-Kirchhoff summation (82). Given accuracy ε > 0,
according to [12], we may choose p = pε ≤ O(log2(1

ε
)) for the order of Cheby-

shev nodes in each direction in the butterfly algorithm so that the algorithm
for computing the summation achieves the accuracy ε in O( N

Nlay+1
logN),

where the prefactor depends only on ε and does not depend on ω. Therefore,
the overall complexity for constructing the Green’s function by the butterfly
algorithm in the Nlay layers is O(

Nlay

Nlay+1
N logN) = O(N logN) for a given

primary source point r0 and a given frequency. If computed in parallel, the
complexity is further blackuced to O(N/Nw logN), where Nw denotes the
number of workers in the parallelization.

6. Numerical examples

Unless otherwise stated, all computations were executed in a 16-core
2.0GHz Intel E5-2620 processor with 64 GBytes of RAM at the High Per-
formance Computing Center (HPCC) of MSU. The offline stage was imple-
mented in C codes and executed by using a single core while the online
stage was constructed in MATLAB codes, where the butterfly algorithm was
carried out in parallel in 10 cores via the parallel computing toolbox of MAT-
LAB.

To validate the accuracy of our sweeping method, we obtain reference
solutions by applying the FDTD method [54] directly on the associated time-
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domain equation. However, due to limited computing resources, we are only
able to compute the FDTD-based solution at low frequencies, so that all com-
parisons will be carried out at low frequencies only. Unless otherwise stated,
the grid size in the FDTD method is hFDTD=0.002 in all 2-D examples, and
hFDTD=0.01 in all 3-D examples.

6.1. Two-dimensional examples

Example 1. A medium with constant refractive index is set up as the
following:

• µ = (1 + 0.2 sin(3π(x+ 0.05)) sin(0.5πz))2 and ρ = 4µ so that n =√
ρ/µ = 2.

• The computational domain is Ω = [0, 1]× [0, 1].

• The distance between a layer and a secondary source line is df = 0.1.

• The mesh at the offline stage is 101 × 101. The running time at the
offline stage is 298s.

In this example, since n is constant, there is no caustic in the wavefield so
that we expect that Babich’s ansatz (5) is valid in the whole computational
domain Ω.

At first, we check the accuracy of the Babich-ansatz based methods by
testing both one-term and two-term truncations of the series (5). Since µ is
not constant, we use the FDTD method to compute a reference solution. To
blackuce dispersion error in the FDTD method, we compute the FDTD-
based solution in a small squablack neighborhood of the primary source
r0 = [0.5, 0.2]T of size 0.1, i.e., [0.45, 0.55] × [0.15, 0.25], which is uniformly
discretized by 1001× 1001 points with grid size 0.0001. Values of the wave-
field at the set of points {[0.45 + 0.01m1, 0.15 + 0.01m2]T |0 ≤ m1,m2 ≤ 10}
except at the source r0 are computed at different frequencies, by using the
FDTD method, the GO-ansatz approximation (41), and the one-term and
two-term Babich approximations. Then, taking the FDTD solution as a ref-
erence, we measure the L∞ errors or the maximum absolute errors of the
solution by the GO ansatz (41) and of the two solutions with one-term and
two-term truncations of the Babich’s expansion (5), as recorded in Table 1.
Clearly, both the one-term and two-term Babich approximations yield much
more accurate solutions uniformly at all frequencies than the GO ansatz (41),
while the two-term approximation is the best at high frequencies.
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ω/(2π) 1 2 4 8 16
GO-ansatz L∞ error 1.8E-1 9.1E-2 4.5E-2 2.6E-2 1.7E-2
One-term L∞ error 8.9E-3 4.5E-3 1.3E-3 5.0E-4 1.4E-4
Two-term L∞ error 1.0E-2 3.5E-3 1.1E-3 4.1E-4 9.3E-5

Table 1: Example 1. L∞-error of GO solution (41) and Babich-formula based solutions
(5) in the small domain: [0.45, 0.55]× [0.15, 0.25].

Next, we compute the wavefields excited by the same source r0 in the
whole domain Ω at different frequencies by Algorithm 3. To do so, we
artificially set up one secondary-source line at S0 := {z = 0.6}, and we
update the wavefield in the layer Ω1 := [0, 1]× [0.7, 1] by using the Huygens-
Kirchhoff summation (82) accelerated by Algorithm 2. The total running
times of constructing the wavefield in Ω at different frequencies are recorded
in Table 2. Assume that at mesh points in Ω1 Algorithm 2 produces the
wavefield vector uB while straightforward matrix-vector multiplications give
rise to the wavefield vector uD. To justify validity and efficiency of the
butterfly algorithm, we compute the L∞ errors between uD and uB, i.e.
||uB −uD|| at different values of p and at different frequencies. These errors
along with the running times of computing uD and uB are listed in Table 3.
Evidently, the acceleration is dramatic, especially at high frequencies.

Mesh in Ω 161× 161 321× 321 641× 641 1281× 1281 2561× 2561
ω/(2π) 16 32 64 128 256
NPW 5 5 5 5 5

Tall(p = 9) 1.8 3.8 9.4 20.0 55.8
Tall(p = 11) 1.9 4.2 11.1 23.5 69.1
Tall(p = 13) 2.4 5.1 14.0 28.4 88.3

Table 2: Example 1. r0 = [0.5, 0.2]T . Tall (unit: s): total CPU time for computing u in
Ω; NPW: the number of points per wavelength; p = 9, 11, 13 Chebyshev nodes are used in
Algorithm 2.
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Mesh in Ω1 169× 53 337× 105 673× 209 1345× 417 2689× 833
ω/(2π) 16 32 64 128 256
TD 2.3 13.3 84.5 634.0 5062

NPW 5 5 5 5 5
TB(p = 9) 1.7 3.7 9.2 19.4 53.7
TD/TB 1.4 3.6 9.2 32.7 94.3
L∞-error 1.9E-2 2.5E-2 2.2E-2 1.9E-2 1.9E-2
TB(p = 11) 1.9 4.2 10.9 23.0 67.2
TD/TB 1.2 3.2 7.8 27.6 75.3
L∞-error 8E-3 1.2E-2 1.2E-2 9.1E-3 1.1E-2
TB(p = 13) 2.3 4.9 13.9 28.0 86.5
TD/TB 1.0 2.7 6.1 22.6 58.5
L∞-error 3E-3 6.9E-3 5.5E-3 4.7E-3 6.6E-3

Table 3: Example 1. r0 = [0.5, 0.2]T . TB (unit: s): running time for computing u in Ω1

by Algorithm 2; TD (unit: s): running time for computing u in Ω1 by straightforward
matrix-vector multiplication. NPW: the number of points per wavelength; p = 9, 11, 13
Chebyshev nodes are used in Algorithm 2.
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Figure 3: Example 1. r0 = [0.5, 0.2]T , ω = 2π: (a) solution by the proposed method:
p = 11 and NPW = 5; (b) FDTD solution. Real part of wavefields at (c): x = 0 and
(d): z = 0.8. Circle: solution by the proposed method; dashed line: two-term Babich
approximation solution (5); solid line: FDTD solution.
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Figure 4: Example 1. r0 = (0.5, 0.2), ω = 8π: (a) solution by the proposed method:
p = 11 and NPW = 5; (b) FDTD solution. Real part of wavefields at (c): x = 0.50;
(d): z = 0.8. Circle: solution by the proposed method; dashed line: two-term Babich
approximation solution (5); solid line: FDTD solution.
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Figure 5: Example 1: r0 = (0.5, 0.2), ω = 32π: (a) solution by the proposed method:
p = 13 and NPW = 5; (b) FDTD solution. Real part of wavefields at (c): x = 0.50;
(d): z = 0.8. Circle: solution by the proposed method; dashed line: two-term Babich
approximation solution (5); solid line: FDTD solution.

Moreover, Figures 3, 4, and 5 show the numerical solutions at a low
frequency ω = 2π, an intermediate frequency ω = 8π, and a high frequency
ω = 32π, respectively, by our approach and by the FDTD method, where
a straight line at z = 0.6 shows the location of the secondary source line
S0. For the three frequencies, the FDTD method takes 309s, 310s and 308s
to compute the wavefield, respectively. We can see that the three solutions
are consistent with each other, and the asymptotic solutions approach the
FDTD solution reasonably well as the frequency becomes higher.
Example 2. Two-dimensional sinusoidal medium model:

• µ = (1 + 0.2 sin(3π(x+ 0.05)) sin(0.5πz))2 and ρ = 1.

• The computational domain is [0, 1]× [0, 2].

• The distance between a layer and a secondary source line is df = 0.1.

• The mesh at the offline stage is 101 × 201. The running time at the
offline stage is 4267s.
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In this example, even though ρ is constant, the refractive index n = 1√
µ

is not a constant so that caustics may develop.
At first, we compare the three methods, the FDTD method, the GO-

ansatz approximation (41), and the Babich’s expansions with one-term and
two-term truncations in a caustic-free region (excluding the source), which
is defined to be [0.45, 0.55] × [0.15, 0.25] around the primary source r0 =
[0.5, 0.2]T . Here in the FDTD method, the grid size is hFDTD = 0.0001.
In Table 4, at various frequencies, taking the FDTD solution as a refer-
ence, we list the L∞-errors of the GO solution, the one-term Babich ap-
proximation, and the two-term Babich approximations at the set of points
{[0.45 + 0.01m1, 0.15 + 0.01m2]T |0 ≤ m1,m2 ≤ 10} except at the source r0.
It is clear that our new Babich-expansion based solutions outperform the GO
solutions.

ω/(2π) 2 4 8 16 32
GO-ansatz L∞ error 3.0E-1 1.2E-1 4.3E-2 2.5E-2 1.7E-2
One-term L∞ error 3.7E-1 5.3E-2 2.8E-2 6.0E-4 1.5E-4
Two-term L∞ error 3.7E-1 5.3E-2 2.9E-3 5.5E-4 1.3E-4

Table 4: Example 2. L∞-error of GO solution (41) and Babich-formula based solution (5)
in the small domain: [0.45, 0.55]× [0.15, 0.25].

Next, we compute the wavefields excited by the source r0 = [0.5, 0.2]T in
the whole domain Ω at different frequencies. According to Algorithm 3, we
decompose Ω into six layers {Ωj}5

j=0 distinguished by five secondary-source
lines {Sj}4

j=0 at the offline stage. At the online stage, we update the wavefield
u in {Ωj}5

j=1 by Algorithm 2. The total running times of constructing the
wavefield in Ω at different frequencies are recorded in Table 5. Assume that
at mesh points in Ω1 Algorithm 2 produces the wavefield vector uB while
straightforward matrix-vector multiplications give rise to the wavefield vector
uD. To justify validity and efficiency of the butterfly algorithm, we compute
the L∞ errors between uD and uB, i.e. ||uB − uD|| at different values of p
and at different frequencies. These errors along with the running times of
computing uD and uB are listed in Table 6.
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Mesh in Ω 241× 481 481× 961 961× 1921 1921× 3841 3841× 7681
ω/(2π) 32 64 128 256 512
NPW 6 6 6 6 6

Tall(p = 9) 18.9 48.7 104.3 289.7 691.0
Tall(p = 11) 21.8 58.8 122.8 364.0 838.3
Tall(p = 13) 25.8 73.8 149.1 466.4 1034.4

Table 5: Example 2: r0 = [0.5, 0.2]T . Tall (unit: s): total CPU time for computing u in
Ω; p = 9, 11, 13 Chebyshev nodes are used in Algorithm 2.

Mesh in ΩR 241× 73 481× 145 961× 289 1921× 577 3841× 1153
ω/(2π) 32 64 128 256 512
TD 3.3 22.6 159.6 1195.8 12518

NPW 6 6 6 6 6
TB(p = 9) 3.7 9.5 20.4 54.7 126.4
TD/TB 0.9 2.4 7.8 21.9 99.0
L∞-error 6.1E-3 4.5E-3 4.1E-3 4.5E-3 4.2E-3
TB(p = 11) 4.4 11.4 24.2 69.0 153.5
TD/TB 0.8 2.0 6.6 17.3 81.6
L∞-error 1.1E-3 8.3E-4 7.0E-4 7.9E-4 8.1E-4
TB(p = 13) 5.1 14.4 28.7 89.3 194.2
TD/TB 0.6 1.6 5.6 13.4 64.5
L∞-error 3.5E-4 8.3E-5 1.0E-4 1.1E-4 6.5E-5

Table 6: Example 2: r0 = [0.5, 0.2]T . TB (unit: s): running time for computing u in Ω1

by Algorithm 2; TD (unit: s): running time for computing u in Ω1 by straightforward
matrix-vector multiplication. NPW: the number of points per wavelength; p = 9, 11, 13
Chebyshev nodes are used in Algorithm 2.
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Figure 6: Example 2. r0 = [0.5, 0.2]T , ω = 32π: (a) solution by the proposed method:
p = 13 and NPW= 6; (b) FDTD solution. Real part of wavefields at (c): z = 1; (d):
z = 1.8. Circle: solution by the proposed method; solid line: FDTD solution.

In addition, we compare our numerical solution with the FDTD solution
at ω = 32π, as shown in Figure 6, where the five straight lines in Fig-
ure 6(a) show locations of secondary-source lines {Sj}4

j=0. The running time
for FDTD method is 462s. One can observe that the two solutions match
each other very well in general. It seems that their differences are more pro-
nounced in the vicinity of caustics. We believe that there are at least two
reasons causing such phenomena: one is that there are an infinite number of
rays propagating through caustics while our method truncates the secondary
source lines so that we capture a finite number of rays only, and the other
is that the FDTD solution loses accuracy due to the dispersion error at high
frequencies.

The wavefield u excited by a different primary source r0 = [0.7, 0.35]T

at ω = 32π is computed and compablack with the FDTD solution, as shown
in Figure 7. Since the two-term Babich approximation (39) is accurate close
to the source r0, we see that even though the first secondary-source line is
close to r0, the numerical solution is still consistent with the FDTD solution
quite well.
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Figure 7: Example 2. r0 = [0.7, 0.35]T and ω = 32π. (a) solution by the proposed method:
p = 13 and NPW= 6; (b) FDTD solution. Real part of wavefields at (c): z = 1 and (d):
z = 1.8. Circle: solution by the proposed method; solid line: FDTD solution.

Example 3. Two-dimensional waveguide model:

• µ = (1− 0.5e−8(x−1)2)2 and ρ = 1.

• The computational domain is Ω = [0, 2]× [0, 2].

• The distance between a layer and a secondary-source line is df = 0.1.

• The mesh at the offline stage is 201 × 201. The running time at the
offline stage is 4352s.

At first, we compare the three methods, the FDTD method, the GO-
ansatz approximation (41), and the Babich’s expansion with one- and two-
term truncations in a caustic-free region (excluding the source), which is
taken to be [0.95, 1.05]× [0.15, 0.25] near the primary source r0 = [1.0, 0.2]T .
Here the grid size in the FDTD method is 0.0001. In Table 7, taking the
FDTD solution as a reference solution, we list the L∞-errors of the GO solu-
tion, the one-term Babich’s expansion, and the two-term Babich’s expansion
at the set of points {[0.95+0.01m1, 0.15+0.01m2]T |0 ≤ m1,m2 ≤ 10} except
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at the source r0. It is clear that our new Babich-expansion based solutions
outperform the GO solutions at high frequencies.

ω/(2π) 2 4 8 16 32
GO-ansatz L∞ error 1.1E-0 7.5E-1 5.7E-1 4.2E-1 3.0E-1
One-term L∞ error 2.5E-1 1.4E-2 3.4E-3 9.0E-4 2.8E-4
Two-term L∞ error 2.4E-1 1.3E-2 2.6E-3 6.0E-4 2.7E-4

Table 7: Example 3. L∞-error of GO solution (41) and Babich-formula based solution (5)
in the small domain: [0.95, 1.05]× [0.15, 0.25].

We further compute the wavefields excited by the source r0 = [1.0, 0.2]T in
the whole domain Ω at different frequencies. According to Algorithm 3, we
decompose Ω into six layers {Ωj}5

j=0 distinguished by five secondary-source
lines {Sj}4

j=0 at the offline stage. At the online stage, we update the wavefield
u in {Ωj}5

j=1 by Algorithm 2. The total running times for constructing the
wavefield u in Ω are recorded in Table 8. Assume that at mesh points in
Ω1 Algorithm 2 produces the wavefield vector uB while straightforward
matrix-vector multiplications give rise to the wavefield vector uD. To justify
validity and efficiency of the butterfly algorithm, we compute the L∞ errors
between uD and uB, i.e. ||uB −uD|| at different values of p and at different
frequencies. These errors along with the running times of computing uD and
uB are listed in Table 9.

Mesh in Ω 511× 511 1021× 1021 2051× 2051 4101× 4101
ω/(2π) 32 64 128 256
NPW 4 4 4 4

Tall(p = 9) 63.1 178.2 386.0 1194.6
Tall(p = 11) 77.8 231.2 490.0 1588.1
Tall(p = 13) 97.5 305.8 630.2 2092.8

Table 8: Example 3: r0 = [1.0, 0.2]T . Tall (unit: s): total CPU time for computing u in
Ω; NPW: the number of points per wavelength; p = 9, 11, 13 Chebyshev nodes are used in
Algorithm 2.
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Mesh in ΩR 561× 81 1121× 161 2241× 321 4481× 641
ω/(2π) 32 64 128 256
TD 17.6 119.7 892.1 10220

NPW 4 4 4 4
TB(p = 9) 12.6 35.4 75.0 229.8
TD/TB 1.4 3.4 11.9 44.5
L∞-error 1.7E-2 1.9E-2 1.8E-2 1.4E-2
TB(p = 11) 15.1 45.8 96.3 309.9
TD/TB 1.2 2.6 9.3 33.0
L∞-error 3.8E-3 4.9E-3 5.1E-3 5.2E-3
TB(p = 13) 19.2 60.2 123.8 412.4
TD/TB 0.92 2.0 7.2 24.8
L∞-error 1.1E-3 1.5E-3 8.8E-4 9.7E-4

Table 9: Example 3: r0 = [1.0, 0.2]T . TB (unit: s): running time for computing u in Ω1

by Algorithm 2; TD (unit: s): running time for computing u in Ω1 by straightforward
matrix-vector multiplication. NPW: the number of points per wavelength; p = 9, 11, 13
Chebyshev nodes are used in Algorithm 2.

In addition, we compare our numerical solution with the FDTD solution
at ω = 32π, as shown in Figure 8, where the five straight lines in Fig-
ure 8(a) show locations of secondary-source lines {Sj}4

j=0. The running time
for FDTD method is 767s.
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Figure 8: Example 3. r0 = [1.0, 0.2]T and ω = 32π. (a) solution by the proposed method:
p = 11 and NPW= 4; (b) FDTD solution. Real part of wavefields at (c): x = 0.8; (d):
z = 1.8. Circle: solution by the proposed method; solid line: FDTD solution.

The wavefield u excited by a different primary source r0 = [1.0, 0.35]T at
ω = 32π is computed and compablack with the FDTD solution, as shown in
Figure 9, where the first secondary-source line S0 is located close to r0.
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Figure 9: Example 3. r0 = [1.0, 0.35]T and ω = 32π. (a) solution by the proposed method:
p = 11 and NPW= 4; (b) FDTD solution. Real part of wavefields at (c): x = 0.8; (d):
z = 1.8. Circle: solution by the proposed method; solid line: FDTD solution.
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6.2. Three-dimensional examples

Example 4. A constant refractive index model is set up as follows:

• µ = (3− 1.75exp(−((x− 1)2 + (y − 1)2 + (z − 1)2)/0.64))2 and ρ = 4µ
so that n = 2.

• The computational domain is Ω = [0, 2]× [0, 2]× [0, 2].

• The mesh at the offline stage is 51× 51× 51. The running time at the
offline stage is 27 hours.

At first, we compare three methods, the FDTD method, the GO-ansatz
approximation (41), and the Babich’s expansion with one- and two-term
truncations in a caustic-free region (excluding the source) which is taken
to be [0.95, 1.05] × [0.95, 1.05] × [0.15, 0.25] near the primary source r0 =
[1.0, 1.0, 0.2]T . Here in the FDTD method, the grid size is hFDTD = 0.001.
In Table 10, taking the FDTD solution as a reference, we list the L∞-errors
of the GO solution, the one-term Babich’s expansion, and the two-term
Babich’s expansion at the set of points {[0.95 + 0.01m1, 0.95 + 0.01m2, 0.15 +
0.01m3]T |0 ≤ m1,m2,m3 ≤ 10} except at the source r0. Clearly, our new
Babich-expansion based solutions outperform the GO solution for the 3-D
case as well.

ω/(2π) 1 2 4 8 16
GO-ansatz L∞ error 1.3E-2 1.5E-2 1.3E-2 1.4E-2 1.4E-2
One-term L∞ error 5.4E-3 4.9E-3 5.0E-3 5.6E-3 5.8E-3
Two-term L∞ error 5.0E-3 4.8E-3 4.9E-3 5.5E-3 5.8E-3

Table 10: Example 4. L∞-error of GO solution (41) and Babich-formula based solution
(5) in the small domain: [0.95, 1.05]× [0.95, 1.05]× [0.15, 0.25].

Next, we compute the wavefields excited by the source r0 = [1.0, 1.0, 0.2]T

in the whole domain Ω at different frequencies. As n = 2 is constant, no
caustic occurs in this example. To check the performance of Algorithm 3,
we artificially set up one secondary-source plane at z = 1.2, and compute the
wavefield u in the layer Ω1 = [0, 2]× [0, 2]× [1.3, 2]. The total running times
of constructing the wavefield in Ω1 are recorded in Table 11.
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Mesh in Ω 41× 41× 41 81× 81× 81 161× 161× 161 261× 261× 261
ω/(2π) 2 4 8 16
NPW 5 5 5 5

Tall(p = 9) 83.0 290.4 1085.9 2888.4
Tall(p = 11) 99.2 357.2 1175.0 3733.9
Tall(p = 13) 137.1 429.2 1532.5 5241.1

Table 11: Example 4: r0 = [1.0, 1.0, 0.2]T . Tall (unit: s): total CPU time for computing u
in Ω; NPW: the number of points per wavelength; p = 9, 11, 13 Chebyshev nodes are used
in Algorithm 2.

In addition, we compare our numerical solution with the FDTD solution
at three frequencies: ω = 2π, 4π and 8π. The running time for the FDTD
method at these three frequencies are 8066s, 8070s and 8069s, respectively.
Corresponding results at y = 1 are shown in Figures 10, 11, and 12, respec-
tively.
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Figure 10: Example 4. Source point [1.0, 1.0, 0.2]T and ω = 2π. (a) solution by the
proposed method at y = 1: p = 11 and NPW= 5; (b) FDTD solution at y = 1. Real part
of wavefields at (c): x = 0.9 and y = 1 and at (d): y = 1 and z = 1.4. Circle: solution
by the proposed method; dashed line: two-term Babich approximation solution (5); solid
line: FDTD solution.
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Figure 11: Example 4. Source point [1.0, 1.0, 0.2]T and ω = 4π. (a) solution by the
proposed method at y = 1: p = 11 and NPW= 5; (b) FDTD solution at y = 1. Real part
of wavefields at (c): x = 0.9 and y = 1 and at (d): y = 1 and z = 1.4. Circle: solution
by the proposed method; dashed line: two-term Babich approximation solution (5); solid
line: FDTD solution.
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Figure 12: Example 4. Source point (1.0, 1.0, 0.2) and ω = 8π. (a) solution by the
proposed method at y = 1: p = 13 and NPW= 5; (b) FDTD solution at y = 1. Real part
of wavefields at (c): x = 0.9 and y = 1 and at (d): y = 1 and z = 1.4. Circle: solution
by the proposed method; dashed line: two-term Babich approximation solution (5); solid
line: FDTD solution.

Example 5. Three-dimensional Gaussian model:

• µ = (3− 1.75exp(−((x− 1)2 + (y − 1)2 + (z − 1)2)/0.64))2 and ρ = 1.

• The computational domain is Ω = [0, 2]× [0, 2]× [0, 2].

• The mesh at the offline stage is 51× 51× 51. The running time at the
offline stage is 76 hours.

At first, we compare three methods, the FDTD method, the GO-ansatz
approximation (41), and the Babich’s expansion with one- and two-term
truncations in a caustic-free region (excluding the source), which is taken
to be [0.95, 1.05] × [0.95, 1.05] × [0.15, 0.25] near the primary source r0 =
[1.0, 1.0, 0.2]T . Here in the FDTD method, the grid size is hFDTD = 0.001.
In Table 12, taking the FDTD solution as a reference, we list the L∞-errors
of the GO solution, the one-term Babich’s expansion, and the two-term
Babich’s expansion at the set of points {[0.95 + 0.01m1, 0.95 + 0.01m2, 0.15 +
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0.01m3]T |0 ≤ m1,m2,m3 ≤ 10} except at the source r0. We see that our
new Babich-expansion based solutions are much more accurate than the GO
solutions.

ω/(2π) 4 8 16 32 64
GO-ansatz L∞ error 3.6E-1 1.9E-2 1.9E-2 1.9E-2 1.9E-2
One-term L∞ error 3.6E-1 4.4E-3 4.5E-3 5.2E-3 5.8E-3
Two-term L∞ error 3.6E-1 4.4E-3 4.5E-3 5.1E-3 5.8E-3

Table 12: Example 5. L∞-error of GO solution (41) and Babich-formula based solution
(5) in the small domain: [0.95, 1.05]× [0.95, 1.05]× [0.15, 0.25].

We compute the wavefields excited by the source r0 = [1.0, 1.0, 0.2]T in
the whole domain Ω at different frequencies. According to Algorithm 3, we
set up one secondary-source plane at z = 1.2, and compute the wavefield u in
the layer Ω1 = [0, 2]× [0, 2]× [1.3, 2]. The total running times of constructing
the wavefield in Ω are recorded in Table 13.

Mesh in Ω 31× 31× 31 61× 61× 61 131× 131× 131 261× 261× 261
ω/(2π) 4 8 16 32
NPW 5 5 5 5

Tall(p = 9) 83.0 204.9 701.7 2888.4
Tall(p = 11) 92.6 251.9 915.2 3733.9
Tall(p = 13) 109.7 303.4 1299.7 5241.1

Table 13: Example 5: r0 = [1.0, 1.0, 0.2]T . Tall (unit: s): Total CPU time for computing
u in Ω; NPW: number of points per wavelength; p = 9, 11, 13 Chebyshev nodes are used
in Algorithm 2.

Next, we compare our numerical solution with the FDTD solution at
frequency ω = 16π. Numerical results at y = 1 are shown in Figure 13. The
running time for the FDTD method is 8075s.
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Figure 13: Example 5. Source point (1.0, 1.0, 0.2) and ω = 16π. (a) solution by the
proposed method at y = 1: p = 13 and NPW= 5; (b) FDTD solution at y = 1. Real part
of wavefields at (c): x = 0.9 and y = 1; and at (d): y = 1 and z = 1.8. Circle: solution by
the proposed method; solid line: FDTD solution.

In addition, we compute the wavefield u at high frequency ω = 64π.
Numerical results at x = 1, y = 1 and z = 1.8 are shown in Figure 14(a), (b)
and (c), respectively.
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Figure 14: Example 5. Source point (1.0, 1.0, 0.2) and ω = 64π. Solution by the proposed
method with p = 13 and NPW= 5 at (a) x = 1, (b) y = 1, and (c) z = 1.8.

Finally, we compute the wavefield u at frequency ω = 64π at the source
r0 = [0.6, 0.6, 0.24]T . Numerical results at x = 1.4, y = 1.4 and z = 1.8 are
shown in Figure 15(a), (b) and (c), respectively.
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Figure 15: Example 5. Source point (0.6, 0.6, 0.24) and ω = 64π. Solution by the proposed
method with p = 13 and NPW= 5 at (a) x = 1.4, (b) y = 1.4, and (c) z = 1.8.

7. Conclusion

Starting from Babich’s expansion, we have developed a new fast Huygens
sweeping method for solving the Helmholtz equation in inhomogeneous media
in the high frequency regime and in the presence of caustics. The new method
utilized the Huygens-Kirchhoff integral to integrate locally valid wavefields
to construct globally valid wavefields, which are uniformly accurate near the
source and remote from it. The Huygens-Kirchhoff summation was further
accelerated by the butterfly algorithm, achieving nearly optimal complexity.
Numerical experiments have illustrated the efficiency and accuracy of the
method.
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