Computer Project 2. RLC Circuits

Goal: Investigate the charge on a capacitor in an *RLC* circuit with varying voltage.

Tools needed: ode45, plot

Description: If Q(t) = charge on a capacitor at time t in an RLC circuit (with R, L and C being the resistance, inductance and capacitance, respectively) and E(t) = applied voltage, then Kirchhoff's Laws give the following 2nd order differential equation for Q(t):

Questions: Assume L = 1, C = 1/5, R = 4 and $E(t) = 10 \cos \omega t$.

- 1. Use ode45 (and plot routines) to plot the solution of (*) with Q(0) = 0 and Q'(0) = 0 over the interval $0 \le t \le 80$ for $\omega = 0, 0.5, 1, 2, 4, 8, 16$.
- 2. Let $A(\omega) = \text{maximum of } |Q(t)|$ over the interval $30 \leq t \leq 80$ (this approximates the amplitude of the steady-stat solution). Experiment with various values of ω and discuss what appears to happen to $A(\omega)$ as $\omega \to \infty$ and as $\omega \to 0$. Also, interpret your findings in terms of an equivalent spring-mass system.

Remark: There is an analogy between spring-mass system and *RLC* circuits given by:

Spring-mass system	RLC circuit
m u'' + c u' + k u = F(t)	$LQ'' + RQ' + \frac{1}{C}Q = E(t)$
u = Displacement	Q = Charge
u' = Velocity	Q' = I = Current
m = Mass	L = Inductance
c = Damping constant	R = Resistance
k = Spring constant	$1/C = (\text{Capacitance})^{-1}$
F(t) = External force	E(t) = Voltage