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The discrete wavelet transform may be used as a signal-processing tool for visualization and
analysis of nonstationary, time-sampled waveforms. The highly desirable property of shift
invariance can be obtained at the cost of a moderate increase in computational complexity, and
accepting a least-squares inverse~pseudoinverse! in place of a true inverse. A new algorithm for the
pseudoinverse of the shift-invariant transform that is easier to implement in array-oriented scripting
languages than existing algorithms is presented together with self-contained proofs. Representing
only one of the many and varied potential applications, a recorded speech waveform illustrates the
benefits of shift invariance with pseudoinvertibility. Visualization shows the glottal modulation of
vowel formants and frication noise, revealing secondary glottal pulses and other waveform
irregularities. Additionally, performing sound waveform editing operations~i.e., cutting and pasting
sections! on the shift-invariant wavelet representation automatically produces quiet, click-free
section boundaries in the resulting sound. The capabilities of this wavelet-domain editing technique
are demonstrated by changing the rate of a recorded spoken word. Individual pitch periods are
repeated to obtain a half-speed result, and alternate individual pitch periods are removed to obtain
a double-speed result. The original pitch and formant frequencies are preserved. In informal
listening tests, the results are clear and understandable. ©2005 Acoustical Society of America.
@DOI: 10.1121/1.1869732#
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I. INTRODUCTION

In experimental acoustics, it is common to encoun
nonstationary sound waveforms, i.e., those in which the
quency content and amplitude change as a function of ti
The conventional approach for analyzing such sounds i
calculate a spectrogram, or short-time Fourier transfo
~STFT!. For a time-sampled waveformz(t), the STFT pro-
vides information about the waveform’s energy content a
function of both time and frequency, i.e.,FSTFT(z)
5E(t, f ). While the STFT has proven its worth in numero
practical applications, it is ill suited to certain types
sounds, and it lacks some desirable mathematical chara
istics. Sounds with frequency content ranging over more t
one or two orders of magnitude are often problematic
STFT analysis, because a window long enough to cap
low-frequency content~at least one period! will be insensi-
tive to high-frequency sounds of short time duration.

The discrete wavelet transform~DWT! has a severe
limitation when used for acoustic waveform analysis: its la
of shift invariance. Let two time-sampled waveformsz(t)
and z8(t) be time-shifted copies of one another, such t
z(t)5z8(t1t0) for all t. Calculating the DWT of each
FDWT(z)5E(t,n), andFDWT(z8)5E8(t,n). Since the DWT
is not shift invariant,E(t,n)ÞE8(t1t0 ,n). Therefore, the
DWT analysis of a sampled sound depends on when
sampling starts, not just when the sound occurs, which
highly undesirable for the study of physical systems. T
DWT is critically sampled, i.e., utilizes lower sampling rat
2122 J. Acoust. Soc. Am. 117 (4), Pt. 1, April 2005 0001-4966/2005/1
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~subsampling! for lower-frequency components. The sele
tion of samples to be skipped in the subsampling proces
inextricably linked to the time elapsed since the sampl
began. Fortunately, by modifying the DWT to retain all po
sible samples~performing no subsampling!, it is possible to
obtain explicit shift invariance.1–3 The resulting shift-
invariant discrete wavelet transform~SIDWT! is highly re-
dundant, but since many of the redundant elements are
plicates, the increase in computational complexity is n
severe. The full SIDWT may be used as a starting point fr
which to draw a more efficient representation for los
compression.4 The SIDWT may also be used in full~albeit
with the duplicate elements grouped and summed!, in which
form it has been shown to be an isometry, with applicatio
in data visualization.5 Others have described algorithm
which are mathematically equivalent to the SIDWT, b
which were developed for applications in exploratory sta
tics, using different nomenclature, i.e., the stationary wave
transform6 and the maximal overlap discrete wavel
transform.7 The stationary wavelet transform has also be
used successfully for waveform denoising.2

The use of the SIDWT~and its equivalents! to identify
features in a waveform; whether signatures of interest
phenomena, experimental artifacts, or noise, leads natu
to the following question. What would the time-sample
waveform look like ~or sound like! if the features were
louder, softer, appeared at a different time, or were remo
altogether? Performing the desired modifications on
SIDWT output is straightforward; the challenge is reversi
17(4)/2122/12/$22.50 © 2005 Acoustical Society of America
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the SIDWT to return to a time-sampled waveform. Becau
of its inherent redundancy, the SIDWT does not have a t
inverse in the mathematical sense. However, this fact d
not preclude the existence of an algorithm with use
inverse-like behavior. The developers of the stationary wa
let transform also developed such an inverse-like proced
They showed that averaging together all of the possible s
induced variations of the IDWT yields intuitively satisfyin
results.6 Likewise, a mathematically equivalent procedu
was used to invert the maximal overlap discrete wave
transform, also with intuitively satisfying results.7 The sta-
tionary wavelet transform combined with this inverse-li
averaging procedure has also been shown to yield good
sults in waveform denoising.2 The wavelet denoising pape
states, without proof or discussion, the important mathem
cal result that the inverse-like procedure is actually
pseudoinverse of the stationary wavelet transform. A rec
publication coauthored by one of the present authors
scribes two examples of sound visualization and modifi
tion using the SIDWT and its pseudoinverse~ISIDWT!. The
discussion and the two examples are narrowly focused on
field of automotive sound quality engineering, and no ma
ematical material is included.8

The goals of this paper are threefold. The first is to d
scribe a newly developed simple and fast convolution al
rithm for the ISIDWT, based on the SIDWT algorithm.5 The
SIDWT, the stationary wavelet transform, and the maxim
overlap discrete wavelet transform employ significantly d
ferent algorithms, so a discussion of computational issue
included. The second goal is to present a simple, s
contained proof that the ISIDWT is the pseudoinverse of
SIDWT. The statement of this result has been published;
believe the details of the proof should be made available
well. The third goal is to illustrate the potential applicatio
of these new analytical methods in the field of acoust
Section II covers both the theoretical~II A ! and the compu-
tational ~II B ! aspects of the SIDWT and its pseudoinver
In Sec. III, examples of low-level speech waveform proce
ing illustrate the capabilities of the SIDWT/ISIDWT for vi
sualization, feature separation, and analysis/synthesis.
especially promising way to combine these capabilities is
edit ~cut and paste sections! of sound recordings in the shift
invariant wavelet domain. While many audible features
easier to recognize in that domain, the primary benefit is
wavelet pseudoinverse transform automatically prevents
occurrence of the audible clicks and pops that are usu
produced at section boundaries by time-domain editing.
lustrative examples of waveforms with strong time localiz
tion and a wide frequency range can be found in many
ferent technical fields of study. For the development
digital audio effects in music, it is useful to be able to d
tinguish transient~time-localized! sounds, such as the pluc
of a guitar string, from the steady ringing tone~frequency-
localized! that follows.9 Research in wavelet-domain mod
fication of musical sounds began in the early days of wav
theory, e.g., musical applications of complex wavelets,10 and
continues today, e.g., the use of a ‘‘lapped’’ wavelet tra
form to stitch together segments of musical waveform11

The examples most familiar to the authors are drawn fr
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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the myriad of mechanical sounds produced by motor
hicles, e.g., a momentary rattle excited by~and partially
masked by! a car door slam, and the motor whine, bla
scrape, and reversal thud of a windshield wiper.8 The details
of speech waveforms, especially the formant resonan
modulated by glottal pulses, are also an excellent match
the capabilities of the SIDWT/ISIDWT. The general a
proach and terminology derives from anad hoclist of recent
publications that deal with various details of speech wa
forms: pitch period estimation,12–14 formant modulation,15

friction noise modulation,16 voicing onset,17 glottal
characteristics,18 and waveform irregularities.19

II. THE SHIFT-INVARIANT DISCRETE WAVELET
TRANSFORM AND ITS PSEUDOINVERSE

A. Theory

Consider a sequence ofN physical measurementsz
5(z1 ,z2 ,...,zN), e.g., air pressure measured repeatedly
evenly spaced time intervals. LetS denote the set of all such
signals. Since(nzn

2,1`, the vectorz may be regarded a
the coordinates of a single point in a finite energ
N-dimensional vector space,zP l 2(ZN). Implicit in z
P l 2(ZN) is the assumption thatz is a single period of an
infinitely long sequence with a periodicity ofN. If this as-
sumption is not physically realistic, care must be taken
insure that the conclusions drawn from the analysis are in
pendent ofN.

Let uP l 2(ZN) and vP l 2(ZN) represent two digital fil-
ters. Denoting the discrete Fourier transform ofu by û, we
require the system matrix

A~n!5
1

& S û~n! v̂~n!

ûS n1
N

2 D v̂S n1
N

2 D D , ~1!

to be unitary for eachn50,...,N21 ~Ref. 20, p. 173!. There-
fore, u is the low-pass filter sequence andv the high-pass
filter sequence generating the discrete wavelet transform

Let ũ be the complex conjugate reflection ofu defined
by ũ(n)5u* (N2n) for all n. The finite impulse respons
filtering of z by u is written as a~circular! convolutionz* u.
Most practical applications of these techniques, including
examples presented here, involve onlyN-element sequence
of real numbers, i.e.,xPRN, l 2(ZN). The mathematical re-
sults, however, are valid for complex-valued vectors. Assu
ing that m divides N, a sequence reordering operatorRm ,
defined by

Rm~z!5~z1 ,zm11 ,...,zN2~m21! ,z2 ,zm12 ,...,zN2~m22! ,...,

zm ,z2m ,...,zN!, ~2!

in effect, writes the elements ofz into anm by N/m matrix
by columns and reads the elements out by rows.
example, if z5(1,2,3,4,5,6,7,8), then R2(z)
5(1,3,5,7,2,4,6,8). The inverse ofRm is RN/m , i.e.,
RN/m(Rm(z))5z.

From anN-element input vector, givenp such that 2p

dividesN, the p-stage shift-invariant discrete wavelet tran
2123Enders et al.: Shift-invariant discrete wavelet transform
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form T produces a (p11) by N matrix.5 T may therefore be
regarded as a linear map taking each point inS to a point in
a (p11)N-dimensional vector spaceW, i.e.,

T: l 2~ZN!→ l 2~Z~p11!N!. ~3!

T of z is given by

T~z!5~RN/2~x1!,RN/4~x2!,...,RN/2p~xp!,RN/2p~yp!!,
~4!

where

x15
1

&
R2~z* ṽ ! and y15

1

&
R2~z* ũ!, ~5!

and for j 52,...,p

xj5
1

&
R2~yj 21* ṽ ! and yj5

1

&
R2~yj 21* ũ!. ~6!

The set of points mapped byT from S occupies a subspace i
W denoted by range~T!.

Being a linear map from anN-dimensional space of sig
nals to a space of larger dimension, the SIDWT does
have an inverse. Of all the points inW, only those which are
in range~T! are directly associated with a point inS. The
pseudoinverse works around this limitation by providing e
ery point wPW with an indirect association to some poin
zPS. Everyw has a unique nearest~in the standard Euclid-
ean norm! neighborw8Prange(T) ~possibly itself!, and the
pseudoinverse associates eachw with the z that satisfies
T(z)5w8. This procedure is mathematically equivalent
finding the least-squares solution to an overdetermined
tem of linear equations. We now define the ISIDWT

S: l 2~Z~p11!N!→ l 2~ZN!, ~7!

a map taking each point inW to a point in S. Given w
5(w1 ,w2 ,...,wp11)P l 2(Z(p11)N), we computeS(w) by
the algorithm

hp5
1

&
~RN/2~R2p~wp!!* v1RN/2~R2p~wp11!!* u! ~8!

hp215
1

&
~RN/2~R2p21~wp21!!* v1RN/2~hp!* u! ~9!

]

S~w!5h15
1

&
~RN/2~R2~w1!!* v1RN/2~h2!* u!. ~10!

The relationship betweenT and S ~as defined above! is es-
tablished by the following theorem.

Theorem 1. Sis the least-squares inverse~pseudoin-
verse! of T, i.e.,

~i! ST5 idu l 2(ZN) , and
~ii ! TS is the orthogonal projection ofl 2(Z(p11)N) onto

range~T!.

According to statement~i!, for wPrange(T), S is the
inverse ofT, and thereforeS(T(z))5z. Statement~ii ! ad-
2124 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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dresses the case ofw¹range(T), which will apply to virtu-
ally all w chosen arbitrarily, i.e., not obtained byw5T(z). In
this case,x5T(S(w))Prange(T) is the unique point in
range~T! closest tow, minimizing (n(xn2wn)2. A proof of
Theorem 1 is given in the Appendix.

B. Computation

The block diagram in Fig. 1 illustrates the processi
steps in the SIDWT~analysis phaseT! and its pseudoinverse
ISIDWT ~synthesis phaseS! for the two-stage case, i.e.,p
52. The analysis begins in the upper-left corner with t
input waveformz. The four-block clusters inside the dotted
line boxes on the left side of the diagram depict the recurs
analysis steps defined in Eqs.~5! and ~6!. A p-stage trans-
form employsp of these clusters, yieldingp11 many series
x1 ,x2 ,...,xp ,yp , each of lengthN. The final rearrangemen
step defined in Eq.~4! reaches the vector spaceW, depicted
by the central dashed-line box. Completion of the SIDWT
indicated by the vertical arrow leading toT(z) at the top of
the diagram. The synthesis begins at the top withw, which in
most cases will be a modification ofT(z). The first step in
the ISIDWT is to undo the final rearrangement step in
SIDWT. After this, the recursive procedure in the dotted-li
boxes in the right side of the diagram, as defined in Eqs.~8!
and~9!, is carried out. The ISIDWT is complete at the top
the diagram whereS(w)5h1 , as in Eq.~10!.

Let us look at the computational complexity of th
pseudoinverseS. Given zP l 2(ZN), the computational com-
plexity for the transformT(z) is O(N log2 N) according to
Ref. 5. We will now show that this result holds for th
ISIDWT S as well.

FIG. 1. A block diagram of the SIDWT and ISIDWT for two scale level
i.e., p52.
Enders et al.: Shift-invariant discrete wavelet transform
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Theorem 2. Let N be a power of 2 andpPN, with
p< log2 N fixed. Then, the total number of complex multipl
cations required to computeS(w) for wP l 2(Z(p11)N) is
#N<2pN13pN log2 N.

Proof: In lieu of a detailed proof, we note thatSand the
analysis algorithm are essentially the same by symmetry

From Theorem 2 we obtain the result that the compu
tion of S is anO(N log2 N) operation ifp is considered to be
a fixed number. If we take the Daubechies D4u andv and
perform the convolutions directly instead of using the FF
then the computational complexity is justO(N), sinceu and
v have only 4 nonzero entries. This is the minimal order
can expect when working with signals of lengthN. SinceS is
a linear map, the error in the output is bounded by the no
of S ~a constant! times the error in the input, which mean
that the algorithm is numerically stable.

The ISIDWT, the stationary wavelet transform, and t
maximal overlap discrete wavelet transform are mathem
cally equivalent in the sense that they yield the same res
However, they utilize significantly different algorithms, s
they are not computationally equivalent in all respects.
three may be calculated withO(N log2 N) computational
complexity if p is considered fixed.5–7 If implemented in a
low-level programming language that allows efficient inde
ing of individual matrix elements, the performance of t
three is expected to be essentially equivalent. However,
ISIDWT is significantly easier to implement in an arra
oriented scripting language, because it can be constructe
linking together a few of the standard functions that are co
monly provided in such languages. In this way, accepta
performance can be obtained without the need to write, c
pile, and link an external module written in a lower-lev
language.

III. APPLICATION TO SPEECH WAVEFORM ANALYSIS

To illustrate the application of the SIDWT/ISIDWT t
acoustic waveforms, a detailed analysis of a sound recor
of a spoken word is presented below. A recording of a m
speaker pronouncing the Japanese word ‘‘kaze’’ with a ris
intonation from an on-line speech database maintained
phonetic alphabet research21 is shown in Fig. 2. Voiced
speech is produced by periodic glottal closure events, wh
momentarily interrupt the air flow through the larynx. Th
frequency at which these events occur, denoted byF0, is the
fundamental frequency of voiced speech. The rising into
tion in this example is reflected in Fig. 2, asF0'90 Hz
during the ‘‘a’’ increases toF0'120 Hz during the ‘‘e.’’ The
procedure for glottal period estimation is discussed in de
below.

During spoken vowels, the sharp air-pressure transie
known as glottal pulses excite pressure oscillations in
volume acoustic resonances of the vocal tract. The freque
content of these resonances, which fall in the range betw
;500 Hz to;8 kHz, depending on the size of the vocal tra
and the position of the tongue, jaw, and lips, is the prim
factor distinguishing one vowel from another. The significa
frequency peaks in the pressure oscillations are known
formants, and are denotedF1,F2,F3,F4, in order of increas-
ing frequency. The formant amplitude is highest immediat
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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after the glottal pulse, at which point the glottis is essentia
closed. The amplitude decreases rapidly as energy is lost
to air flow between the lips. When the glottis reopens
preparation for the next glottal pulse, the resulting air flo
causes the formant amplitude to decrease even more qui
This strong amplitude modulation of the formants leads t
widely used quasistatic approximation. In this simplified p
ture, the frequency content of each formant pulse is assu
to be static, and the~relatively slow! motion of the vocal-
tract anatomy~tongue, jaw, and lips! is inferred by compar-
ing the frequency content of consecutive formant pulses.
first six formant pulses in kaze may be seen in Fig. 3. T
first formant pulse, which signifies the beginning of th
vowel sound ‘‘a,’’ occurs at;0.105 ms. In the sound wave
form plot, each formant peak begins at a sharp downw
step ~a glottal pulse! and oscillates with decreasing amp
tude, disappearing before the next glottal pulse. On the s
trogram, labeled ‘‘STFT,’’ each downward step appears a
vertical gray bar; the short time duration of each step map
broad frequency content. The sampling rate was 44
samples/s, and a 352-point Hanning window, shifted in
point steps, and zero-padded to 1024-point length, was u
in the preparation of spectrograms in this and the next
figures. The gray scale on each spectrogram was adjuste
enhanced contrast.22 Each formant pulse appears as a pair
dark horizontal bands;600 Hz apart, beginning at a vertica
bar, and ending before the next vertical bar. This form
frequency content ofF1'500 Hz andF2'1100 Hz is typi-
cal for a male Japanese speaker’s ‘‘a.’’23

The scalogram in Fig. 3 labeled ‘‘DWT’’ is obtaine
from the conventional, shift-variant, discrete wavelet tra
form. The 8-tap symlet was used for all examples presen
here, but the results do not depend critically on the choice
wavelet. The shape of the wavelet~e.g., symlet vs
Daubechies! makes little difference here. Shorter wavelet fi
ters ~e.g., 4-tap vs 8-tap! will have increased energy in th

FIG. 2. A sound recording of a male speaker pronouncing the Japa
word ‘‘kaze’’ with rising intonation, and the voiced fundamental frequen
F0 obtained from glottal period estimates.
2125Enders et al.: Shift-invariant discrete wavelet transform
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upper sidebands, but provide faster calculations and sha
time resolution. The essential preprocessing step for vis
ization is to transform the oscillatory coefficients within ea
scale level ofwPrange(T) to a quadratic envelope.5 For the
coefficients at themth scale level,wm , the quadratic enve
lope wm8 5wm

2 1H(wm)2, whereH is the Hilbert transform,
i.e., a p/2 phase shift. Following this operation, all of th
scalograms presented here were downsampled to fit
available space, and the gray scales were adjusted for
hanced contrast.22 The formant pulses appear as dark, ve
cal features extending from the 500-Hz to the 8-kHz ban
Their appearance is more varied than on the spectrog
due to the shift variance of the DWT. Nevertheless, the DW
has been shown to be a reliable method for identifying g
tal pulses forF0 estimation.13,14 The scalogram in Fig. 3
labeled ‘‘SIDWT’’ is obtained from the shift-invariant dis
crete wavelet transform. In the region corresponding to
‘‘k’’ sound, the SIDWT and DWT scalograms have a simil
appearance. In the region corresponding to the voiced ‘

FIG. 3. The ‘‘ka’’ from the Japanese word ‘‘kaze,’’ its spectrogram~STFT!,
its conventional scalogram~DWT!, and its shift-invariant scalogram
~SIDWT!.
2126 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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they are dramatically different. The shift invariance reve
the true reproducibility of the formant pulses, and for ea
formant pulse shows the amplitude decrease and the gap
ceding the next glottal pulse. The voiced region highligh
two important differences between the STFT presenta
and the SIDWT presentation. First, the STFT has finer f
quency resolution than the SIDWT. The two main forman
F1 andF2, are resolved clearly on the STFT, but are n
resolved on the SIDWT due to the single-octave bandwi
of the scalogram levels. The second difference is that
STFT has the same time resolution at all frequencies,
transients appear as vertical features. In contrast, the
resolution of the SIDWT scales inversely with the cen
frequency of each band. For each step upward to a hig
frequency scalogram band, the time resolution is twice
fine. For this reason, a transient feature tends to have a
ramidal appearance on the SIDWT, with a narrow top o
base that broadens at each next lower level. The prac
consequence of these two differences is that the SIDWT
not a substitute or a replacement for the STFT, but rathe
complement, and the two techniques can be used effecti
together.

Figure 4 shows a similar presentation of the ‘‘z’’ from
kaze. This sound is produced by a narrow restriction in
mouth. The frictional~turbulent! loss due to the air flowing
through the restriction prevents the build-up of formants. T
absence of formants does not imply silence, however,
cause the turbulence produces audible noise called frica
The loudness of the frication varies with the flow of a
through the restriction, which in turn is modulated by pe
odic glottal closures. The modulated frication appears
bursts of noise~glottis open! separated by momentary s
lences~glottis closed!.16 It is interesting to contrast this tim
ing to that observed with formants, which are loudest wh
the glottis is closed, and quiet when the glottis is open.

To complete the presentation of kaze, the final vow
‘‘e’’ is shown in Fig. 5. The time-domain clarity of the for
mant peaks in the shift-invariant scalogram~SIDWT!, com-
pared to the shift-variant scalogram~DWT!, is even more
evident here than in Fig. 3. The formant pulses are clo
together than in Fig. 3, and they also exhibit a second hi
frequency pulse in each glottal period. Secondary glo
pulses such as these are often observed in male speech w
forms, and they can be problematic for glottal period estim
tion algorithms. Interestingly, the phenomenon is usua
vowel-dependent, and only traces of secondary pulses ca
seen on the ‘‘a’’ in Fig. 3.

An expanded view of two of the formant pulses fro
Fig. 3 is shown in Fig. 6, as a time history and as a sh
invariant scalogram. The glottal pulses are indicated
‘‘GP.’’ A periodic signature with a period of;1.7 ms is
apparent on the 2-kHz scale as alternating bands of light
dark, and is barely visible on the 1-kHz band. The scalogr
as prepared for display is a quadratic function of the wave
coefficients, and this signature is the difference freque
between the two formant peaks, 1.7 ms'1/(F22F1). The
difference frequency shows up most clearly on the 2-k
band because there is significant frequency overlap betw
adjacent bands, and the strong fundamentalF0 and its strong
Enders et al.: Shift-invariant discrete wavelet transform
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second harmonic overwhelm theF22F1 difference in the
500-Hz and 1-kHz bands.

A similar view of three of the formant pulses from th
vowel sound ‘‘e’’ is shown in Fig. 7, as a time history and
a shift-invariant scalogram. Patterns that appear to be di
ence frequencies can be seen, but since the formant co
of ‘‘e’’ is more complex than the two strong peaks respo
sible for the signature in Fig. 6, the scalogram signature
the vowel ‘‘e’’ is more complex as well. This expanded vie
provides a more detailed picture of the secondary glo
pulse labeled ‘‘2’’ in each glottal period, showing that th
fundamental periodicity, as well as the gap preceding
glottal closure, are still evident. TheF0 estimate in Fig. 2
was obtained by finding all occurrences of this formant g
peak signature. For a list of timest5(t1 ,t2 ,...,tM) at which
the M occurrences of the signatures were observed,F0 at tn

is given by F0n51/(tn112tn), where N51,2,...,(M21).
The timest were obtained by finding local maxima in th
sum of the quadratic envelopes of the 1- and 2-kHz ban

FIG. 4. The ‘‘z’’ from the Japanese word ‘‘kaze,’’ its spectrogram~STFT!,
its conventional scalogram~DWT!, and its shift-invariant scalogram
~SIDWT!.
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An important category of speech-processing techniq
known as PSOLA~pitch-synchronized overLap and add! is
based on working with the individual glottal pulses.24 A typi-
cal application of PSOLA might begin with isolating eac
glottal pulse by multiplying the speech waveform by
rounded window~e.g., Hanning! centered over each pulse i
turn. A typical length for the window would be twice th
glottal period. The window length represents a comprom
longer windows allow the neighboring pulses to intrude, a
shorter windows~or windows with more steeply sloped time
domain cutoffs! increase spectral leakage. After the ind
vidual glottal pulses have been processed in the desired m
ner, they must be recombined to make a single waveform
variety of approaches has been used to recombine the
vidual segments,24 including a technique which utilizes in
formation obtained from wavelet transform analysis.25 In
general, PSOLA produces high-quality results, althou
sometimes annoying artifacts are present.26,27 The artifacts
are not completely understood, and may be related to

FIG. 5. The ‘‘e’’ from the Japanese word ‘‘kaze,’’ its spectrogram~STFT!,
its conventional scalogram~DWT!, and its shift-invariant scalogram
~SIDWT!.
2127Enders et al.: Shift-invariant discrete wavelet transform
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details of how the modified pulses are recombined.
The analysis/synthesis capability of the SIDW

ISIDWT may be employed to segment and recombine
speech waveform in a manner that is conceptually simila
PSOLA, although the mathematical details are of cou
quite different. Figures 8 and 9 illustrate the procedure
extracting a single formant pulse from the speech wavefo
In Fig. 8 a dashed-line box delineates the region of the sc
gram corresponding to the single formant pulse to be
tracted, i.e., the time interval 0.1335ta,t,tb50.1436. The
edges of the box are aligned with local minima of the sum
the quadratic envelopes of the 2- and 1-kHz bands.
scalogram elements inside this box are preserved, and
remainder of the scalogram is set to zero. Given the spe
waveform z(t) over the intervalt0<t<tc , and the scalo-
gram x(t,n)5T(z), a function of both time and scale, th
modification producesw(t,n) such that

FIG. 6. The Japanese vowel ‘‘a,’’ and its shift-invariant scalogram. T
glottal pulses are indicated by ‘‘GP.’’

FIG. 7. The Japanese vowel ‘‘e,’’ and its shift-invariant scalogram. T
glottal pulses are indicated by ‘‘GP,’’ with secondary pulses indicated
‘‘2.’’
2128 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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w~ t,n!5H 0 : t0<t,ta

x~ t,n! : ta<t<tb

0 : tb,t<tc.

~11!

To complete the procedure, the extracted single form
pulsez8 is obtained fromz85S(x). Figure 9 showsz8, with
the original waveformz in gray for comparison. The scalo
gramx85T(z8) is also shown in Fig. 9, along with the orig
nal dashed-line box. The only significant difference betwe
w andx8 is the smoothing of the boundaries atta and tb .

To carry the feature extraction procedure describ
above to completion, the nonzero elements of a scalograx
are segmented intoM pieces (x18 ,x28 ,...,xM8 ) such that
(nxn85x. Then, by the linearity ofS, (nzn85z. The regions
of the scalogram where features with strong time localizat
are absent are segmented at arbitrary time boundaries,

e

e
y

FIG. 8. A single formant pulse signature of the Japanese vowel ‘‘a’’ s
rounded by a dashed-line box on the shift-invariant scalogram.

FIG. 9. A single formant pulse of the Japanese vowel ‘‘a’’ extracted by
ISIDWT, with the original waveform in gray for comparison. The shif
invariant scalogram of the reconstructed pulse is shown surrounded
dashed-line box marking the extracted area.
Enders et al.: Shift-invariant discrete wavelet transform
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the constraint that the arbitrary segmentation lengthstb– ta

are similar to those used elsewhere in the scalogram. If
segmentation boundaries are aligned with instants of rela
quiet, the operation may be considered a type of synchron
windowing, i.e., windowing synchronized with the amplitud
modulation inherent in the waveform. In this example, m
of the waveform exhibits strong amplitude modulation, a
the width of each windowtb– ta is large relative to the
smoothing at the boundaries observed in Fig. 9. Theref
the time-domain overlap between adjacent segments is
ligible, and

(
n51

M

F~zn8~ t !!'F~z8~ t !!, ~12!

even for some nonlinearF(z) that are sufficiently local, e.g.
quadratic envelope, or spectral density for frequencief
.1/(tb2ta).

To show how the frequency content of the extrac
pulses evolves over time, a spectrogram-like display is p
sented in Fig. 10. The formant pulses obtained from
ISIDWT were zero padded to 1536-point length, and
energy spectral density of each pulse was calculated via
FFT with no further windowing. For comparison, a conve
tional spectrogram of the original kaze waveform is shown
Fig. 11. This and subsequent spectrograms were prep
with a 512-point Hanning window shifted in 134-point step
and each windowed segment was zero padded to 1536-p
length before calculating the FFT.

This waveform segmentation procedure is a unique
powerful capability of the SIDWT/ISIDWT. In addition to
the analysis methods shown above, it has broad utility
copying, cutting, and pasting sections of sound wavefor
Working with the scalogramx5T(z) rather than the sound
waveformz has two advantages. First, for all but the simpl
waveforms, it is usually easier to find and delineate featu
of interest inx. Second, cutting segments fromx and joining
them to makew doesn’t result in audible clicks and pops.
conventional waveform editing, such clicks and pops
caused by steps at boundaries where the final value in

FIG. 10. A pitch-synchronous spectrogram-like display of the Japan
word ‘‘kaze.’’
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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waveform segment differs from the initial value in the ne
waveform segment. The signature of such a boundary on
scalogram is a peak in the high-frequency scales, reflec
the high-frequency content of the step. It is usually necess
to taper or otherwise reshape the waveforms at each bo
ary to smooth these steps. However, excessive taperin
reshaping can create other audible artifacts, e.g., a gap in
high-frequency components. In some cases human inter
tion is required to find the optimal balance. Performing t
cutting and joining operations onw creates steps in the scalo
gram values at boundaries that resemble the steps create
a raw edited sound waveform. However, since they are s
in w, not steps inz, they are not associated with audib
clicks and pops. The pseudoinverse smoothes the wave
at the boundary in a way that the scalogram signature of
boundary onx8 is a rounded step, as close as possible in
least-squares sense to the original sharp step. The pseu
verse cannot create a click or a pop at the boundary, bec
that would require a peak on the scalogramx8. A peak at the
step location implies scalogram values with magnitu
greater than those on either side of the step, which wo
never be the solution that minimizes(n(xn82xn)2. It should
be noted that absence of editing artifacts is no guarante
realism, since abrupt starts or transitions between sound
different character may sound false or even unpleasant. E
so, the reliable and automatic prevention of editing artifa
in sound waveforms is a substantial convenience.

A common application of PSOLA is changing the rate
a spoken word without changing the pitch or the frequen
content of the formants, i.e., to simulate the same spea
pronouncing the same word, but speaking more rapidly
more slowly. To illustrate the sound waveform editing cap
bilities of the SIDWT/ISIDWT, the rate of the exampl
waveform kaze has been halved and doubled. The first
in the procedure is to synchronize the analysis with the g
tal pulses whenever possible. The spectrogram-like disp
shown in Fig. 10 was created by identifyingM time instants
t i . The t i in the voiced regions were located at moments
relative quiet in the 1- and 2-kHz bands, and thet i in the
unvoiced regions were merely spaced at regular interv

se FIG. 11. The spectrogram of the Japanese word ‘‘kaze.’’
2129Enders et al.: Shift-invariant discrete wavelet transform
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TheM time instantst i were used as delimiters to segment t
scalogramx into a set ofM21 piecesyi . The segmentsyi

correspond to individual glottal pulses, similarly sized se
tions of unvoiced speech, or silence. The notationyi omits
scale levels for simplicity, but all scale levels are implicit
included. If all segmentsyi are concatenated in the prop
order, (y1 ,y2 ,...,yM21)5x, the original scalogram is recov
ered. The speech rate was halved by simply duplicating e
yi in the proper sequence, (y1 ,y1 ,y2 ,y2 ,...,yM21 ,yM21)
5w. The half-rate waveformz8 was then obtained by
S(w)5z8. A conventional spectrogram of the half-ra
waveform is shown in Fig. 12. The speech rate was doub
by concatenating the even-numbered segme
(y2 ,y4 ,y6 ,...)5x, with S(w)5z8 as before. The even
numbered segments were chosen because they include
‘‘k’’ sound; the doubled results from the odd-numbered se
ments sounded like ‘‘aze.’’ A conventional spectrogram
the double-rate waveform is shown in Fig. 13. Informal l
tening tests found that both examples were clear and un
standable. The realism of the half-rate examples was ma

FIG. 12. The spectrogram of the Japanese word ‘‘kaze’’ rate-change
half-speed.

FIG. 13. The spectrogram of the Japanese word ‘‘kaze’’ rate-change
double speed.
2130 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005

Downloaded 23 Feb 2012 to 128.211.160.35. Redistribution subject to ASA licen
-

ch

d
ts

the
-
f

er-
ed

slightly by a mild low-frequency artifact, but the realism o
the double-rate example was excellent.

IV. CONCLUSIONS

Procedures for calculating and inverting the SIDWT a
described above via equations~Sec. II A! and as a block
diagram~Sec. II B!. A self-contained proof that the ISIDWT
is the pseudoinverse of the SIDWT is given in the Append
The new SIDWT/ISIDWT algorithm described here is mat
ematically equivalent to the stationary wavelet transform a
the maximal overlap discrete wavelet transform, and is ea
to implement efficiently in an array-oriented mathematic
scripting language. The recorded speech example discu
in Sec. III demonstrates that the SIDWT is useful for visu
ization and analysis of complicated, nonstationary, acou
waveforms. The SIDWT provides a clear picture of t
sounds excited and modulated by the opening and closin
the glottis in speech. The SIDWT is complementary to t
STFT for visualization, as they provide optimal views
different aspects of the waveform. The SIDWT and ISIDW
together provide the capability to segment and reconst
the sound from each individual glottal period for further v
sualization and analysis. Examples of half-rate and dou
rate speech modification demonstrate the potential for
SIDWT/ISIDWT to prove useful for applications that cu
rently use one of the PSOLA family of techniques.

The visualization capabilities of the SIDWT are co
strained by the properties of the underlying discrete wav
transform. In particular, the single-octave bandwidth res
ing from dyadic wavelet scaling means that the tonal cont
of sound waveforms cannot be observed in detail. In cer
situations, some tonal information can be extracted by an
sis of sum and difference frequencies. The relative lack
frequency-domain information provided by the SIDWT
not really a loss, however; it is a trade-off, which enables
SIDWT to provide more detailed time-domain informatio
For the same reason, segmentation and reconstruction o
tions provide more detailed control in the time domain th
in the frequency domain. The most productive way to use
SIDWT/ISIDWT will likely prove to be in concert with the
STFT and other frequency-domain methods, e.g., the pi
synchronous spectrogram-like display presented in Sec.
The SIDWT and ISIDWT are based on purely mathemati
principles, and have no inherent connection to psychoaco
tics, e.g., two sound waveforms that are ‘‘close’’ in the sen
of human perception of sounds are not guaranteed to be c
in the sense of the standard Euclidean norm in redund
wavelet coefficient space. The applicability of the SIDW
ISIDWT to acoustics can only be judged empirically. Th
experience to date, while subjective, and limited in scope
the field of automotive sound quality and the two ra
changing examples presented here, has been consistent
couraging. Possible speech-related applications include
pects of automated speech recognition and simplifi
intonation/formant visualization. Editing sound recordin
~cutting and pasting sections! with the SIDWT/ISIDWT is
especially convenient since the audible clicks and pops p
duced at section boundaries by simple time-domain edi
procedures are automatically prevented. The rate-modi

to

to
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speech examples presented here show promise, and
SIDWT/ISIDWT may prove useful for other application
that currently employ PSOLA-based methods. Given
broad scope of research in acoustics, there are many pote
applications for the SIDWT/ISIDWT in visualization, ma
nipulation, and analysis of nonstationary sound waveform
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APPENDIX: PROOF OF THEOREM 1

Our strategy is to prove thatT as defined in Sec. II A is
an isometry and thatS is the adjoint ofT. Theorem 1 then
follows from a well-known linear algebra fact. According
the definition ofT in Sec. II A, we define the mappings

T1 : l 2~ZN!{z°~x1 ,y1!P l 2~Z2N!, ~A1!

and for each stagej 52,...,p

Tj : l 2~ZjN!{~x1 ,...,xj 21 ,yj 21!

°~x1 ,...,xj 21 ,xj ,yj !P l 2~Z~ j 11!N!. ~A2!

Additionally, let R: l 2(Z(p11)N)° l 2(Z(p11)N) be the reorder-
ing given by

R~x1 ,x2 ,...,xp ,yp!5~RN/2~x1!,RN/4~x2!,...,

RN/2p~xp!,RN/2p~yp!!. ~A3!

Note that thep-stage SIDWT ofzP l 2(ZN) is then given by
T(z)5RTp¯T2T1(z). Since convolution and reordering a
linear maps, eachTj is linear. Therefore,T is a linear trans-
formation.

We will now show thatT is an isometry, i.e., tha
^Tz1 ,Tz2&5^z1 ,z2& for all z1 ,z2P l 2(ZN). To avoid consid-
ering the case j51 separately, in the following le
(x1 ,x0 ,y0)5y05z and (x1 ,x0)50.

Theorem 3. The transformT is an isometry.
Proof: We show that for eachj 51,...,p the mappingTj

is an isometry. Since the reordering operatorR is unitary, we
have ^Rw1 ,Rw2&5^w1 ,w2& for all w1 , w2P l 2(Z(p11)N).
As a composition of isometries,T is then an isometry.

Let j P$1,...,p%, z15(x1 ,...,xj 21 ,yj 21) and z2

5(j1 ,...,j j 21 ,h j 21). Then

^Tjz1 ,Tjz2&

5K S x1 ,...,xj 21 ,
1

&
R2~yj 21* ṽ !,

1

&
R2~yj 21* ũ!D ,

S j1 ,...,j j 21 ,
1

&
R2~h j 21* ṽ !,

1

&
R2~h j 21* ũ!D L

5^~x1 ,...,xj 21!,~j1 ,...,j j 21!&
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005
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1K 1

&
R2~yj 21* ṽ !,

1

&
R2~h j 21* ṽ !L

1K 1

&
R2~yj 21* ũ!,

1

&
R2~h j 21* ũ!L . ~A4!

Using the fact thatR2 is unitary, and applying Parseval’
relation, we get

K 1

&
R2~yj 21* ṽ !,

1

&
R2~h j 21* ṽ !L

5
1

2
^yj 21* ṽ,h j 21* ṽ&

5
1

2N (
n50

N21

^~yj 21* v̂̃ !~n!,~h j 21* v̂̃ !~n!&

5
1

2N (
n50

N21

^ ŷ j 21~n! v̂̃~n!,ĥ j 21~n! v̂̃~n!&

5
1

2N (
n50

N21

u v̂̃~n!u2^ ŷ j 21~n!,ĥ j 21~n!&. ~A5!

The same equality holds forũ instead ofṽ. Making use
of the known identityv̂̃(n)5 n̂* (n), we get

u v̂̃~n!u21u û̃~n!u25uv̂~n!u21uû~n!u252, ~A6!

since the system matrixA(n) is unitary for all
n50,...,N21. This finishes the proof as follows:

^Tjz1 ,Tjz2&5^~x1 ,...,xj 21!,~j1 ,...,j j 21!&

1
1

N (
n50

N21

^ ŷ j 21~n!,ĥ j 21~n!&

5^~x1 ,...,xj 21!,~j1 ,...,j j 21!&

1
1

N
^ ŷ j 21 ,ĥ j 21&

5^~x1 ,...,xj 21!,~j1 ,...,j j 21!&

1^yj 21 ,h j 21&

5^~x1 ,...,xj 21 ,yj 21!,~j1 ,...,j j 21 ,h j 21!&

5^z1 ,z2&.h ~A7!

Given a linear mappingL: l 2(Zm)→ l 2(Zk), m,kPN, the
adjoint operator

L†: l 2~Zk!→ l 2~Zm!, ~A8!

is given by the unique mapping defined by the prope
^Lz,w&5^z,L†w& for all zP l 2(Zm), wP l 2(Zk). The matrix
corresponding toL† is just the conjugate transpose of th
matrix corresponding toL.

We will show that the ISIDWTS is the adjoint operator
of T. To do so, we first prove a lemma.

Lemma. Let x,y,vP l 2(ZN). Then

^y* ṽ,x&5^y,x* v&. ~A9!
2131Enders et al.: Shift-invariant discrete wavelet transform
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Proof: Using Parseval’s equality and again the iden

v̂̃(n)5 v̂* (n), we get

^y* ṽ,x&5
1

N (
n50

N21

ŷ~n! v̂̃~n!x̂* ~n!

5
1

N (
n50

N21

ŷ~n!v̂* ~n!x̂* ~n!5^y,x* v&, ~A10!

which proves that the adjoint of the convolution withv is the
convolution with the conjugate reflectionṽ. h

Following the definition ofS in Sec. II A, we define
mappings Sj as follows: Let w5(w1 ,w2 ,...,wj 11)
P l 2(Z( j 11)N), wherewiP l 2(ZN) for all i 51,...,j 11. Then,
for all j 51,...,p, we define

Sj : l 2~Z~ j 11!N!{w°~w1 ,...,wj 21 ,h j !P l 2~ZjN!,
~A11!

where

h j5
1

&
~RN/2~wj 11!* u1RN/2~wj !* v !. ~A12!

Noting thatS5S1S2¯SpR21, whereR21 is the inverse of
the reordering operator as defined in Eq.~A3!, we can now
prove the following theorem.

Theorem 4. S5T†.
Proof: SinceT5RTp¯T2T1 , it follows from the defi-

nition of the adjoint that T†5T1
†T2

†
¯Tp

†R†

5T1
†T2

†
¯Tp

†R21, where we made use of the fact that t
adjoint of the unitary operatorR is its inverseR21. Hence,
the theorem follows once we show thatTj

†5Sj for all
j 51,...,p.

We need to prove that ^Tjz,w&5^z,Sjw& for
all zP l 2(ZjN) and wP l 2(Z( j 11)N). Let z
5(x1 ,x2 ,...,xj 21 ,yj 21) andw5(w1 ,w2 ,...,wj 11). Then

^Tjz,w&5K S x1 ,x2 ,...,xj 21 ,
1

&
R2~yj 21* ṽ !,

1

&
R2~yj 21* ũ!D ,~w1 ,w2 ,...,wj 11!L

5^~x1 ,x2 ,...,xj 21!,~w1 ,w2 ,...,wj 21!&

1K 1

&
R2~yj 21* ṽ !,wj L

1K 1

&
R2~yj 21* ũ!,wj 11L . ~A13!

Note that by the lemma

K 1

&
R2~yj 21* ṽ !,wj L 5K yj 21* ṽ,

1

&
RN

2
~wj !L

5K yj 21 ,
1

&
RN

2
~wj !* vL .

~A14!
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yThe same equation holds foru instead ofv. So, we conclude
that

^Tjz,w&5^~x1 ,x2 ,...,xj 21!,~w1 ,w2 ,...,wj 21!&

1K yj 21 ,
1

&
~RN

2
~wj !* v1RN

2
~wj 11!* u!L

5K ~x1 ,x2 ,...,xj 21 ,yj 21!,S w1 ,w2 ,...,wj 21 ,

1

&
~RN

2
~wj !* v1RN

2
~wj 11!* u!D L

5^z,Sj w&.h ~A15!

We have shown thatS is given byT†. It is well known
that a 1–1 linear mapL has a unique pseudoinverse given
(L†L)21L†. Here,T is not only 1–1 but also an isometry
which is equivalent toT†T5 idu l 2(ZN) . Thus, the pseudoin
verse ofT is given byT†5S, which proves Theorem 1.

Instead ofu andv in the definition ofS, we can use any
a andb in l 2(ZN), satisfying the condition

â~n!û* ~n!1b̂~n!v̂* ~n!52, ~A16!

for all n50,...,N21 to obtain a mappingS̃ which is still an
inverse ofT on the image ofT. SinceS̃ is computed using
convolutions in the same way asS, the number of multipli-
cations required to computeS̃ is the same as forS. However,
since thenS̃†ÞT, S̃ is no longer the pseudoinverse, i.e., w
lose the notion of ‘‘closeness’’ in the least-squares sense
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