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Consider a time-harmonic electromagnetic plane wave incident on a medium enclosed by a
bounded domain in R3. In this paper, well-posedness of the variational problem for the
direct scattering is examined. An energy estimate for the scattered field is obtained on
which the Born approximation is based. A regularized recursive linearization method for
the inverse medium scattering, which reconstructs the scatterer of an inhomogeneous
medium from the boundary measurements of the scattered field, is developed. The algo-
rithm requires only single-frequency data. Using an initial guess from the Born approxima-
tion, each update is obtained via continuation on the spatial frequency of a two-parameter
family of plane waves by solving one direct problem and one adjoint problem of the Max-
well equation.

Published by Elsevier Inc.
1. Introduction

Consider the system of time-harmonic Maxwell’s equations in three dimensions
curlE ¼ ixlH; ð1Þ
curlH ¼ �ixeE; ð2Þ
where E and H are the total electric field and magnetic field, x is the angular frequency, e is the electric permittivity and l is
the magnetic permeability. Denote by e0 and l0 the permittivity and permeability of the vacuum. The fields are further as-
sumed to be nonmagnetic, i.e., l = l0. Rewrite e = e0er and �r = 1 + q is the relative permittivity, where q is the scatterer and is
assumed be supported in the ball B ¼ fx 2 R3 : jxj < qg of radius q with the surface S ¼ fx 2 R3 : jxj ¼ qg. Throughout this
paper, we assume for simplicity in exposition that e0 = 1, l0 = 1 and q = 1.

Taking the curl of Eq. (1) and eliminating the magnetic field from Eq. (2), we obtain the uncoupled equation for the total
electric field
er Inc.
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curlcurlE� j2ð1þ qÞE ¼ 0; ð3Þ
where j ¼ x ffiffiffiffiffiffiffiffiffiffie0l0
p

is the wavenumber.
Given two real numbers g1 and g2, denote the transverse wave vector g = (g1, g2) and the wave vector k = (g, k(g)), where
kðgÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � jgj2

q
for j > jgj;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgj2 � j2

q
for j < jgj:

8><
>:
Here jgj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

1 þ g2
2

q
is known as the spatial frequency. Equivalently, the transverse wave vector can be written in the polar

form g = (jgjcosh, jgjsinh), where h 2 [0,2p] is the angle. The scatterer is illuminated by a two-parameter family of plane
waves
Ein ¼ peik�x; ð4Þ
or in an explicit form
Ein ¼ peiðg1x1þg2x2Þei
ffiffiffiffiffiffiffiffiffiffiffiffi
j2�jgj2
p

x3 for j > jgj;

peiðg1x1þg2x2Þe�
ffiffiffiffiffiffiffiffiffiffiffiffi
jgj2�j2
p

x3 for j < jgj:

8<
:

where p is the polarization vector satisfying p � k = 0.
The modes for which jgj < j correspond to propagating plane waves while the modes with jgj > j correspond to evanescent

plane waves. Therefore, the illuminating field consists of high spatial frequency evanescent plane waves and propagating
plane waves. Evanescent plane waves may be generated at the interface of two media by total internal reflection [9,10], which
has been in practical use primarily in near-field optics [17]. A recent review on the near-field microscopy and near-field optics
may be found in [16,22]. These waves are oscillatory parallel to the x1x2-plane and decay exponentially along the x3-axis. The
higher the spatial frequency of the evanescent plane waves used to probe the scatterer is, the more rapidly the field decays as a
function of depth into the scatterer. Evidently, such an incident wave satisfies the homogeneous equation
curlcurlEin � j2Ein ¼ 0: ð5Þ
Note 1. Strictly speaking, the evanescent plane waves given in Eq. (4) decay only in R3
þ ¼ fx 2 R3 : x3 > 0g. However,

without the loss of generality, we may assume that the scatterer is located in the R3
þ.

The total electric field E consists of the incident field Ein and the scattered field Esc:
E ¼ Ein þ Esc:
It follows from Eqs. (3) and (5) that the scattered field satisfies
curlcurlEsc � j2ð1þ qÞEsc ¼ j2qEin: ð6Þ
Note 2. In this paper, we adopt the non-global approach, i.e., the scattered field resulting from the interaction of the incident
field with the sample is analyzed in the absence of other medium or the tip. In this case, the scattering problem may be
formulated in the free space. The global approach which takes into account the entire system is a subject of future work.

In the free space, the scattered field is required to satisfy the following Silver–Müller radiation condition:
lim
jxj!1

curl Esc ^ x� ijjxjEscð Þ ¼ 0; ð7Þ
uniformly along all directions x/jxj.
Two mathematical problems emerge: the direct scattering problem and the inverse scattering problem. The direct problem

is to determine the scattered field Esc, given the incident field Ein and the scatterer q(x). In this work, based on a Hodge
decomposition and a compact imbedding result, the direct problem is shown to have a unique solution for all but possibly
a discrete set of wavenumbers. Furthermore, an energy estimate for the scattered field is given, which provides a theoretical
basis for our linearization algorithm. For numerical solution of the direct scattering problem, the reader is referred to [28–30]
and references therein. See also [32,37] for detailed analysis of the solutions of the Maxwell system.

Given a two-parameter family of incident plane waves Ein, the inverse problem is to reconstruct the scatterer q(x) from the
boundary measurement of the corresponding scattered field Esc. Here the scattered field is measured by an idealized point
detector at xj 2 S, j = 1,. . .,J. The boundary measurement could be of full aperture, i.e., the scattered field is measured all
around the sphere S, or the measurement could be of limited aperture, i.e., the scattered field is only available on a part
of the sphere, e.g. upper part of the sphere S. The inverse scattering problems arise naturally in diverse applications such
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as radar and sonar, geophysical exploration, medical imaging and nondestructive testing [14,33]. However, work in this area
has only recently progressed from a collection of ad-hoc techniques with little rigorous mathematical basis to the forefront
of mathematical research in scattering theory. The reason is that the inverse problem is inherently nonlinear and, more seri-
ously from the computational point of view, ill-posed. In particular, small variations in the measured data can lead to large
errors in the reconstruction. In additional to nonlinearity and ill-posedness, difficulties arise from the possible use of limited
aperture data, which makes the ill-posedness and nonlinearity of the inverse problem even more severe. Of course, the large
scale computation always presents a challenge for computational inverse problems, especially in the three-dimensional case.

The original direct and inverse problems are imposed in the open domain. In practice, the open domain needs to be trun-
cated into a bounded domain. Therefore, a suitable boundary condition has to be imposed on the boundary of the bounded
domain so that no artificial wave reflection occurs. There are a variety of ways to provide such boundary conditions, e.g. non-
local Dirichlet-to-Neumann (DtN) maps, local absorbing boundary conditions as approximations to nonlocal DtN maps, and
perfectly matched layer techniques. The analysis of the direct problem is based on a reduced boundary value problem in a ball
via a capacity operator, i.e., a DtN map, while a first order absorbing boundary condition is employed numerically for solving
both the direct and inverse problems, i.e., synthetic data and reconstructions are based on an approximate problem. Though
we employed the same numerical method for solving the direct problem to creating the data and inversion, no inverse crime is
committed here since the scattered fields are computed from different meshes and are perturbed by random noise.

Our main goal of the work is to present a novel computational approach for solving the three-dimensional inverse med-
ium problems with full or limited aperture data. In [11,3], stable and efficient continuation methods with respect to the
wavenumber were proposed for solving the two-dimensional Helmholtz equation and three-dimensional Maxwell’s equa-
tions, respectively, in the case of full aperture data. A homotopy continuation method with limited aperture data may be
found in [7]. These approaches require multiple frequency scattering data and are based on the recursive linearization along
wavenumbers. For the two-dimensional inverse medium problems with fixed frequency scattering data, new continuation
approach was proposed in [12] in the case of a spherically symmetric medium and spherical incident waves, and more re-
cently in [4] by using evanescent plane waves. We refer the reader to [5,6,13,18,24,25,34,35,39] for related results on the
inverse scattering problem. See [14,15] for an account of recent progress on the general inverse scattering problem. Although
our present approach may be viewed as an extension from our previous work [4] for solving the inverse scattering problem
for the two-dimensional Helmholtz equations at fixed frequency, there are significant differences. The illuminating fields
used in this paper including the high spatial frequency evanescent plane waves are a two-parameter family of plane waves.
The recursive linearization is obtained by a continuation on the spatial frequency of the incident waves from solutions of one
direct problem and one adjoint problem of the Maxwell equations.

The paper is organized as follows. Analysis of the variational problem for the direct scattering is presented in Section 2. In
particular, the well-posedness of the direct problem is proved and an energy estimate is given. In Section 3, an initial guess of
the reconstruction is derived systematically from the Born approximation in the case of weak scattering. A regularized recur-
sive linearization method and its numerical examples are presented in Sections 4 and 5, respectively. The paper is concluded
with some remarks and future directions in Section 6.

2. Energy estimate

In this section, the variational formulation for the direct scattering is examined to provide criteria for weak scattering,
which plays an important role in the inversion method.

For any smooth vector field u, denote by uS its tangential component on the surface S:
uS ¼ �ðu ^ nÞ ^ n;
where n is the unit outer normal vector to S. Introduce the following usual functional spaces:
H1
0ðBÞ ¼ fn 2 H1ðBÞ; n ¼ 0 on Sg;

Hðcurl;BÞ ¼ fu 2 ðL2ðBÞÞ3; curlu 2 ðL2ðBÞÞ3g;
TL2ðSÞ ¼ fu 2 ðL2ðSÞÞ3;u � n ¼ 0g;
TH�1=2ðcurl; SÞ ¼ fu 2 ðH�1=2ðSÞÞ3;u � n ¼ 0; curlS u 2 H�1=2ðSÞg;
TH�1=2ðdiv; SÞ ¼ fu 2 ðH�1=2ðSÞÞ3;u � n ¼ 0;divS u 2 H�1=2ðSÞg:
For the definitions of the scalar rotational curlS and the surface divergence divS, we refer to [37]. Recall that the two spaces
TH�1/2(curl,S) and TH�1/2(div,S) are mutually adjoint with respect to the scalar product in TL2(S), i.e., TH�1/2(curl,S) = TH�1/

2(div,S)0.
To reformulate the problem from open domain into a bounded domain, we introduce the capacity operator T [2]. Let

Ym
n ðh;uÞ be an orthonormal sequence of spherical harmonics on the unit sphere that satisfy
DSYm
n þ nðnþ 1ÞYm

n ¼ 0;
where DS is the Laplace–Beltrami operator on S. LetrS be the surface tangential gradient on S. Then an orthonormal basis for
TL2(S) consists of functions of the form
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Vm
n ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p rSYm
n and Um

n ¼ Vm
n ^ n:
It follows that any tangential vector field u 2 TL2(S) may be represented as
u ¼
X1
n¼1

Xn

m¼�n

am
n Um

n þ bm
n Vm

n

� �
:

The explicit representation of the capacity operator T can be written
T u ¼
X1
n¼1

Xn

m¼�n

am
n cnðjÞ

ij
Um

n þ
ijbm

n

cnðjÞ
Vm

n

� �
;

where
cnðjÞ ¼ 1þ j
hð1Þ

0

n ðjÞ
hð1Þn ðjÞ

;

and hð1Þn is the Hankel function of the first kind of order n.
Using the capacity operator T , the problem (6) and (7) can be reduced to one in a bounded domain:
curlcurl Esc � j2ð1þ qÞEsc ¼ j2qEin in B; ð8Þ
curlEsc ^ n� ijT Esc

S ¼ 0 on S: ð9Þ
Multiplying Eq. (8) by a test function F 2 H(curl,B), integrating over B, and using integration by parts, we arrive at the var-
iational form for the scattering problem (8) and (9): Find Esc 2 H(curl,B) such that
aðEsc;FÞ ¼ bðFÞ for all F 2 Hðcurl; BÞ; ð10Þ
where the bilinear form
aðu;vÞ ¼
Z

B
curlu � curl v � j2

Z
B
ð1þ qÞu � v � ij

Z
S
T uS � vS ð11Þ
and the functional
bðvÞ ¼ j2
Z

B
qEin � v: ð12Þ
Throughout the paper, C stands for a positive generic constant whose value may change but should always be clear from the
context. Before presenting the main theorem for the variational problem, we state a useful imbedding result. The reader is
referred to [1] for a detailed discussion and proof.

Lemma 1. Let W be a functional space defined by
W ¼ fu 2 Hðcurl; BÞ : divðð1þ qÞuÞ ¼ 0 in B and ð1þ qÞu � n ¼ i
j

divS T uS on Sg:
The embedding from W to (L2(B))3 is compact.

Next we prove the well-posedness of the variational problem (10) and obtain an energy estimate for the scattered field.

Theorem 1. Given a scatterer q 2 L1(B), for all but possibly a discrete set of wavenumbers j, the variational problem (10) admits
a unique weak solution in H(curl,B), given by Esc = u +rp, while u 2W ; p 2 H1

0ðBÞ. Furthermore, there exists a constant C such
that the following estimate holds:
kEsckHðcurl;BÞ 6 CkqkL1ðBÞkE
inkðL2ðBÞÞ3 : ð13Þ
Proof. Using the Hodge decomposition, we take Esc = u +rf and F = v +rn for any v 2W and n 2 H1
0ðBÞ. Observe that

a(u,rn) = 0 by the definition of W. Therefore, we decompose the variational Eq. (10) into the form
aðu;vÞ þ aðrf;vÞ þ aðrf;rnÞ ¼ bðvÞ þ bðrnÞ for all v 2W and n 2 H1
0ðBÞ: ð14Þ
First we determine f 2 H1
0ðBÞ by the solution of
aðrf;rnÞ ¼ bðrnÞ for all n 2 H1
0ðBÞ;
which gives explicitly
Z
B
ð1þ qÞrf � rn ¼ �

Z
B

qEin � rn for all n 2 H1
0ðBÞ:
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The existence and uniqueness of the solution f in H1
0ðBÞ may be proved by a direct application of the Lax–Milgram lemma

with the estimate
krfkðL2ðBÞÞ3 6 CkqkL1ðBÞkE
inkðL2ðBÞÞ3 : ð15Þ
Rewrite Eq. (14) as
aðu;vÞ ¼ bðvÞ � aðrf;vÞ for all v 2W ; ð16Þ
and decompose the bilinear from a into
a ¼ a1 � j2a2;
where
a1ðu;vÞ ¼
Z

B
curl u � curlv � ij

Z
S
T uS � vS;

a2ðu;vÞ ¼
Z

B
ð1þ qÞu � v:
We conclude from the non-negative property of the capacity operator T [37] that a1 is coercive:
ja1ðu;uÞjP Ckuk2
Hðcurl; BÞ for all v 2W :
The continuity of the bilinear from a1 follows from the Cauchy–Schwarz inequality.
Next we prove the compactness of a2. Define an operator A : ðL2ðBÞÞ3 !W by
a1ðAu;vÞ ¼ a2ðu;vÞ for all v 2W ;
which gives
Z
B

curlAu � curlv � ij
Z

S
TAuS � vS ¼

Z
B
ð1þ qÞu � v for all v 2W:
From the Lax–Milgram lemma again, it follows that
kAukHðcurl;BÞ 6 CkukðL2ðBÞÞ3 : ð17Þ
Thus A is bounded from (L2(B))3 to W and W is compactly imbedded into (L2(B))3. Hence A : ðL2ðBÞÞ3 ! ðL2ðBÞÞ3 is a compact
operator.

Define a function w 2 (L2(B))3 satisfying
a1ðw;vÞ ¼ bðvÞ � aðrf;vÞ for all v 2W :
More specifically, we have by using the Stokes formula that
a1ðw;vÞ ¼ j2
Z

B
qEin � v þ j2

Z
B
ð1þ qÞrf � v for all v 2W:
It follows from the Lax–Milgram lemma that
kwkHðcurl;BÞ 6 CkqkL1ðBÞkE
inkðL2ðBÞÞ3 þ CkrfkðL2ðBÞÞ3 :
An application of estimate (15) yields
kwkHðcurl;BÞ 6 CkqkL1ðBÞkE
inkðL2ðBÞÞ3 : ð18Þ
Using the operator A, we can see that the problem (16) is equivalent to finding u 2 (L2(B))3 such that
ðI � j2AÞu ¼ w: ð19Þ
It follows from the Fredholm alternative that there exists a unique solution of (19) for all but possibly a discrete set of wave-
number j. We then have the estimate
kukðL2ðBÞÞ3 6 CkwkðL2ðBÞÞ3 : ð20Þ
Rearranging Eq. (19), we have u ¼ w� j2Au, so u 2W and, by the estimate (17) for the operator A, we have
kukHðcurl;BÞ 6 CkwkHðcurl;BÞ þ CkukðL2ðBÞÞ3 :
Combining the estimates (18) and (20) leads to
kukHðcurl;BÞ 6 CkqkL1ðBÞkE
inkðL2ðBÞÞ3 : ð21Þ
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Finally, it follows from the definition of the norm in H(curl,B) that
kEsckHðcurl;BÞ 6 kukHðcurl;BÞ þ krfkðL2ðBÞÞ3 :
The proof is complete by noting the estimates (15) and (21). h

Note 3. Using the explicit form of the evanescent plane wave (4) with jgj > j, the estimate (13) can be written as
kEsckHðcurl;BÞ 6 Cðjgj2 � j2Þ�1=4kqkL1ðBÞ; ð22Þ
where the constant C depends on j. The above energy estimate provides a criterion for the weak scattering. For a fixed wave-
number j and a scatterer q, the scattered field is weak if the spatial frequency of the incident wave jgjis large.
3. Born approximation

In this section, we discuss how to generate an initial guess for the proposed iteratively recursive linearization method
based on the Born approximation.

Rewrite Eq. (8) as
curlcurl Esc � j2Esc ¼ j2qðEin þ EscÞ: ð23Þ
From the energy estimate (22), the scattered field is weak when the spatial frequency jgjis large. By dropping the scattered
field at the right hand side of Eq. (23) under the weak scattering, we obtain
curlcurl Esc � j2Esc ¼ j2qEin; ð24Þ
which is the well-known Born approximation.
Consider an auxiliary function
HðxÞ ¼ beijx�d;
where b 2 S
2 is the polarization vector and d 2 S

2 is the propagation direction with b � d = 0. This function represents a prop-
agating plane wave and hence satisfies Eq. (5). Multiplying Eq. (24) by H and integrating over B on both sides, we have
Z

B
ðcurlcurlEscÞ �H� j2

Z
B

Esc �H ¼ j2
Z

B
qEin �H: ð25Þ
Integration by parts yields
Z
B
ðcurlcurlHÞ � Esc þ

Z
S
ðcurlH ^ nÞ � Esc

S � ðcurlEsc ^ nÞ �HS
� �

� j2
Z

B
Esc �H ¼ j2

Z
B

qEin �H: ð26Þ
We have by noting Eq. (7) and the nonlocal boundary condition (9) that
Z
B

qEin �H ¼ 1
j2

Z
S
ðcurlH ^ nÞ � Esc

S � ijT Esc
S �HS

� �
: ð27Þ
It follows from the explicit form of the incident field and the auxiliary function that Eq. (27) can be deduced to
Z
B

qðxÞeiðkþjdÞ�x ¼ i
ðp � bÞj

Z
S
f½ðd ^ bÞ ^ n� � Esc

S þ ½ðb ^ nÞ ^ n� � T Esc
S geijx�d: ð28Þ
As input data, the scattered field is available on S, so is its tangential component. Thus, the right hand of Eq. (28) may be
defined as a known function f(g, d). The linear integral equation (28) can be explicitly written as
Z

B
qðxÞei½ðg1þjd1Þx1þðg2þjd2Þx2 �eðijd3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

1þg2
2�j2

p
Þx3 ¼ f ðg;dÞ; ð29Þ
which gives
Z 1

�1
q̂ð.; x3Þeðijd3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

1þg2
2�j2

p
Þx3 ¼ f ðg;dÞ; ð30Þ
where . = (g1 + jd1, g2 + jd2) and q̂ð.; x3Þ is the Fourier transform of q(x) with respect to x1 and x2. When the spatial fre-
quency jgjis large, the incident wave penetrates a thin layer of the scatterer. Thus, the Born approximation allows a recon-
struction containing information of the true scatterer in that thin layer. When using propagating plane incident waves, the
inversion involves data related to the scatterer through the Fourier transform in the case of weak scattering. However, when
evanescent plane waves are used, the inversion involves date related to the scatterer through a Fourier (with respect to x1

and x2)–Laplace (with respect to x3) transform in the case of the weak scattering.
Introduce the integral kernel
Kð.; x3Þ ¼ eðijd3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

1
þg2

2
�j2

p
Þx3 :
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The integral equation (30) can be formally written as
Kð.Þq̂ð.Þ ¼ f ð.Þ; ð31Þ
which can be solved by using the method of least squares with Tikhonov regularization [19]
q̂ð.Þ ¼ ðkI þ K�KÞ�1K�f ð.Þ; ð32Þ
where k is a small positive number, I is the identity operator, and K� is the adjoint operator of K. In practice, Eq. (32) is
implemented by the LU-decomposition with partial pivoting. Once q̂ð.; x3Þ is available, an approximation of q(x) may be ob-
tained from the inverse Fourier transform, which leads to an initial approximation of the true scatterer.

Note 4. The linear integral equation (28) involves the scattered field on the whole sphere S, which requires the full aperture
scattering data. When only limited aperture data are available, a similar linear integral equation could be deduced by using
the fundamental solution of Maxwell’s equations. Our numerical experiments exhibit the convergence based on initial
guesses from the solutions of either one of the linear integral equations corresponding to full or limited aperture data.
4. Recursive linearization

As discussed in the previous section, when the spatial frequency jgjis large, the Born approximation allows a reconstruc-
tion of the thin layer for the true scatterer. We now describe an iterative algorithm, which requires only single-frequency
scattering data and is obtained by continuation on the spatial frequency of a two-parameter family of plane waves. The algo-
rithm first solves the linearized integral equation (32) at a large spatial frequency to obtain an approximation of the scat-
terer. This approximation is then used to linearize the nonlinear equation with smaller spatial frequency of the incident
waves, to produce a better approximation. The process is continued until the spatial frequency decreases to zero, where
the approximation is considered as the final reconstruction.

Given the wavenumber j, choose a positive number - slightly larger than j, and divide the interval [0,-] into N subdi-
visions with the endpoints {-0, -1,. . .,-N}, where -0 = 0,-N = -, and -n�1 < -n for 1 6 n 6 N. We intend to obtain qn recur-
sively at -n = -N, -N�1,. . .,-0.

Suppose now that the scatterer qn+1 has been recovered at some -n+1 and that -n is slightly less than -n+1. We wish to
determine qn, or equivalently, to determine the perturbation
dq ¼ qn � qnþ1:
For the reconstructed scatterer qnþ1 ¼ q1
nþ1, we solve the direct scattering problem
curlcurl ~Esc
m � j2ð1þ qm

nþ1Þ~Esc
m ¼ j2qm

nþ1Ein
m in B; ð33Þ

curl ~Esc
m ^ n� ijT ~Esc

mS ¼ 0 on S; ð34Þ
where the incident wave Ein
m ¼ peik�x, the wave vector k = (gm, k(gm)), and the transverse wave vector

gm = (-ncoshm, -nsinhm), hm 2 [0,2p], m = 1,. . .,M.

For the scatterer qn, we have
curlcurlEsc
m � j2ð1þ qnÞE

sc
m ¼ j2qnEin

m in B; ð35Þ
curlEsc

m ^ n� ijT Esc
mS ¼ 0 on S: ð36Þ
Subtracting Eqs. (33) and (34) from Eqs. (35) and (36) respectively, and omitting the second order smallness in
dqm ¼ qn � qm

nþ1 and in dEsc
m ¼ Esc

m � ~Esc
m , we obtain
curlcurldEsc
m � j2ð1þ qm

nþ1ÞdEsc
m ¼ j2dqmðEin

m þ ~Esc
mÞ in B; ð37Þ

curldEsc
m ^ n� ijT dEsc

mS ¼ 0 on S: ð38Þ
Given a solution Esc
m of Eqs. (35) and (36), we define the measurements
MEsc
mðxÞ ¼ ½E

sc
mðx1Þ; . . . ;Esc

mðxJÞ�: ð39Þ
The measurement operator M is well defined and maps the scattered field to a vector of complex numbers in C3J , which
consists of point measurements of the scattered field at xj, j = 1, . . . ,J.

For the scatterer qn and the incident field Ein
m , we define the forward scattering operator
Sðqn;E
in
mÞ ¼ MEsc

m : ð40Þ
It is easily seen that the forward scattering operator Sðqn;E
in
mÞ is linear with respect to Ein

m but nonlinear with respect to qn. For
simplicity, we denote Sðqn;E

in
mÞ by SmðqnÞ. Let S0ðqm

nþ1Þ be the Fréchet derivative of SmðqnÞ and denote the residual operator
Rðqm
nþ1Þ ¼ MðdEsc

mÞ: ð41Þ
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It follows from the linearization of the nonlinear equation (40) that
S0ðqm
nþ1Þdqm ¼ Rðqm

nþ1Þ: ð42Þ
Applying the Landweber–Kaczmarz iteration [27] to the linearized equation (42) yields
dqm ¼ aS0ðqm
nþ1Þ

�Rðqm
nþ1Þ for m ¼ 1; . . . ;M; ð43Þ
where a is a positive relaxation parameter and S0ðqm
nþ1Þ

� is the adjoint operator of S0ðqm
nþ1Þ. The Landweber–Kaczmarz method

usually displays better convergence property than the simple Landweber iteration [23,31]. The relation between the Land-
weber iteration and Landweber–Kaczmarz is of the same type as between the Jacobi and Gauss–Seidel iteration for linear
systems.

In order to compute the correction dqm, we need an efficient way to compute S0ðqm
nþ1Þ

�Rðqm
nþ1Þ. Let Rðqm

nþ1Þ ¼
½/m1; . . . ;/mJ�

T 2 C3J . Consider the adjoint problem
curlcurlWm � j2ð1þ qm
nþ1ÞWm ¼ j2

XJ

j¼1

/mjdðx� xjÞ in B; ð44Þ

curlWm ^ n� ijT 0WmS ¼ 0 on S; ð45Þ
where T � is the adjoint capacity operator of T , defined as
T �u ¼ �
X1
n¼1

Xn

m¼�n

am
n cnðjÞ

ij
Um

n þ
ijbm

n

cnðjÞ
Vm

n

� �
:

Multiplying Eq. (37) by the complex conjugate of Wm and integrating over B on both sides, we obtain
Z
B
ðcurlcurldEsc

mÞ �Wm �
Z

B
j2ð1þ qm

nþ1ÞdEsc
m �Wm ¼ j2

Z
B

dqmðEin
m þ ~Esc

mÞ �Wm:
Using Green’s formula, we have
Z
B

curlcurlWm � j2ð1þ qm
nþ1ÞWm

� �
� dEsc

m þ
Z

S
ðcurlW ^ nÞ � dEsc

m � ðcurldEsc
m ^ nÞ �Wm

� �

¼ j2
Z

B
dqmðEin

m þ ~Esc
mÞ �Wm:
It follows from the adjoint Eq. (44) that
XJ

j¼1

dEsc
mðxjÞ/mj ¼

Z
B

dqmðEin
m þ ~Esc

mÞ �Wm: ð46Þ
Noting Eqs. (39), (41), and the adjoint operator S0ðq~gÞ
�, the left-hand side of Eq. (46) may be deduced
XJ

j¼1

dEsc
mðxjÞfmj ¼ hMðdEsc

mÞ;Rðqm
nþ1ÞiC3J ¼ hS0ðqm

nþ1Þdqm;Rðqm
nþ1ÞiC3J ¼ hdqm;S0ðqm

nþ1Þ
�Rðqm

nþ1ÞiL2ðBÞ

¼
Z

B
dqmS0ðqm

nþ1Þ
�Rðqm

nþ1Þ; ð47Þ
where h�; �iC3J and h�; �iL2ðBÞ are the standard inner-products defined in the complex vector space C3J and the square integrable
functional space L2(B).

Combining Eqs. (46) and (47) yields
Z
B

dqmS0ðqm
nþ1Þ

�Rðqm
nþ1Þ ¼

Z
B

dqmðEin
m þ ~Esc

mÞ �Wm;
which holds for any dqm. It follows that
S0ðqm
nþ1Þ

�Rðqm
nþ1Þ ¼ ðE

in
m þ ~Esc

mÞ �Wm: ð48Þ
Using the above result, Eq. (43) can be written as
dqm ¼ aðEin
m þ ~Esc

mÞ �Wm for m ¼ 1; . . . ;M: ð49Þ
Thus, for each incident wave, we solve one direct problem (35) and one adjoint problem (44). Once dqm is determined, qmþ1
nþ1 is

updated by qm
nþ1 þ dqm. After completing the Mth sweep, we get the reconstructed scatterer qn ¼ qM

nþ1 at the spatial frequency
-n.
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5. Numerical experiments

In this section, we discuss the numerical solution of the direct scattering problem and the computational issues of the
recursive linearization algorithm.

For the direct solver, we adopt the edge elements which were developed originally for the finite element solution of Max-
well’s equation in the early 1980s [36]. From a mathematical point of view, these are natural approximation spaces of the
Hilbert space H(curl,B) which is the adequate functional space for the variational formulation of Maxwell’s equations. Vector
fields in such a finite element space have continuous tangential traces, which is consistent with the physics. Therefore, the
natural degrees of freedom for these elements are related to tangential traces along the edges or faces. Although the direct
scattering problem may be formulated in a bounded ball with exact boundary condition (8) and (9), the discretization of the
nonlocal boundary condition (9) would lead to some extra difficulty because the lack of the sparsity of the linear system. For
the sake of simplicity, we employ a local absorbing boundary condition [26]
curlEsc ^ n� ijEsc
S ¼ 0 on S:
Creating a mesh is the first step in the finite element method. We use a simple and effective mesh generator in MATLAB by
Persson and Strang [38]. Once the mesh generation is done and node information is available, we convert it into the edge
information because unknowns are associated with edges. When the unknowns are ordered according to the reverse Cut-
hill–McKee ordering [21], the profile of the finite element matrix is highly banded, which improves the condition number
of the corresponding coefficient matrix. The sparse large scale linear system can be efficiently solved if the zero elements
of the coefficient matrix are not stored. We use the compressed row storage format, which makes no assumptions about
the sparsity structure of the matrix and does not store any unnecessary elements. In fact, from the variational formula of
the direct problem, the coefficient matrix is complex symmetric. Hence, only the lower triangular portion of the matrix needs
to be stored. Regarding the linear solver, the quasi-minimal residual algorithm [20] with the incomplete LU-decomposition
preconditioning is used to solve the sparse, symmetric, and complex system of the equations.

In the following, some numerical experiments are presented to illustrate the performance of the algorithm. To get the ini-
tial guesses, the integral in Eq. (30) is discretized by using the composite trapezoidal rule and the regularization k is taken as
10�5. In the recursive linearization iteration, the relaxation parameter is taken to be 0.01/j2, which is independent of the spa-
tial frequency. For stability analysis, some relative random noise is added to the data, i.e., the scattered field takes the form
EscðxjÞ :¼ ð1þ r randÞEscðxjÞ; j ¼ 1; . . . ; J:
Here, rand gives uniformly distributed random number in [�1,1], r is a noise level parameter, and the sweep number M at
each spatial frequency is 10 in the implementation. Define the relative error by
ð
P

edge
jqedge � ~q edgej2Þ1=2

ð
P

edge
jqedgej

2Þ1=2 ;
where ~q is the reconstructed scatterer and q is the true scatterer. To avoid the inverse crime being committed, we made sure
that different meshes were used for the forward and inverse computations. Finally, since we can only plot slices of the graphs
for three-dimensional functions, we have to interpolate the edge values from tetrahedra of the reconstructed scatterer into
the Cartesian grid.

Let qðx1; x2; x3Þ ¼ expð�x2
1 � x2

2 � x2
3Þ, and reconstruct the scatterer defined by
q1ðx1; x2; x3Þ ¼ qð2:5x1;3:5x2;2:5x3Þ:
See Fig. 1 for graphs of the true scatterer at slices x1 = 0.3, x2 = 0, and x3 = 0. This function is difficult to reconstruct because of
two close peaks. The wavenumber j is taken as 2p, the maximum spatial frequency - = 8, the step size of D- = 2, and a
Fig. 1. The true scatterer. (a): the slice x1 = 0.3; (b): the slice x2 = 0; (c): the slice x3 = 0.



Fig. 2. The reconstructed scatterer with full aperture data. (a): the slice x1 = 0.3; (b): the slice x2 = 0; (c): the slice x3 = 0.

Fig. 3. The reconstructed scatterer with limited aperture data. (a): the slice x1 = 0.3; (b): the slice x2 = 0; (c): the slice x3 = 0.
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Fig. 4. The relative error of reconstruction with full and limited aperture data. The first 10 iterations corresponds to evanescent incident plane waves
(jgj > j = 2p), and the rest 40 iterations corresponds to propagating incident plane waves (jgj < j = 2p).
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noise level parameter r = 0.05. Figs. 2 and 3 show the reconstructed scatterer at different slices using the full aperture data
and limited aperture data (upper part of the sphere), respectively. Fig. 4 plots the relative error of reconstruction as a func-
tion of iteration numbers for full and limited aperture cases. As expected, the error of reconstruction with full aperture data
is small than that with limited aperture data. The first 10 iterations correspond to the evanescent incident plane waves
(jgj > j = 2p) and the rest 40 iterations correspond to the propagating incident plane waves (jgj < j = 2p). Although it seems
that the evanescent incident plane waves do not contribute much to the accuracy of reconstructions, the initial guesses,
which are derived from the weak scattering due to them, lead to the convergence of the algorithm.
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6. Conclusion

We have presented a regularized recursive linearization method with respect to the spatial frequency of a two-family
plane waves. This approach extends the one proposed in [4] for solving the two-dimensional Helmholtz equation to the
three-dimensional Maxwell’s equation at fixed frequency. The method is stable and efficient, and can be used to deal with
the limited aperture case. Finally, we point out some future directions along the line of this work. The first is concerned with
the convergence analysis. Although our numerical experiments demonstrate the convergence and stability of the inversion
algorithm, no rigorous mathematical result is available at present. Initial attempt has been made recently in [8] to establish
convergence results by taking into account of the uncertainty principle. Another direction is to investigate the half space
geometry instead of the free space. In this paper, we overlook the effect of the other medium on the detected scattered field.
In practice, however, it is important to include the effect of the other medium and even the tip, especially for near-field
optics.
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