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This paper is devoted to the analysis of the time-domain elastic wave scatter-
ing problem in an unbounded structure. The transparent boundary condition is
developed to reformulate the scattering problem into an initial-boundary value
problem in an infinite slab. The well posedness and stability are established
for the reduced problem in both the frequency and time domains. Our proofs
are based on the energy method, the Lax-Milgram theorem, and the inversion
theorem of the Laplace transform. Moreover, a priori estimates with explicit
dependence on the time are achieved for the elastic displacement by taking
special test functions for the time-domain variational problems of the Navier
equation.
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1 INTRODUCTION

This paper is concerned with the mathematical analysis of the time-domain elastic wave scattering by an unbounded
structure in two dimensions. An unbounded surface is referred to as a nonlocal perturbation of an infinite plane surface
such that the whole surface lies within a finite distance of the original plane. The scattering problems in unbounded
structures for acoustic, electromagnetic, and elastic waves have been of great interests to physicists, engineers, and applied
mathematicians. These problems have significant applications in various scientific areas such as optics, acoustics, radio
wave propagation, seismology, and radar techniques.1-5 In particular, diffraction phenomena for the propagation of elastic
waves through unbounded interfaces have many applications in geophysics and seismology. For instance, the problem
of elastic pulse transmission and reflection through the Earth is fundamental to the investigation of earthquakes and the
utility of controlled explosions in search for oil and ore bodies.6-8

The problem addressed in this work belongs to the class of unbounded rough surface scattering problems, which are
quite challenging because of unbounded structures. The usual Sommerfeld (for acoustic waves), Kupradze-Sommerfeld
(for elastic waves), or Silver-Müller (for electromagnetic waves) radiation condition is no longer valid.9,10 The typical
Fredholm alternative argument is not applicable either because of the lack of compactness results. The time-harmonic
problems have been widely studied for the wave scattering by unbounded structures. We refer to Chandler-Wilde et al,11

Chandler-Wilde and Monk,12 Chandler-Wilde and Zhang,13 Lechleiter and Ritterbusch,14 and Li and Shen15 for the
two-dimensional Helmholtz equation, Haddar and Lechleiter,16 Li et al,17 and Li et al18 for the three-dimensional Maxwell
equations, and Arens19,20 for the elastic wave equation. Despite so many studies conducted so far, it is still unclear what
the least restrictive conditions are for those physical parameters and geometrical shapes to assure the well posedness of
the scattering problems in unbounded structures.
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The time-domain scattering problems have recently attracted considerable attention because of their capability of
capturing wideband signals and modeling more general material and nonlinearity.21-25 These unique features motivate
us to turn our effort from seeking the best possible conditions for those physical parameters to studying directly the
time-domain problems. Compared with the time-harmonic problems, the time-domain problems are less studied because
of the additional challenge of the temporal dependence. The analysis can be found in Chen and Nédélec26 and Wang
B and Wang LL27 for the time-domain acoustic and electromagnetic obstacle scattering problems. We refer to Li et al28

and Gao and Li29 for the analysis of the time-dependent electromagnetic scattering from an open cavity and a periodic
structure, respectively. Compared with Maxwell equation in Gao and Li30 and the acoustic-elastic interaction scattering
problems in Bao et al31 and Gao et al,32 the elastic wave problem appears to be more complicated because of the coexis-
tence of compressional and shear waves that propagate at different speeds. What differs dramatically from the acoustic
and electromagnetic wave equations is that the transparent boundary operator is derived from the Helmholtz decompo-
sition. The essential difficulty is to show the positive definite of the operator, which is crucial in establishing the well
posedness and stability of the problem. We define an admissible set for the Lamé parameters to handle this issue. The set
allows some feasible parameters. But it remains an open problem on how to remove this limitation and show the same
results for more general media.

The rest of the paper is organized as follows. In Section 2, we present the model problem of the time-domain elastic scat-
tering by an unbounded structure. The transparent boundary condition (TBC) is introduced to reformulate the problem
into an initial-boundary value problem in infinite slab. Two auxiliary problems are studied in Section 3. The well posed-
ness and stability of the reduced problem are established in the frequency domain. The well posedness of the time-domain
elastic wave equation with the Dirichlet boundary condition is presented. Section 4 is devoted to the well posedness and
stability of the reduced time-domain elastic wave equation and a priori estimates of the solution. We conclude the paper
with some remarks in Section 5.

2 PROBLEM FORMULATION

In this section, we introduce a mathematical model and define some notations for the elastic scattering by an unbounded
structure.

2.1 Elastic wave equation
Let us first specify the problem geometry, which is shown in Figure 1. The problem is assumed to be invariant in the
z-direction. Let S1 and S2 be two Lipschitz continuous surfaces, which are embedded in the slab

Ω = {x = (x, 𝑦) ∈ R
2 ∶ h2 < 𝑦 < h1},

where h1 and h2 are two constants. Such a geometric assumption is weaker than that used in Arens19,20 for unbounded
rough surfaces. The region between the surfaces S1 and S2 may be filled with an isotropic inhomogeneous elastic medium,
which is characterized by the variable Lamé parameters 𝜆(x) and 𝜇(x) and the variable density 𝜌(x). The regions above
the surface S1 and below the surface S2 are assumed to be filled with isotropic homogeneous elastic media. Let Ω1 ={

x ∈ R2 ∶ 𝑦 > h1)
}

and Ω2 =
{

x ∈ R2 ∶ 𝑦 < h2
}

. Define Γ1 = {𝑦 = h1} and Γ2 = {𝑦 = h2}. Hence, the surfaces S1 and S2
divide Ω into three connected components.

The displacement of the wave field u = (u1,u2)⊤ is governed by the time-domain elastic wave equation:

𝜌(x)𝜕2
t u(x, t) − ∇ · 𝝈(u(x, t)) = j(x, t), x ∈ R

2, t > 0, (2.1)

where j is the external force, which is assumed to have a compact support contained in Ω × (0,T) for some T > 0, the
stress tensor 𝝈(u) is given by the generalized Hook law:

𝝈(u) = 2𝜇𝝐(u) + 𝜆tr(𝝐(u))I, 𝝐(u) = 1
2
(∇u + ∇u⊤). (2.2)

Here I is the 2 × 2 identity matrix, and ∇u is the displacement gradient tensor given by

∇u =
[
𝜕xu1 𝜕𝑦u1
𝜕xu2 𝜕𝑦u2

]
.
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FIGURE 1 Problem geometry of the elastic scattering by an unbounded structure

The density 𝜌(x) ∈ L∞(R2) and the Lamé parameters 𝜇(x) ∈ L∞(R2), 𝜆(x) ∈ L∞(R2). They satisfy

𝜌(x) > 0, 𝜇(x) > 0, 𝜇(x) + 𝜆(x) > 0, x ∈ R
2.

Since the media are homogeneous in Ωj, there exist constants 𝜇j, 𝜆j, 𝜌j such that

𝜇(x) = 𝜇𝑗, 𝜆(x) = 𝜆𝑗, 𝜌(x) = 𝜌𝑗, x ∈ Ω𝑗 , 𝑗 = 1, 2.

Substituting (2.2) into (2.1) yields

𝜌𝜕2
t u − ∇ · (𝜇(∇u + ∇u⊤)) − ∇ (𝜆∇ · u) = j in R

2 × R
+. (2.3)

The system is constrained by the initial conditions:

u|t=0 = u0, 𝜕tu|t=0 = u1,

where u0 and u1 are also assumed to be compactly supported in Ω. Because of the unbounded problem geometry, it is no
longer valid to impose the classical Kupradze-Sommerfeld radiation condition (see, eg, Kupradze et al33). We employ the
following radiation condition: The wave field is required to be bounded outgoing in Ωj, j = 1, 2 as y → ±∞. The specific
radiation condition is given in Section 2.3.

2.2 Function spaces and Laplace transform
We introduce some Sobolev spaces. For u ∈ L2(Γj), we denote by û the Fourier transform of u, ie,

û(𝜉) = 1
2𝜋∫Ru(x)e−ix𝜉dx, 𝜉 ∈ R.

Define the functional space

H𝜈(R) =
{

u(x) ∈ L2(R) ∶ ∫
R

(1 + 𝜉2)𝜈|û|2d𝜉 < ∞
}

,

whose norm is defined by

||u||H𝜈 (R) =
[
∫
R

(1 + 𝜉2)𝜈|û|2d𝜉
]1∕2

.

It is clear that the dual space of H𝜈(R) is H−𝜈(R) with respect to the scalar product in L2(R) defined by

⟨u, v⟩ = ∫
R

û ̄̂vd𝜉.
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Define a trace functional space

H1∕2(Γ𝑗) = {u(x) ∶ u(x) ∈ H1∕2(R)}

and a dual paring

⟨u, v⟩Γ𝑗
= ∫Γ𝑗

uv̄dx = ∫
R

û(𝜉)v̂(𝜉)d𝜉.

Denote by H−1/2(Γj) the dual space of H1/2(Γj), ie, H−1/2(Γj) = (H1/2(Γj))
′ . The norm on the space H−1/2(Γj) is defined by

||u||H−1∕2(Γ𝑗 ) = sup
v∈H1∕2(Γ𝑗 )

|⟨u, v⟩Γ𝑗
|||v||H1∕2(Γ𝑗 )
.

We define the Sobolev space H𝜈(Ω) = {D𝛼u ∈ L2(Ω)for all|𝛼| ≤ 𝜈}, which is the Banach space for the norm

||u(x, z)||H𝜈 (Ω) =

[
∫

h1

h2

∑
l+m≤𝜈

(
∫
R

(1 + 𝜉2)l|Dm
𝑦 û(𝜉, 𝑦)|2d𝜉

)
d𝑦

]1∕2

.

Here l,m ∈ N and Dm
𝑦 is the mth derivative with respect to y. These norms given in the spatial-frequency domain are

equivalent to the usual Sobolev norms in the entire spatial domain because of the Parseval identity.
Let H1(Ω)2 = H1(Ω) × H1(Ω) be a Cartesian produce space, which is equipped with the norm

||u||H1(Ω)2 =
[||u1||2

H1(Ω) + ||u2||2
H1(Ω)

]1∕2
.

Denote H𝜈(R)2 = H𝜈(R) × H𝜈(R) with the norm

||u||H𝜈 (R)2 =
[||u1||2

H𝜈 (R) + ||u2||2
H𝜈 (R)

]1∕2
.

It is also easy to verify that H−𝜈(R)2 is the dual space of H𝜈(R)2 for any 𝜈 with respect to the inner product

⟨u, v⟩ = ∫
R

û · ̄̂vd𝜉.

Next, we introduce some properties of the Laplace transform. For any s = s1 + is2 with s1 > 𝜎0 > 0, s2 ∈ R, and
i =

√
−1, define by ŭ(s) the Laplace transform of the vector field u(t), ie,

ŭ(s) = ℒ (u)(s) = ∫
∞

0
e−stu(t)dt.

It follows from the integration by parts that

∫
t

0
u(𝜏)d𝜏 = ℒ−1(s−1ŭ(s)),

where ℒ−1 is the inverse Laplace transform. It can be verified from the inverse Laplace transform that

u(t)= ℱ −1 (es1tℒ (u)(s1 + s2)
)
,

where ℱ −1 denotes the inverse Fourier transform with respect to s2.

Recall the Plancherel or Parseval identity for the Laplace transform (cf Cohen34, (2.46)):

1
2𝜋 ∫

∞

−∞
ŭ(s)v̆(s)ds2 = ∫

∞

0
e−2s1tu(t)v(t)dt, ∀ s1 > 𝜎0 > 0, (2.4)

where ŭ = ℒ (u), v̆ = ℒ (v), and 𝜎0 is abscissa of convergence for the Laplace transform of u and v.
Hereafter, the expression a ≲ b stands for a ≤ Cb, where C is a positive constant and its specific value is not required

but should be clear from the context.
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The following lemma (cf Trèves35, Theorem 43.1) is an analogue of the Paley-Wiener-Schwarz theorem for the Fourier
transform of distributions with compact supports in the case of the Laplace transform.

Lemma 2.1. Let h̆(s) be a holomorphic function in the half plane s1 > 𝜎0 and be valued in the Banach space E. The
following two conditions are equivalent:

(1) there is a distribution h̆ ∈ ′
+(E) whose Laplace transform is equal to h̆(s);

(2) there is a real 𝜎1 with 𝜎0 ≤ 𝜎1 < ∞ and an integer m ≥ 0 such that for all complex numbers s with Res = s1 > 𝜎1,

the estimate ||h̆(s)||E ≲ (1 + |s|)m holds,

where ′
+(E) is the space of distributions on the real line that vanish identically in the open negative half line.

2.3 Transparent boundary conditions
We introduce exact time-domain TBCs to formulate the scattering problem into the following initial-boundary value
problem: {

𝜌𝜕2
t u − ∇ · (𝜇(∇u + ∇u⊤)) − ∇(𝜆∇ · u) = j in Ω, t > 0,

u |t=0 = u0, 𝜕tu| t=0 = u1 in Ω,
𝜇𝑗𝜕𝑦u + (𝜆𝑗 + 𝜇𝑗)(0, 1)⊤∇ · u = (−1)𝑗−1𝒯 𝑗[u] on Γ𝑗 , t > 0,

(2.5)

where 𝒯 𝑗 , 𝑗 = 1, 2, are the time-domain transparent boundary operators.
In what follows, we derive the formulation of the operator 𝒯 𝑗 and show some of its properties. Since the external

force j and the initial conditions u0,u1 are supported in Ω, the medium is homogeneous in Ωj, the Navier equation 2.3
reduces to {

𝜌𝑗𝜕
2
t u −

(
𝜇𝑗Δu + (𝜆𝑗 + 𝜇𝑗)∇∇ · u

)
= 0 in Ω𝑗 , t > 0,

u |t=0 = 𝜕tu| t=0 = 0 in Ω𝑗 .
(2.6)

The idea is to solve (2.6) analytically and then find the relation between the Dirichlet data and the Neumann data on Γj.
We introduce some notations. Let u(x) = (u1(x),u2(x))⊤ and u(x) be a vector and scalar function, respectively. Introduce

a scalar curl operator and a vector operator :

curlu(x) = 𝜕xu2(x) − 𝜕𝑦u1(x), curlu(x) = (𝜕𝑦u(x),−𝜕xu(x))⊤.

It is clear to note that the two components of the wave field are coupled in the Navier equation, which is the essential diffi-
culty to derive an analytic solution for (2.6) inΩj.To decouple them, it is crucial to introduce the Helmholtz decomposition
to split the wave field into its compressional part and shear part.

For any solution u(x, t) of the Navier equation (2.6) in Ωj, the Helmholtz decomposition reads

u(x, t) = ∇𝜑𝑗(x, t) + curl𝜓𝑗(x, t), x ∈ Ω𝑗 , t > 0, (2.7)

where 𝜑j and 𝜓 j are called the compression and shear scalar potential functions in Ωj, respectively. Substituting (2.7) into
(2.6) yields {

𝜌𝑗𝜕
2
t 𝜑𝑗 − (𝜆𝑗 + 2𝜇𝑗)Δ𝜑𝑗 = 0 in Ω𝑗 , t > 0,

𝜑𝑗
||t=0 = 𝜕t𝜑𝑗

|| t=0 = 0 inΩ𝑗
(2.8)

and {
𝜌𝑗𝜕

2
t 𝜓𝑗 − 𝜇𝑗Δ𝜓𝑗 = 0 in Ω𝑗 , t > 0,

𝜓𝑗
||t=0 = 𝜕t𝜓𝑗

|| t=0 = 0 in Ω𝑗 ,
(2.9)

where the initial conditions of 𝜑j and 𝜓 j follow from the fact that u0,u1 are compactly supported in Ω.
Taking the Laplace transform of (2.8) and (2.9) and using the initial conditions yield

Δ�̆�𝑗 −
(

𝜌𝑗

𝜆𝑗 + 2𝜇𝑗

)
s2�̆�𝑗 = 0, Δ�̆�𝑗 −

(
𝜌𝑗

𝜇𝑗

)
s2�̆�𝑗 = 0 in Ω𝑗 , (2.10)

where �̆�𝑗 = ℒ (𝜑𝑗), �̆�𝑗 = ℒ (𝜓𝑗) are the Laplace transform of 𝜑j and 𝜓 j with respect to t, respectively.
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Taking the Fourier transform of (2.10) with respect to x yields the second ordinary differential equations{
d2 ̂̆𝜑1
d𝑦2 −

((
𝜌1

𝜆1+2𝜇1

)
s2 + 𝜉2

)
̂̆𝜑1 = 0, d2 ̂̆𝜓1

d𝑦2 −
((

𝜌1
𝜇1

)
s2 + 𝜉2

)
̂̆𝜓1 = 0, 𝑦 > h1,

̂̆𝜑1(𝜉, 𝑦) = ̂̆𝜑1(𝜉, h1), ̂̆𝜓1(𝜉, 𝑦) = ̂̆𝜓1(𝜉, h1), 𝑦 = h1,

and {
d2 ̂̆𝜑2
d𝑦2 −

((
𝜌2

𝜆2+2𝜇2

)
s2 + 𝜉2

)
̂̆𝜑2 = 0, d2 ̂̆𝜓2

d𝑦2 −
((

𝜌2
𝜇2

)
s2 + 𝜉2

)
̂̆𝜓2 = 0, 𝑦 < h2,

̂̆𝜑2(𝜉, 𝑦) = ̂̆𝜑2(𝜉, h2), ̂̆𝜓2(𝜉, 𝑦) = ̂̆𝜓2(𝜉, h2), 𝑦 = h2.

Solving the above equations and using the bounded outgoing conditions in Ωj, we obtain

̂̆𝜑1(𝜉, 𝑦) = ̂̆𝜑1(𝜉, h1)e−𝛽1(𝜉)(𝑦−h1), ̂̆𝜓1(𝜉, 𝑦) = ̂̆𝜓1(𝜉, h1)e−𝛾1(𝜉)(𝑦−h1), 𝑦 > h1,

and
̂̆𝜑2(𝜉, 𝑦) = ̂̆𝜑2(𝜉, h2)e𝛽2(𝜉)(𝑦−h2), ̂̆𝜓2(𝜉, 𝑦) = ̂̆𝜓2(𝜉, h2)e𝛾2(𝜉)(𝑦−h2), 𝑦 < h2,

where

𝛽2
𝑗 (𝜉) =

(
𝜌𝑗

𝜆𝑗 + 2𝜇𝑗

)
s2 + 𝜉2, Re(𝛽𝑗(𝜉)) > 0 (2.11)

and

𝛾2
𝑗 (𝜉) =

(
𝜌𝑗

𝜇𝑗

)
s2 + 𝜉2, Re(𝛾𝑗(𝜉)) > 0. (2.12)

Hence, we have the solutions of (2.10):

�̆�𝑗(x, s) = ∫
R

̂̆𝜑𝑗(𝜉, h𝑗)e(−1)𝑗𝛽𝑗 (𝜉)(𝑦−h𝑗 )eix𝜉d𝜉, x ∈ Ω𝑗 , (2.13)

and

�̆�𝑗(x, s) = ∫
R

̂̆𝜓𝑗(𝜉, h𝑗)e(−)
𝑗 𝛾𝑗 (𝜉)(𝑦−h𝑗 )eix𝜉d𝜉, x ∈ Ω𝑗 . (2.14)

Taking the Laplace transform of the Helmholtz decomposition (2.7) yields

ŭ(x, s) = ∇�̆�𝑗(x, s) + curl�̆�𝑗(x, s), x ∈ Ω𝑗 . (2.15)

Combining (2.13) to (2.15) gives

ŭ(x, s) = ∫
R

(i𝜉,−𝛽1(𝜉))⊤ ̂̆𝜑1(𝜉, h1)e−𝛽1(𝜉)(𝑦−h1)eix𝜉d𝜉

+ ∫
R

(−𝛾1(𝜉),−i𝜉)⊤ ̂̆𝜓1(𝜉, h1)e−𝛾1(𝜉)(𝑦−h1)eix𝜉d𝜉, x ∈ Ω1, (2.16)

ŭ(x, s) = ∫
R

(i𝜉, 𝛽2(𝜉))⊤ ̂̆𝜑2(𝜉, h2)e𝛽2(𝜉)(𝑦−h2)eix𝜉d𝜉

+ ∫
R

(𝛾2(𝜉),−i𝜉)⊤ ̂̆𝜓2(𝜉, h2)e𝛾2(𝜉)(𝑦−h2)eix𝜉d𝜉, x ∈ Ω2. (2.17)

On the other hand, taking the Fourier transform of ŭ(x, s) with respect to x and evaluating equalities (2.16) and (2.17)
at y = hj, respectively, we obtain a linear system of algebraic equations for ̂̆𝜑𝑗(𝜉, h𝑗) and ̂̆𝜓𝑗(𝜉, h𝑗):[

i𝜉 −𝛾1(𝜉)
−𝛽1(𝜉) −i𝜉

] [
̂̆𝜑1(𝜉, h1)
̂̆𝜓1(𝜉, h1)

]
=

[
̂̆u1(𝜉, h1)
̂̆u2(𝜉, h1)

]
and [

i𝜉 𝛾2(𝜉)
𝛽2(𝜉) −i𝜉

] [
̂̆𝜑2(𝜉, h2)
̂̆𝜓2(𝜉, h2)

]
=

[
̂̆u1(𝜉, h2)
̂̆u2(𝜉, h2)

]
.
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It follows from Cramer's rule that

⎧⎪⎨⎪⎩
̂̆𝜑1(𝜉, h1) = 1

𝜒1(𝜉)

(
−i𝜉 ̂̆u1(𝜉, h1) + 𝛾1(𝜉) ̂̆u2(𝜉, h1)

)
,

̂̆𝜓1(𝜉, h1) = 1
𝜒1(𝜉)

(
𝛽1(𝜉) ̂̆u1(𝜉, h1) + i𝜉 ̂̆u2(𝜉, h1)

)
,

(2.18)

and ⎧⎪⎨⎪⎩
̂̆𝜑2(𝜉, h2) = 1

𝜒2(𝜉)

(
−i𝜉 ̂̆u1(𝜉, h2) − 𝛾2(𝜉) ̂̆u2(𝜉, h2)

)
,

̂̆𝜓2(𝜉, h2) = 1
𝜒2(𝜉)

(
−𝛽2(𝜉) ̂̆u1(𝜉, h2) + i𝜉 ̂̆u2(𝜉, h2)

)
,

(2.19)

where 𝜒 j(𝜉) = 𝜉2 − 𝛽 j(𝜉)𝛾 j(𝜉), j = 1, 2.

Lemma 2.2. For any 𝜉 ∈ R, we have 𝜒 j(𝜉) ≠ 0. Moreover, the following estimate holds

|𝜒𝑗(𝜉)| ∼ 𝜌𝑗

2

( |s|2

𝜆𝑗 + 2𝜇𝑗

+ |s|2

𝜇𝑗

)
as 𝜉 → ∞.

Proof. Let 𝛽 j(𝜉) = aj + ibj, 𝛾 j(𝜉) = cj + idj with aj > 0, cj > 0, j = 1, 2. Recalling the definitions of 𝛽 j(𝜉) and 𝛾 j(𝜉)
in (2.11) and (2.12), we have

a2
𝑗 − b2

𝑗 = 𝜌𝑗
s2

1 − s2
2

𝜆𝑗 + 2𝜇𝑗

+ 𝜉2, (2.20)

a𝑗b𝑗 = 𝜌𝑗
s1s2

𝜆𝑗 + 2𝜇𝑗

, (2.21)

c2
𝑗 − d2

𝑗 = 𝜌𝑗
s2

1 − s2
2

𝜇𝑗

+ 𝜉2, (2.22)

c𝑗d𝑗 = 𝜌𝑗
s1s2

𝜇𝑗

. (2.23)

By the definition of 𝜒 j(𝜉), we obtain

𝜒𝑗(𝜉) = 𝜉2 − (a𝑗c𝑗 − b𝑗d𝑗) − i(a𝑗d𝑗 + b𝑗c𝑗),

which gives

|𝜒(𝜉)|2 =
(
𝜉2 − (a𝑗c𝑗 − b𝑗d𝑗)

)2 + (a𝑗d𝑗 + b𝑗c𝑗)2

= 𝜉4 − 2a𝑗c𝑗𝜉2 + a2
𝑗
c2
𝑗
+ 2b𝑗d𝑗𝜉

2 + (a2
𝑗
+ b2

𝑗
)d2

𝑗
+ b2

𝑗
c2
𝑗
.

Plugging (2.21) and (2.23) into the above equality gives

|𝜒𝑗(𝜉)|2 =
(
𝜉2 − a𝑗c𝑗

)2 + 2𝜌2
𝑗

s2
1s2

2𝜉
2

a𝑗c𝑗(𝜆𝑗 + 2𝜇𝑗)𝜇𝑗

+ (a2
𝑗 + b2

𝑗 )d
2
𝑗 + b2

𝑗 c2
𝑗 > 0,

where we have used the fact that s = s1 + is2 with s1 > 0. Furthermore,

|𝜒𝑗(𝜉)| = |𝜉2 − 𝛽𝑗(𝜉)𝛾𝑗(𝜉)| = |||||𝜉2
(

1 −
(

1 + 𝜌𝑗 s2

(𝜆𝑗+2𝜇𝑗 )𝜉2

)1∕2
)(

1 + 𝜌𝑗 s2

𝜇𝑗𝜉
2

)1∕2|||||
∼ 𝜌𝑗

2

( |s2|
𝜆𝑗+2𝜇𝑗

+ |s|2
𝜇𝑗

)
as 𝜉 → ∞,

which completes the proof.
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Substituting (2.18) into (2.16) and (2.19) into (2.17), we obtain

ŭ(x, s) = ∫
R

1
𝜒1(𝜉)

[
𝜉2 i𝜉𝛾1(𝜉)
i𝜉𝛽1(𝜉) −𝛽1(𝜉)𝛾1(𝜉)

]
̂̆u(𝜉, h1)e−𝛽1(𝜉)(𝑦−h1)eix𝜉d𝜉

+ ∫
R

1
𝜒1(𝜉)

[
−𝛽1(𝜉)𝛾1(𝜉) −i𝜉𝛾1(𝜉)
−i𝜉𝛽1(𝜉) 𝜉2

]
̂̆u(𝜉, h1)e−𝛾1(𝜉)(𝑦−h1)eix𝜉d𝜉, x ∈ Ω1, (2.24)

ŭ(x, s) = ∫
R

1
𝜒2(𝜉)

[
𝜉2 −i𝜉𝛾2(𝜉)
−i𝜉𝛽2(𝜉) −𝛽2(𝜉)𝛾2(𝜉)

]
̂̆u(𝜉, h2)e𝛽2(𝜉)(𝑦−h2)eix𝜉d𝜉

+ ∫
R

1
𝜒2(𝜉)

[
−𝛽2(𝜉)𝛾2(𝜉) i𝜉𝛾2(𝜉)
i𝜉𝛽2(𝜉) 𝜉2

]
̂̆u(𝜉, h2)e𝛾2(𝜉)(𝑦−h2)eix𝜉d𝜉, x ∈ Ω2. (2.25)

Given a vector field u(x) = (u1(x),u2(x))⊤, we define two boundary operators

ℬ1[u] = 𝜇1𝜕𝑦u + (𝜆1 + 𝜇1)(0, 1)⊤∇ · u
= (𝜇1𝜕𝑦u1, (𝜆1 + 𝜇1)𝜕xu1 + (𝜆1 + 2𝜇1)𝜕𝑦u2)⊤ on Γ1 (2.26)

and

ℬ2[u] = −𝜇2𝜕𝑦u + (𝜆2 + 𝜇2)(0,−1)⊤∇ · u
= (−𝜇2𝜕𝑦u1,−(𝜆2 + 𝜇2)𝜕xu1 − (𝜆2 + 2𝜇2)𝜕𝑦u2)⊤ on Γ2. (2.27)

Combining (2.24) to (2.27), we deduce the explicit expression for the boundary operator ℬ𝑗 :

ℬ𝑗[u] = ∫
R

M𝑗(𝜉)û(𝜉, h𝑗)eix𝜉d𝜉 on Γ𝑗 , (2.28)

where the 2 × 2 matrix

M𝑗(𝜉) =
1
𝜒𝑗

⎡⎢⎢⎣
𝜇𝑗𝛽𝑗(𝛾2

𝑗
− 𝜉2) (−1)𝑗−1i𝜇𝑗𝜉

(
(𝛾2

𝑗
− 𝜉2) + 𝜒𝑗

)
(−1)𝑗−1i𝜉

(
(𝜆𝑗 + 2𝜇𝑗)(𝜉2 − 𝛽2

𝑗
) − 𝜇𝑗𝜒𝑗

)
(𝜆𝑗 + 2𝜇𝑗)𝛾𝑗

(
𝛽2
𝑗
− 𝜉2

) ⎤⎥⎥⎦ .
Recalling the definitions of 𝛽 j and 𝛾 j in (2.11) and (2.12), we get

M𝑗(𝜉) =
1
𝜒𝑗

[
𝛽𝑗𝜌𝑗s2 i(−1)𝑗−1𝜉

(
𝜌𝑗s2 + 𝜇𝑗𝜒𝑗

)
−i(−1)𝑗−1𝜉

(
𝜌𝑗s2 + 𝜇𝑗𝜒𝑗

)
𝛾𝑗𝜌𝑗s2

]
. (2.29)

The following trace result in H1/2(Γj)2 is useful in subsequent analysis.

Lemma 2.3. There exists a positive constants C1 = max{
√

2(h1 − h2)−1 + 1,
√

2} such that

||u||H1∕2(Γ𝑗 )2 ≤ C1||u||H1(Ω)2 , ∀u ∈ H1(Ω)2.

Proof. First we have

(h1 − h2)|û(𝜉, h𝑗)|2 = ∫ h1
h2

|û(𝜉, 𝑦)|2d𝑦 + ∫ h1
h2

∫ h𝑗

𝑦

d
d𝜏
|û(𝜉, 𝜏)|2d𝜏d𝑦

≤ ∫ h1
h2

|û(𝜉, 𝑦)|2d𝑦 + (h1 − h2) ∫ h1
h2

2|û(𝜉, 𝑦)||û′(𝜉, 𝑦)|d𝑦,
which implies

(1 + 𝜉2)1∕2|û(𝜉, h𝑗)|2 ≤ (h1 − h2)−1(1 + 𝜉2)1∕2 ∫ h1
h2

|û(𝜉, 𝑦)|2d𝑦
+ ∫ h1

h2
2(1 + 𝜉2)1∕2|û(𝜉, 𝑦)||û′(𝜉, 𝑦)|d𝑦.
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It follows from the Cauchy-Schwarz inequality that

(1 + 𝜉2)1∕2|û(𝜉, h𝑗)|2 ≤ (h1 − h2)−1(1 + |𝜉|) ∫ h1
h2

|û(𝜉, 𝑦)|2d𝑦
+(1 + 𝜉2) ∫ h1

h2
|û(𝜉, 𝑦)|2d𝑦 + ∫ h1

h2
|û′(𝜉, 𝑦)|2d𝑦

≤ C2
1

(
(1 + 𝜉2) ∫ h1

h2
|û(𝜉, 𝑦)|2d𝑦 + ∫ h1

h2
|û′(𝜉, 𝑦)|2d𝑦

)
.

Combining the above estimate and the definitions of the norm, we get

||u(x, 𝑦)||2
H1∕2(Γ𝑗 )2

= ∫
R
(1 + 𝜉2)1∕2|û(𝜉, h𝑗)|2d𝜉

≤ C2
1 ∫ h1

h2

(∫
R
(1 + 𝜉2)|û(𝜉, 𝑦)|2 + |û′(𝜉, 𝑦)|2d𝜉

)
d𝑦 = C2

1||u(x, 𝑦)||2
H1(Ω)2 ,

which completes the proof.

Lemma 2.4. The boundary operator ℬ𝑗 ∶ H1∕2(Γ𝑗)2 → H−1∕2(Γ𝑗)2 is continuous, ie,

||ℬ𝑗u||H−1∕2(Γ𝑗 )2 ≲ ||u||H1∕2(Γ𝑗 )2 , ∀ u ∈ H1∕2(Γ𝑗)2.

Proof. It follows from the definition of 𝛽 j, 𝛾 j in (2.11) and (2.12) and Lemma 2.2 that we get

|𝛽𝑗(𝜉)𝜌𝑗s2| ∼ |s|2𝜌𝑗|𝜉|, |𝛾𝑗(𝜉)𝜌𝑗s2| ∼ |s|2𝜌𝑗|𝜉|,|𝜒𝑗(𝜉)| ∼ |s|2 𝜌𝑗

2

(
1

𝜆𝑗+2𝜇𝑗

+ 1
𝜇𝑗

)
, |𝜉(𝜌𝑗s2 + 𝜇𝜒𝑗(𝜉))| ∼ |s|2𝜌𝑗|𝜉| as |𝜉| → ∞.

Denote by ||Mj||2 the Euclidean norm of matrix Mj. It follows from (2.29) that

||M𝑗(𝜉)||2 ∼ |𝜉| as |𝜉| → ∞.

Hence, we have ||ℬ𝑗u||2
H−1∕2(Γ𝑗 )2

= ∫
R
(1 + 𝜉2)−1∕2|M𝑗(𝜉)û(𝜉, h𝑗)|2d𝜉

≲ ∫
R
(1 + 𝜉2)1∕2|û(𝜉, h𝑗)|2d𝜉

= ||u||2
H1∕2(Γ𝑗 )2

,

which completes the proof.

Lemma 2.5. For (𝜆𝑗, 𝜇𝑗) ∈ S𝜆𝑗 ,𝜇𝑗
, which is given in (2.34), the following estimate holds

−Re⟨s−1ℬ𝑗u, u⟩Γ𝑗
≥ 0, 𝑗 = 1, 2, ∀ u ∈ H1∕2(Γ𝑗)2,

where s = s1 + is2, s1 ≥ 𝜎0 > 0, s2 ∈ R.

Proof. Let

m𝑗(𝜉) = s−1M𝑗(𝜉) =
1

𝜒𝑗(𝜉)

[
𝛽𝑗(𝜉)𝜌𝑗s i(−1)𝑗−1𝜉

(
𝜌𝑗s + 𝜇s−1𝜒𝑗(𝜉)

)
−i(−1)𝑗−1𝜉

(
𝜌𝑗s + 𝜇𝑗s−1𝜒𝑗(𝜉)

)
𝛾𝑗(𝜉)𝜌𝑗s

]
.

Define

ℳ𝑗(𝜉) = −1
2
(m𝑗(𝜉) + m∗

𝑗 (𝜉)), (2.30)

where m∗
𝑗
(𝜉) is the adjoint of the matrix mj(𝜉) with respect to the scalar product ⟨·, ·⟩C2 in C2. A simple calculation

yields

ℳ𝑗(𝜉) =
[
ℳ( 𝑗)

11 (𝜉) ℳ
( 𝑗)
12 (𝜉)

ℳ( 𝑗)
21 (𝜉) ℳ

( 𝑗)
22 (𝜉)

]
=

⎡⎢⎢⎣
−𝜌𝑗Re

(
s𝛽𝑗 (𝜉)
𝜒𝑗 (𝜉)

)
−i(−1)𝑗−1Re

(
𝜌𝑗 s𝜉
𝜒𝑗 (𝜉)

+ 𝜇𝑗𝜉

s

)
i(−1)𝑗−1Re

(
s𝜌𝑗𝜉
𝜒𝑗 (𝜉)

+ 𝜇𝑗𝜉

s

)
−𝜌𝑗Re

(
s𝛾𝑗 (𝜉)
𝜒𝑗 (𝜉)

) ⎤⎥⎥⎦ . (2.31)



GAO ET AL. 7041

We show that the first leading principle element of ℳ𝑗(𝜉) is positive. By (2.20) to (2.23), we obtain

ℳ( 𝑗)
11 (𝜉) = −𝜌𝑗Re

( s𝛽𝑗(𝜉)
𝜒𝑗(𝜉)

)
= −

𝜌𝑗|𝜒𝑗(𝜉)|2 Re
(

s𝛽𝑗(𝜉)�̄�𝑗(𝜉)
)

= −
𝜌𝑗|𝜒𝑗(𝜉)|2 Re

[
(a𝑗 + ib𝑗)(s1 + is2)(𝜉2 − (a𝑗c𝑗 − b𝑗d𝑗) + i(a𝑗d𝑗 + c𝑗b𝑗))

]
=

𝜌𝑗|𝜒𝑗(𝜉)|2

[
(c𝑗s1 + d𝑗s2)

(
a2
𝑗 + b2

𝑗

)
+ (b𝑗s2 − a𝑗s1)𝜉2]

=
𝜌𝑗|𝜒𝑗(𝜉)|2

[
s1

c𝑗

(
c2
𝑗 +

𝜌𝑗s2
2

𝜇𝑗

)(
a2
𝑗 + b2

𝑗

)
+ s1

a𝑗

(
𝜌𝑗s2

2

𝜆𝑗 + 2𝜇𝑗

− a2
𝑗

)
𝜉2

]
. (2.32)

We discuss the sign of the above equality in different cases.

(I) If 𝜌𝑗 s2
2

𝜆𝑗+2𝜇𝑗

≥ a2
𝑗
, obviously we have ℳ( 𝑗)

11 (𝜉) > 0.

(II) If 𝜌𝑗 s2
2

𝜆𝑗+2𝜇𝑗

< a2
𝑗
, we have two possibilities:

(II.a) If |s2| < s1, by 2.20, we get a2
𝑗
+ b2

𝑗
= 𝜌𝑗

s2
1−s2

2
𝜆𝑗+2𝜇𝑗

+ 2b2
𝑗
+ 𝜉2 > 𝜉2. Subtracting (2.20) from (2.22) yields

c2
𝑗 − a2

𝑗 =
(

d2
𝑗 − b2

𝑗

)
+ 𝜌𝑗

(
s2

1 − s2
2
)( 1

𝜇𝑗

− 1
𝜆𝑗 + 2𝜇𝑗

)
.

Obviously, if |bj| ≤ dj, we obtain cj > aj. If |bj| > |dj|, it follows from (2.21) and (2.23) that

a𝑗|b𝑗|
c𝑗|d𝑗| =

𝜇𝑗

𝜆𝑗 + 2𝜇𝑗

< 1, (2.33)

which gives aj < cj. Combining above estimate with (2.32), we get

ℳ( 𝑗)
11 (𝜉) ≥ 𝜌𝑗|𝜒𝑗(𝜉)|2

[
s1(c𝑗 − a𝑗)𝜉2 +

𝜌𝑗s1

c𝑗

s2
2

𝜇𝑗

(
a2
𝑗 + b2

𝑗

)
+

𝜌𝑗s1

a𝑗

s2
2

𝜆𝑗 + 2𝜇𝑗

𝜉2

]
> 0.

(II.b) If s1 ≤ |s2| ≤ √
(𝜆𝑗 + 2𝜇𝑗)∕𝜌𝑗a𝑗 , we also have two cases:

(II.b.i) If |bj| ≥ |dj|, by (2.33), we obtain cj > aj. Subtracting (2.22) from (2.20) yields

c2
𝑗 − a2

𝑗 −
(

d2
𝑗 − b2

𝑗

)
=

𝜆𝑗 + 𝜇𝑗

𝜇𝑗(𝜆𝑗 + 2𝜇𝑗)
(

s2
1 − s2

2
)
< 0,

which implies c2
𝑗
− a2

𝑗
< d2

𝑗
− b2

𝑗
≤ 0. This is in contradiction with cj > aj.

(II.b.ii) We only have to consider |bj| < |dj|. We discuss it further in two cases:
(II.b.ii.1) If aj ≥ cj, it follows from (2.20) to (2.23) that

ℳ( 𝑗)
11 (𝜉) =

𝜌𝑗 s1|𝜒𝑗 (𝜉)|2
[(

c𝑗 +
𝜌𝑗 s2

2
𝜇𝑗c𝑗

)(
a2
𝑗
+ b2

𝑗

)
+ 𝜌𝑗 s2

2
(𝜆𝑗+2𝜇𝑗 )a𝑗

𝜉2 − a𝑗𝜉
2
]

>
𝜌𝑗 s1|𝜒𝑗 (𝜉)|2

[
c𝑗

(
a2
𝑗
+ b2

𝑗

)
+ 𝜌𝑗 s2

2
𝜇𝑗c𝑗

a2
𝑗
− a𝑗𝜉

2
]

= 𝜌𝑗 s1|𝜒𝑗 (𝜉)|2
[

c𝑗a2
𝑗
+ 𝜌𝑗 s2

2
𝜇𝑗c𝑗

(
a2
𝑗
+ b2

𝑗

)
− a𝑗

(
c2
𝑗
− d2

𝑗
− 𝜌𝑗(s2

1−s2
2)

𝜇𝑗

)]
>

𝜌𝑗 s1|𝜒𝑗 (𝜉)|2
[

c𝑗a𝑗(a𝑗 − c𝑗) +
𝜌𝑗 s2

2a𝑗

𝜇𝑗c𝑗
(a𝑗 − c𝑗) +

a𝑗𝜌𝑗 s2
1

𝜇𝑗

]
> 0.

(II.b.ii.2) If aj < cj, it also follows from (2.20) to (2.23) that

ℳ( 𝑗)
11 (𝜉) =

𝜌𝑗 s1|𝜒𝑗 (𝜉)|2
[(

c𝑗 +
𝜌𝑗 s2

2
𝜇𝑗c𝑗

)
(a2

𝑗
+ b2

𝑗
) + 𝜌𝑗 s2

2
(𝜆𝑗+2𝜇𝑗 )a𝑗

𝜉2 − a𝑗𝜉
2
]

>
𝜌𝑗 s1|𝜒𝑗 (𝜉)|2

[
c𝑗(a2

𝑗
+ b2

𝑗
) + 𝜌𝑗 s2

2
𝜇𝑗c𝑗

a2
𝑗
− a𝑗𝜉

2
]

= 𝜌𝑗 s1|𝜒𝑗 (𝜉)|2
[

c𝑗(a2
𝑗
+ b2

𝑗
) + 𝜌𝑗 s2

2
𝜇𝑗c𝑗

a2
𝑗
− a𝑗

(
a2
𝑗
− b2

𝑗
− 𝜌𝑗 (s2

1−s2
2)

𝜆𝑗+2𝜇𝑗

)]
>

𝜌𝑗 s1|𝜒𝑗 (𝜉)|2
[
(c𝑗 − a𝑗)a2

𝑗
+ a𝑗𝜌𝑗 s2

2
c𝑗

(
a𝑗

𝜇𝑗

− c𝑗
𝜆𝑗+2𝜇𝑗

)]
> 0,
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where we have used the fact that |b𝑗||d𝑗| = c𝑗∕(𝜆𝑗 + 2𝜇𝑗)
a𝑗∕𝜇𝑗

< 1.

Thus, the first leading principle element of ℳ𝑗(𝜉) satisfies

ℳ( 𝑗)
11 (𝜉) > 0.

Next, we prove the determinant of ℳ𝑗(𝜉) is positive. It is easy to compute the determinant of matrix ℳ𝑗(𝜉) (cf (2.31)):

𝒟𝑗(𝜉) ∶= 𝜌2
𝑗Re

(
s
𝛽𝑗(𝜉)
𝜒𝑗(𝜉)

)
Re

( s𝛾𝑗(𝜉)
𝜒𝑗(𝜉)

)
−

(
Re

( s𝜌𝑗𝜉
𝜒𝑗(𝜉)

+
𝜇𝑗𝜉

s

))2

.

We define the admissible set:

S𝜆𝑗 ,𝜇𝑗
=

{
(𝜆𝑗, 𝜇𝑗) ∈ R ×R

+ ∶ 𝜇𝑗 > 0, 𝜆𝑗 + 𝜇𝑗 > 0, 𝒟𝑗(𝜉) > 0 for 𝜖0 < |𝜉| < M0
}
, (2.34)

where the constants 𝜖0 and M0 will be given in the following proof.
Next, we consider 𝒟𝑗(𝜉) in three different cases.

(i) When 𝜉 = 0. It follows from the definitions of 𝛽 j, 𝛾 j, 𝜒 j(𝜉) that

𝛽𝑗(𝜉) = s
√

𝜌𝑗

𝜆𝑗 + 2𝜇𝑗

, 𝛾𝑗(𝜉) = s
√

𝜌𝑗

𝜇𝑗

, 𝜒𝑗(𝜉) = −𝜌𝑗s2
√

1
𝜇𝑗(𝜆𝑗 + 2𝜇𝑗)

.

Then

𝒟𝑗(𝜉) = 𝜌𝑗
√
𝜇𝑗(𝜆𝑗 + 2𝜇𝑗) > 0.

Since 𝒟𝑗(𝜉) is continuous with respect to 𝜉. Thus, there exists a constant 𝜖0, such that

𝒟𝑗(𝜉) > 0, |𝜉| ≤ 𝜖0.

(ii) When |𝜉| is large enough. It follows the definitions of 𝛽 j, 𝛾 j that

𝛽𝑗(𝜉) =
√

𝜌𝑗 s2

𝜆𝑗+2𝜇𝑗

+ 𝜉2 = |𝜉|√1 + 𝜌𝑗 s2

(𝜆𝑗+2𝜇𝑗 )𝜉2 = |𝜉| (1 + 𝜌𝑗 s2

2(𝜆𝑗+2𝜇𝑗 )𝜉2 + O
(

1
𝜉2

))
,

𝛾𝑗(𝜉) =
√

𝜌𝑗
s2

𝜇𝑗

+ 𝜉2 = |𝜉|√1 + 𝜌𝑗 s2

𝜇𝑗𝜉
2 = |𝜉| (1 + 𝜌𝑗 s2

2𝜇𝑗𝜉
2 + O

(
1
𝜉2

))
.

Since

𝜒𝑗(𝜉) = 𝜉2 − 𝛽𝑗(𝜉)𝛾𝑗(𝜉) = 𝜉2 −
√

𝜌𝑗 s2

𝜆𝑗+2𝜇𝑗

+ 𝜉2
√

𝜌𝑗 s2

𝜇𝑗

+ 𝜉2

= 𝜉2
(

1 −
√

1 + 𝜌𝑗 s2

(𝜆𝑗+2𝜇𝑗 )𝜉2

√
1 + 𝜌𝑗 s2

𝜇𝑗𝜉
2

)
= − 𝜌𝑗 s2

2

(
1

𝜆𝑗+2𝜇𝑗

+ 1
𝜇𝑗

)
+ O

(
1
𝜉2

)
,

the first leading principle element of ℳ𝑗(𝜉) is

ℳ( 𝑗)
11 (𝜉) = 𝜌𝑗Re

(
− s𝛽𝑗 (𝜉)

𝜒𝑗 (𝜉)

)
= Re

⎛⎜⎜⎝
2|𝜉|(1+O

(
1|𝜉|
))

s
(

1
𝜆𝑗+2𝜇𝑗

+ 1
𝜇𝑗

) ⎞⎟⎟⎠
= 2|𝜉|s1|s|2( 1

𝜆𝑗+2𝜇𝑗
+ 1

𝜇𝑗

) (1 + O
(

1|𝜉|
)
> 0.

It remains to verify that

detℳ𝑗(𝜉) = ℳ( 𝑗)
11 ℳ

( 𝑗)
22 −ℳ( 𝑗)

12 ℳ
( 𝑗)
21 > 0.
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Note 𝜇j > 0, 𝜆j + 𝜇j > 0. A simple calculation yields

detℳ𝑗(𝜉) =
⎛⎜⎜⎝ 4𝜉2s2

1|s|4( 1
𝜆𝑗+2𝜇𝑗

+ 1
𝜇

)2 −
𝜉2s2

1|s|4
⎛⎜⎜⎝ −2(

1
𝜆𝑗+2𝜇𝑗

+ 1
𝜇𝑗

) + 1
1
𝜇𝑗

⎞⎟⎟⎠
2⎞⎟⎟⎠

(
1 + O

(
1|𝜉|
))

= 𝜉2s2
1|s|4 𝜇𝑗

(
4

1
𝜆𝑗+2𝜇𝑗

+ 1
𝜇𝑗

− 1
1
𝜇𝑗

)(
1 + O

(
1|𝜉|
))

> 0 as |𝜉| → ∞.

Thus, there exists a constant M0 large enough such that detℳ𝑗(𝜉) > 0 for |𝜉| ≥ M0.

(iii) When 𝜖0 < |𝜉| < M0, since (𝜆𝑗, 𝜇𝑗) ∈ S𝜆𝑗 ,𝜇𝑗
, we can get

detℳ𝑗(𝜉) > 0 for 𝜖0 < |𝜉| < M0.

It follows from Sylvester's rule that matrix ℳ𝑗(𝜉) is positive. Following the definition of the matrix in (2.30), we
obtain

−Re⟨s−1ℬ𝑗u,u⟩Γ𝑗
= ∫ Rℳ𝑗(𝜉)û(𝜉, h𝑗) ̄̂u(𝜉, h𝑗)d𝜉 ≥ 0,

which completes the proof.

Remark 2.6. It can be verified that the admissible S𝜆𝑗 ,𝜇𝑗
is nonempty. We give two examples:

(i) When 𝜆j + 𝜇j = o(1) for any fixed 𝜇j, it follows from the definitions of 𝛽 j, 𝛾 j, 𝜒 j that

𝛾2
𝑗
(𝜉) = 𝛽2

𝑗
(𝜉) + 𝜌𝑗 s2

𝜇𝑗 (𝜆𝑗+2𝜇𝑗 )
(𝜆𝑗 + 𝜇𝑗) = 𝛽2

𝑗
(𝜉) + o(1),

𝜒𝑗(𝜉) = 𝜉2 − 𝛽𝑗(𝜉)𝛾𝑗(𝜉) = − 𝜌𝑗 s2

𝜇𝑗

+ o(1),

which gives

𝒟𝑗(𝜉) =
(
𝜌𝑗Re

(
s𝛾𝑗 (𝜉)
𝜒𝑗 (𝜉)

)
+ o(1)

)2
− (o(1))2

=
(
− 𝜇𝑗|s2|

(
c𝑗s1 +

s1
𝜇𝑗c𝑗

𝜌𝑗s2
2

)
+ o(1)

)2
> 0, 𝜉 ∈ R.

Thus, we obtain (𝜆𝑗, 𝜇𝑗) ∈ S𝜆𝑗 ,𝜇𝑗
for sufficiently small 𝜆j + 𝜇j.

(ii) When 𝜇j is large enough, we have

𝛾2
𝑗 (𝜉) = 𝛽2

𝑗 (𝜉) +
𝜌𝑗s2

𝜇𝑗(1 + 𝜇𝑗

𝜆−𝑗+𝜇𝑗

)
= 𝛽2

𝑗 (𝜉) + o(1), 𝜒𝑗(𝜉) = −
𝜌𝑗s2

𝜇𝑗

+ o(1).

Similarly, we get 𝒟𝑗(𝜉) > 0, which implies (𝜆𝑗, 𝜇𝑗) ∈ S𝜆𝑗 ,𝜇𝑗
for sufficiently large 𝜇j.

Following from Lemmas 2.1 and 2.4, we obtain the existence of the inverse Laplace transform of operator ℬ𝑗 . Taking
the inverse Laplace transform of (2.26) and (2.27) yields the transparent boundary operators in the time domain:

(−1)𝑗−1𝒯 𝑗[u] = 𝜇𝑗𝜕𝑦u + (𝜆𝑗 + 𝜇𝑗)(0, 1)⊤(∇ · u) on Γ𝑗 , t > 0,

where 𝒯 𝑗 = ℒ−1◦ℬ𝑗◦ℒ . The TBCs help to reduce the scattering problem from R2 into the slab Ω.

3 ANALYSIS OF TWO AUXILIARY PROBLEMS

In this section, we make necessary preparations for the proof of the main results by considering two auxiliary problems
related to the scattering problem (2.5).
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3.1 Time-harmonic elastic wave equation with a complex wavenumber
This section is devoted to the mathematical study of a time-harmonic elastic scattering problem with a complex wavenum-
ber, which may be viewed as a frequency version of the initial-boundary problem of the Naiver equation under the Laplace
transform.

Consider the auxiliary boundary value problem:{
∇ ·

(
𝜇s−1(∇u + ∇u⊤)

)
+ ∇

(
𝜆s−1∇ · u

)
− s𝜌u = −s−1k in Ω,

𝜇𝑗𝜕𝑦u + (𝜆𝑗 + 𝜇𝑗)(0, 1)⊤(∇ · u) = (−1)𝑗−1ℬ𝑗[u] on Γ𝑗 ,
(3.1)

where s = s1 + is2 with s1, s2 ∈ R, s1 > 0, and k is assumed to be supported in Ω.
Multiplying a test function v ∈ H1(Ω)2 and integrating by parts, we arrive at the variational formulation: to find u ∈

H1(Ω)2 such that

aTH(u, v) = ∫Ω
s−1k · v̄dx, ∀v ∈ H1(Ω)2, (3.2)

where the sesquilinear form

aTH(u, v) = ∫Ω (
𝜇s−1(∇u ∶ ∇v̄) + (𝜆 + 𝜇)s−1(∇ · u)(∇ · v̄) + s𝜌u · v̄

)
dx

−
2∑

𝑗=1
⟨s−1ℬ𝑗[u],u⟩Γ𝑗

.

Here A ∶ B = tr
(

AB⊤
)

is the Frobenius inner product of square matrices A and B. For any u ∈ H1(Ω)2, define the norm

||∇u||L2(Ω)2×2 ∶=

( 2∑
𝑗=1∫Ω

|∇u𝑗|2dx

)1∕2

.

It is easy to verify that

||∇u||2
L2(Ω)2×2 + ||∇ · u||2

L2(Ω) ≲ ||u||2
H1(Ω)2 .

Theorem 3.1. For (𝜆𝑗, 𝜇𝑗) ∈ S𝜆𝑗 ,𝜇𝑗
, the variational problem 3.2 has a unique solution u ∈ H1(Ω)2, which satisfies

||∇u||L2(Ω)2×2 + ||∇ · u||L2(Ω) + ||su||L2(Ω)2 ≲ s−1
1 ||k||L2(Ω)2 .

Proof. It follows from the Cauchy-Schwarz inequality that

|aTH(u, v)| ≤ 𝜇max|s| ||∇u||L2(Ω)2×2 ||∇v||L2(Ω)2×2 + (𝜆+𝜇)max|s| ||∇ · u||L2(Ω)||∇ · v||L2(Ω)

+|s|𝜌max||u||L2(Ω)2 ||v||L2(Ω)2 + 1|s|
2∑

𝑗=1
||ℬ𝑗u||H−1∕2(Γ𝑗 )2 ||v||H1∕2(Γ𝑗 )2

≲ ||u||H1(Ω)2 ||v||H1(Ω)2 +
2∑

𝑗=1
||ℬ𝑗u||H−1∕2(Γ𝑗 )2 ||v||H1∕2(Γ𝑗 )2 .

Applying Lemmas 2.3 and 2.4 yields

|aTH(u, v)| ≲ ||u||H1(Ω)2 ||v||H1(Ω)2 ,

which shows that the sesquilinear form is bounded.
A simple calculation yields

aTH(u,u) = ∫Ω

(
𝜇s−1(∇u ∶ ∇ū) + (𝜆 + 𝜇)s−1|∇ · u|2 + s𝜌|u|2) dx −

2∑
𝑗=1

⟨s−1ℬ[u],u⟩Γ𝑗
. (3.3)
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Taking the real part of (3.3) and using Lemma 2.5, we obtain

Re (aTH(u,u)) ≳ s1|s|2

(||∇u||2
L2(Ω)2×2 + ||∇ · u||2

L2(Ω) + ||su||2
L2(Ω)2

)
. (3.4)

It follows from the Lax-Milgram lemma that the variational problem (3.2) has a unique solution u ∈ H1(Ω)2.

Moreover, we have from (3.2) that

|aTH(u,u)| ≤ 1|s|2 ||k||L2(Ω)2 ||su||L2(Ω)2 . (3.5)

Combining (3.4) and (3.5) leads to

||∇u||2
L2(Ω)2×2 + ||∇ · u||2

L2(Ω) + ||su||2
L2(Ω)2 ≲ s−1

1 ||k||L2(Ω)2 ||su||L2(Ω)2 ,

which completes the proof after applying the Cauchy-Schwarz inequality.

3.2 Time-domain Navier equation with the Dirichlet boundary condition
Consider the initial-boundary value problem for the time-domain Naiver equation with the Dirichlet boundary condition
on Γj: {

𝜌𝜕2
t U − ∇ ·

(
𝜇(∇U + ∇U⊤)

)
− ∇ (𝜆∇ · U) = 0 in Ω, t > 0,

U |t=0 = u0, 𝜕tU| t=0 = u1 inΩ,
U = 0 on Γ𝑗 , t > 0,

(3.6)

where u0,u1 are assumed to be compactly supported in Ω.
Let Ŭ = ℒ (U). Taking the Laplace transform of 3.6, we obtain the boundary value problem:{

∇ ·
(
𝜇s−1(∇Ŭ + ∇Ŭ⊤)

)
+ ∇

(
𝜆s−1∇ · Ŭ

)
− s𝜌Ŭ = −q̆ in Ω,

Ŭ = 0 on Γ𝑗 ,
(3.7)

where q̆ = 𝜌(u0 + s−1u1). The variational formulation of 3.7 is to find Ŭ ∈ H1(Ω)2 such that

aTD(Ŭ , v) = ∫Ω
q̆ · v̄dx, ∀v ∈ H1(Ω)2, (3.8)

where the sesquilinear form

aTD(Ŭ , v) = ∫Ω

(
𝜇s−1(∇Ŭ) ∶ (∇v̄) + (𝜆 + 𝜇)s−1(∇ · Ŭ)(∇ · v̄) + s𝜌Ŭv̄

)
dx.

Following the same proof as that for Theorem 3.1, we can show the well posedness of the variational problem 3.8 and its
stability, which are stated below. The proof is omitted for brevity.

Lemma 3.2. The variational problem 3.8 has a unique solution Ŭ ∈ H1(Ω)2, which satisfies

||∇Ŭ||L2(Ω)2×2 + ||∇ · Ŭ||L2(Ω) + ||sŬ||L2(Ω)2 ≲ s−1
1 |s|||u0||L2(Ω)2 + s−1

1 ||u1||L2(Ω)2 .

Theorem 3.3. The initial-boundary value problem 3.6 has a unique solution U, which satisfies the estimates

||𝜕tU||L2(Ω)2 + ||∇ · U||L2(Ω) + ||∇U||L2(Ω)2×2 ≲ ||u1||L2(Ω)2 + ||∇ · u0||L2(Ω) + ||∇u0||L2(Ω)2×2 ,

||𝜕2
t U||L2(Ω)2 +||∇ · (𝜕tU)||L2(Ω) + ||∇(𝜕tU)||L2(Ω)2×2

≲ ||Δu0||L2(Ω)2 + ||∇∇ · u0||L2(Ω)2 + ||∇ · u1||L2(Ω) + ||∇u1||L2(Ω)2×2 ,

||𝜕3
t U ||L2(Ω)2 + ||∇ · (𝜕2

t U)||L2(Ω) + ||∇(𝜕2
t U)||L2(Ω)2×2

≲ ||Δu1||L2(Ω)2 + ||∇∇ · u1||L2(Ω)2 + ||∇ · (Δu0 + ∇∇ · u0) ||L2(Ω)
+||∇ (Δu0 + ∇∇ · u0) ||L2(Ω)2×2 .
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Proof. Let Ŭ = ℒ (U). By Lemma 3.2, we have

||∇Ŭ||L2(Ω)2×2 + ||∇ · Ŭ||L2(Ω) + ||sŬ||L2(Ω)2 ≲ s−1
1 |s|||u0||L2(Ω)2 + s−1

1 ||u1||L2(Ω)2 .

It follows from Trèves35, Lemma 44.1 that Ŭ is a holomorphic function of s on the half plane s1 > 𝜎0 > 0, where
𝜎0 is any positive constant. Hence, we have from Lemma 2.1 that the inverse Laplace transform of Ŭ exists and is
supported in [0,∞].

Next, we prove the stability. Define the energy function

e1(t) = ||√𝜌𝜕tU||2
L2(Ω)2 + ||√𝜆 + 𝜇∇ · U||2

L2(Ω) + ||√𝜇∇U||2
L2(Ω)2×2 .

It follows from 3.6 and the integration by parts that

e1(t) − e1(0) = ∫ t
0 e′(𝜏)d𝜏

= 2Re ∫ t
0 ∫Ω (

𝜌𝜕2
t U · 𝜕tŪ + (𝜆 + 𝜇)(𝜕t(∇ · U))(∇ · Ū) + 𝜇(𝜕t∇U) ∶ ∇Ū

)
dxd𝜏

= 2Re ∫ t
0 ∫Ω ((

∇ ·
(
𝜇(x)(∇U(x) + ∇U⊤(x))

)
+ ∇ (𝜆(x)∇ · U(x))

)
· 𝜕tŪ

+(𝜆 + 𝜇)(𝜕t(∇ · U))(∇ · Ū) + 𝜇(𝜕t∇U) ∶ ∇Ū
)

dxd𝜏
= 2Re ∫ t

0 ∫Ω(−𝜇∇U ∶ (𝜕t∇Ū) − (𝜆 + 𝜇)(∇ · U)(𝜕t(∇ · Ū))
+(𝜆 + 𝜇)(𝜕t(∇ · U))(∇ · Ū) + 𝜇(𝜕t∇U) ∶ ∇Ū)dxd𝜏

= 0.

Hence, ||√𝜌𝜕tU(·, t)||2
L2(Ω)2 +||√𝜆 + 𝜇∇ · U(·, t)||2

L2(Ω) + ||√𝜇∇U(·, t)||2
L2(Ω)2×2

= ||√𝜌u1||2
L2(Ω)2 + ||√𝜆 + 𝜇∇ · u0||2

L2(Ω) + ||√𝜇∇u0||2
L2(Ω)2×2 ,

which implies

||𝜕tU||L2(Ω)2 + ||∇ · U||L2(Ω) + ||∇U||F(Ω) ≲ ||u1||L2(Ω)2 + ||∇ · u0||L2(Ω) + ||∇u0||L2(Ω)2×2 .

Taking the first and second partial derivatives of (3.6) with respect to t yields

⎧⎪⎨⎪⎩
𝜌𝜕2

t (𝜕tU) − ∇ ·
(
𝜇(∇(𝜕tU) + ∇(𝜕tU)⊤)

)
− ∇ (𝜆∇ · (𝜕tU)) = 0 in Ω, t > 0,

(𝜕tU) |t=0 = u1 in Ω,
𝜕t(𝜕tU) ||t=0 = 𝜌−1 (

∇ · (𝜇∇u0 + ∇u⊤
0 ) + ∇(𝜆∇ · u0)

)
in Ω,

𝜕tU = 0 on Γ𝑗 , t > 0,

and ⎧⎪⎨⎪⎩
𝜌𝜕2

t (𝜕
2
t U) − ∇ ·

(
𝜇(∇(𝜕2

t U) + ∇(𝜕2
t U⊤))

)
− ∇

(
𝜆∇ · (𝜕2

t U)
)
= 0 in Ω, t > 0,

(𝜕2
t U) ||t=0 = 𝜌−1 (

∇ · (𝜇∇u0 + ∇u⊤
0 ) + ∇(𝜆∇ · u0)

)
in Ω,

𝜕t(𝜕2
t U) ||t=0 = 𝜌−1 (

∇ · (𝜇∇u1 + ∇u⊤
1 ) + ∇(𝜆∇ · u1)

)
in Ω,

𝜕2
t U = 0 on Γ𝑗 , t > 0.

Considering the energy functions

e2(t) = ||√𝜌𝜕2
t U||2

L2(Ω)2 + ||√𝜆 + 𝜇∇ · (𝜕tU)||2
L2(Ω) + ||√𝜇∇(𝜕tU)||2

L2(Ω)2×2

and

e3(t) = ||√𝜌𝜕3
t U||2

L2(Ω)2 + ||√𝜆 + 𝜇∇ · (𝜕2
t U)||2

L2(Ω) + ||√𝜇∇(𝜕2
t U)||2

L2(Ω)2×2 .

We may follow the same steps as those proving the first inequality to derive the other two inequalities.

4 THE REDUCED PROBLEM

In this section, we present the main results, which include the well posedness, stability, and a priori estimates for the
scattering problem (2.5).
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4.1 Well posedness
Let e(x, t) = u(x, t) − U(x, t), where u satisfies 2.5 and U satisfies (3.6). It follows from (2.5) and (3.6) that e satisfies the
following system: ⎧⎪⎨⎪⎩

𝜌𝜕2
t e − ∇ ·

(
𝜇(∇e + ∇e⊤

)
− ∇ (𝜆∇ · e) = j in Ω, t > 0,

e|t=0 = 𝜕te|t=0 = 0 in Ω,
𝜇𝑗𝜕𝑦e + (𝜆𝑗 + 𝜇𝑗)(0, 1)⊤∇ · e = (−1)𝑗−1𝒯 𝑗[e] + 𝜼𝑗 on Γ𝑗 , t > 0,

(4.1)

where 𝜼𝑗 = (−1)𝑗
(
𝜇𝑗𝜕𝑦U + (𝜆𝑗 + 𝜇𝑗)(0, 1)⊤∇ · U

)
.

Let ĕ = ℒ (e). Taking the Laplace transform of (4.1), we obtain{
∇ ·

(
𝜇s−1(∇ĕ + ∇ĕ⊤)

)
+ ∇ (𝜆∇ĕ) − s𝜌ĕ = −s−1 j̆ in Ω,

𝜇𝑗s−1𝜕𝑦ĕ + (𝜆𝑗 + 𝜇𝑗)s−1(0, 1)⊤∇ · ĕ + (−1)𝑗ℬ𝑗[ĕ] = 𝜼𝑗 on Γ𝑗 .
(4.2)

Lemma 4.1. For (𝜆𝑗, 𝜇𝑗) ∈ S𝜆𝑗 ,𝜇𝑗
, the problem (4.2) has a unique weak solution ĕ(x) ∈ H1(Ω)2, which satisfies

||∇ĕ||L2(Ω)2×2 + ||∇ · ĕ||L2(Ω) + ||se||L2(Ω)2 ≲s−1
1

(||j̆||L2(Ω)2 +
2∑

𝑗=1
||𝜼𝑗||H−1∕2(Γ𝑗 )2 +

2∑
𝑗=1

||s𝜼𝑗||H−1∕2(Γ𝑗 )2

)
. (4.3)

Proof. The well posedness of the solution ĕ(x) ∈ H1(Ω)2 follows directly from Theorem 3.1. Moreover, we have

aTH (ĕ, ĕ) =
2∑

𝑗=1
⟨s−1𝜼𝑗 , ĕ⟩Γ𝑗

+ ∫Ω
s−1 j̆ · ĕdx.

It follows from the coercivity of aTH in 3.4 and the trace theorem in Lemma 2.3 that

s1|s|2
(||∇ĕ||2

L2(Ω)2×2 + ||∇ · ĕ||2
L2(Ω) + ||se||2

L2(Ω)2

)
≲ |s|−1||s−1 j̆||L2(Ω)2 ||sĕ||L2(Ω)2 +

2∑
𝑗=1

||s−1𝜼𝑗||H−1∕2(Γ𝑗 )2 ||ĕ||H1∕2(Γ𝑗 )2

≲ |s|−1||s−1 j̆||L2(Ω)2 ||sĕ||L2(Ω)2 +
2∑

𝑗=1
||s−1𝜼𝑗||H−1∕2(Γ𝑗 )2 ||ĕ||H1(Ω)2

≲ |s|−1||s−1 j̆||L2(Ω)2 ||sĕ||L2(Ω)2 + |s|−1
2∑

𝑗=1
||s−1𝜼𝑗||H−1∕2(Γ𝑗 )2 ||sĕ||L2(Ω)2

+
2∑

𝑗=1
||s−1𝜼𝑗||H−1∕2(Γ𝑗 )2 ||∇ĕ||L2(Ω)2×2 ,

which gives the estimate (4.3) after applying the Cauchy-Schwarz inequality.

To show the well posedness of the reduced problem (2.5), we assume that

u0(x),u1(x) ∈ H2(Ω)2, j(x, t) ∈ H1(0,T;L2(Ω)
)2
. (4.4)

Theorem 4.2. The problem (2.5) has a unique solution u(x, t) for (𝜆𝑗, 𝜇𝑗) ∈ S𝜆𝑗 ,𝜇𝑗
. Moreover, it satisfies

u(x, t) ∈ L2(0,T;H1(Ω)
)2 ∩ H1(0,T;L2(Ω))2

and the stability estimate

max
t∈[0,T]

(||𝜕tu(·, t)||L2(Ω)2 + ||∇(𝜕tu(·, t))||L2(Ω)2×2
)

≲ ||∇ · u0||L2(Ω)2 + ||∇u0||L2(Ω)2×2 + ||Δu0||L2(Ω) + ||∇∇ · u0||L2(Ω)2

+ ||u1||L2(Ω)2 + ||∇ · u1||L2(Ω) + ||∇u1||L2(Ω)2×2 + ||j||H1(0,T;L2(Ω))2 . (4.5)
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Proof. Recall the decomposition u = U + e, where U satisfies (3.6) and e satisfies (4.1). Since

∫ T
0

(||𝜕te||2
L2(Ω)2 + ||∇e||2

L2(Ω)2×2 + ||∇ · e||2
L2(Ω)

)
dt

≤ ∫ T
0 e−2s1(t−T)

(||𝜕te||2
L2(Ω)2 + ||∇e||2

L2(Ω)2×2 + ||∇ · e||2
L2(Ω)

)
dt

= e2s1T ∫ T
0 e−2s1t

(||𝜕te||2
L2(Ω)2 + ||∇e||2

L2(Ω)2×2 + ||∇ · e||2
L2(Ω)

)
dt

≲ ∫ ∞
0 e−2s1t

(||𝜕te||2
L2(Ω)2 + ||∇e||2

L2(Ω)2×2 + ||∇ · e||2
L2(Ω)

)
dt,

it suffices to estimate the integral

∫
∞

0
e−2s1t

(||𝜕te||2
L2(Ω)2 + ||∇e||2

L2(Ω)2×2 + ||∇ · e||2
L2(Ω)

)
dt.

Taking the Laplace transform of (4.1) and applying Lemma 4.1, it leads to

||∇ĕ||2
L2(Ω)2×2 + ||∇ · ĕ||2

L2(Ω) + ||se||2
L2(Ω)2 ≲s−2

1

(||j̆||2
L2(Ω)2 +

2∑
𝑗=1

||𝜼𝑗||2
H−1∕2(Γ𝑗 )2

+
2∑

𝑗=1
||s𝜼𝑗||2

H−1∕2(Γ𝑗 )2

)
. (4.6)

It follows from Trèves35, Lemma 44.1 that ĕ is a holomorphic function of s on the half plane s1 > 𝜎0 > 0, where 𝜎0 is
any positive constant. Hence, we have from Lemma 2.1 that the inverse Laplace transform of ĕ exists and is supported
in [0,∞].

Denote by e = ℒ−1(ĕ). Since

ĕ = ℒ (e) = ℱ (e−s1te),

where ℱ is the Fourier transform in s2, we have from the Parseval identity (2.4) and (4.6) that

∫ ∞
0 e−2s1t

(||𝜕te||2
L2(Ω)2 + ||∇e||2

L2(Ω)2×2 + ||∇ · e||2
L2(Ω)

)
dt

= 1
2𝜋

∫ ∞
−∞

(||sĕ||2
L2(Ω)2 + ||∇ĕ||2

L2(Ω)2×2 + ||∇ · ĕ||2
L2(Ω)

)
ds2

≲ s−2
1 ∫ ∞

−∞ ||j̆||2
L2(Ω)2 ds2 + s−2

1 ∫ ∞
−∞

2∑
𝑗=1

||𝜼𝑗||2
H−1∕2(Γ𝑗 )2

ds2 + s−2
1 ∫ ∞

−∞

2∑
𝑗=1

||s𝜼𝑗||2
H−1∕2(Γ𝑗 )2

ds2.

Denote by 𝜼𝑗,0 ∶= 𝜼𝑗|t=0 = (−1)𝑗
(
𝜇𝑗𝜕𝑦u0 + (𝜆𝑗 + 𝜇𝑗)(0, 1)⊤∇ · u0

)
. Since u0 is supported in Ω, it leads to 𝜼j,0 = 0 on

Γj. We obtain ℒ (𝜕t𝜼𝑗) = s𝜼𝑗 , 𝑗 = 1, 2. Hence,

∫ ∞
0 e−2s1t

(||𝜕te||2
L2(Ω)2 + ||∇e||2

L2(Ω)2×2 + ||∇ · e||2
L2(Ω)

)
dt

≲ s−2
1 ∫ ∞

−∞

(||ℒ (j)||2
L2(Ω)2 +

2∑
𝑗=1

||ℒ (𝜼𝑗)||2
H−1∕2(Γ𝑗 )2

+
2∑

𝑗=1
||ℒ (𝜕t𝜼𝑗)||2

H−1∕2(Γ𝑗 )2

)
ds2.

Using the Parseval identity again gives

∫ ∞
0 e−2s1t

(||𝜕te||2
L2(Ω)2 + ||∇e||2

L2(Ω)2×2 + ||∇ · e||2
L2(Ω)

)
dt

≲ s−2
1 ∫ ∞

0 e−2s1t

(||j||2
L2(Ω)2 +

2∑
𝑗=1

||𝜼𝑗||2
H−1∕2(Γ𝑗 )2

+
2∑

𝑗=1
||𝜕t𝜼𝑗||2

H−1∕2(Γ𝑗 )2

)
dt,

which shows that

e ∈ L2 (0,T;H1(Ω)2) ∩ H1 (0,T;L2(Ω)2) .
Next, we prove the stability. Let ũ be the extension of u with respect to t in R such that ũ = 0 outside the interval [0, t].
By the Parseval identity (2.4) and Lemma 2.5, we get
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Re ∫ t
0 e−2s1t∫Γ𝑗

𝒯 𝑗[u] · 𝜕tūdxdt = Re∫Γh
∫ ∞

0 e−2s1t𝒯 𝑗[ũ] · 𝜕t ̄̃udtdx

= 1
2𝜋

∫ ∞
−∞ Re⟨ℬ𝑗[ ̆̃u], s ̆̃u⟩Γ𝑗

ds2

= 1
2𝜋

∫ ∞
−∞ |s|2Re⟨s−1ℬ𝑗[ ̆̃u](s), ̆̃u⟩Γ𝑗

ds2 ≤ 0,

which yields after taking s1 → 0 that

Re∫
t

0 ∫Γ𝑗

𝒯 𝑗[u] · 𝜕tūdxdt ≤ 0. (4.7)

For any 0 < t < T, consider an energy function

E1(t) = ||√𝜌𝜕tu||2
L2(Ω)2 + ||√𝜆 + 𝜇∇ · u||2

L2(Ω) + ||√𝜇∇u||2
L2(Ω)2×2 .

It is easy to note that

∫
t

0
E′

1(𝜏)d𝜏 =
(||√𝜌𝜕tu(·, t)||2

L2(Ω)2 + ||√𝜆 + 𝜇∇ · u(·, t)||2
L2(Ω) + ||√𝜇∇u(·, t)||2

L2(Ω)2×2

)
−

(√
𝜌||u1||2

L2(Ω)2 + ||√𝜆 + 𝜇∇ · u0||2
L2(Ω) + ||√𝜇∇u0||2

L2(Ω)2×2

)
. (4.8)

On the other hand, it follows from (2.5) and (4.7) that

∫ t
0 E′

1(𝜏)d𝜏 = 2Re ∫ t
0 ∫Ω (

𝜌𝜕2
t u · 𝜕tū + (𝜆 + 𝜇)(𝜕t(∇ · u))(∇ū) + 𝜇(𝜕t(∇u)) ∶ ∇ū

)
dxdt

= 2Re ∫ t
0 ∫Ω ((

∇ · (𝜇(∇u + ∇u⊤)) + ∇(𝜆∇ · u) + j
)
· 𝜕tū

+(𝜆 + 𝜇)(𝜕t(∇ · u))(∇ū) + 𝜇(𝜕t(∇u)) ∶ ∇ū) dxdt

= 2Re ∫ t
0

2∑
𝑗=1

∫Γ𝑗
𝒯 𝑗[u] · 𝜕tūdxdt + 2Re ∫ t

0 ∫Ωj · 𝜕tūdxdt

≤ 2Re ∫ t
0 ∫Ωj · 𝜕tūdxdt

≤ 2 max
t∈[0,T]

||𝜕tu(·, t)||L2(Ω)2 ||j||L1(0,T;L2(Ω))2 .

By Young inequality and (4.8), we get

max
t∈[0,T]

(||𝜕tu(·, t)||2
L2(Ω)2 + ||∇ · u(·, t)||2

L2(Ω) + ||∇u(·, t)||2
L2(Ω)2×2

)
≲ ||u1||2

L2(Ω)2 + ||∇ · u0||2
L2(Ω) + ||∇u0||2

L2(Ω)2×2 + |j|2
L1(0,T;L2(Ω)2). (4.9)

Taking the derivative of (2.5) with respect to t and using the assumptions (4.4), we know that 𝜕tu(x, t) sat-
isfies the same equations with the source and the initial conditions replaced by 𝜕tj, 𝜕tu |t=0 = u1, 𝜕t(𝜕tu)| t=0 =
𝜌−1 (∇ · (𝜇∇u0 + ∇u⊤

0 ) + ∇(𝜆∇ · u0)
)
. Hence, we may consider a similar energy function

E2(t) = ||√𝜌𝜕2
t u||2

L2(Ω)2 + ||√𝜆 + 𝜇∇ · (𝜕tu)||2
L2(Ω) + ||√𝜇∇(𝜕tu)||2

L2(Ω)2×2 .

We may repeat similar steps to obtain

max
t∈[0,T]

(||𝜕2
t u(·, t)||2

L2(Ω)2 + ||∇ · (𝜕tu(·, t))||2
L2(Ω) + ||∇(𝜕tu(·, t))||2

L2(Ω)2×2

)
≲ ||Δu0||2

L2(Ω)2 + ||∇∇ · u0||2
L2(Ω)2

+ ||∇ · u1||2
L2(Ω) + ||∇u1||2

L2(Ω)2×2 + ||𝜕tj||2
L1(0,T;L2(Ω))2 . (4.10)
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Combining the above estimate with 4.9, we obtain

max
t∈[0,T]

(||𝜕tu(·, t)||2
L2(Ω)2 + ||∇(𝜕tu(·, t))||2

L2(Ω)2×2

)
≤ max

t∈[0,T]

(||𝜕2
t u(·, t)||2

L2(Ω)2 + ||∇ · (𝜕tu(·, t))||2
L2(Ω) + ||∇(𝜕tu(·, t))||2

L2(Ω)2×2

)
, (4.11)

which completes the proof of 4.5 after combining the above estimates (4.9) to (4.11).

4.2 A priori estimate
In what follows, we derive a priori stability estimate for the wave field with a minimum regularity requirement for the
data and an explicit dependence on the time.

The variational problem of 2.5 is to find u ∈ H1(Ω)2 for all t > 0 such that

∫Ω
𝜌𝜕2

t u · w̄dx = −∫Ω
(𝜇(∇u ∶ ∇w̄) + (𝜆 + 𝜇)(∇ · u)(∇ · w̄)) dx

+
2∑

𝑗=1
⟨𝒯 𝑗[u],w⟩Γ𝑗

+ ∫Ω
j · w̄dx, ∀w ∈ H1(Ω)2. (4.12)

Theorem 4.3. Let u ∈ H1(Ω)2 be the solution of 4.12. Given u0,u1 ∈ L2(Ω)2, and j ∈ L1 (0,T;L2(Ω)2), we have for
any T > 0 that ||u||L∞(0,T;L2(Ω)2) ≲ ||u0||L2(Ω)2 + T||u1||L2(Ω)2 + T||j||L1(0,T;L2(Ω))2 (4.13)

and ||u||L2(0,T;L2(Ω)2) ≲ T1∕2||u0||L2(Ω)2 + T3∕2||u1||L2(Ω)2 + T3∕2||j||L1(0,T;L2(Ω))2 . (4.14)

Proof. Let 0 < 𝜃 < T and define an auxiliary function

𝝍(x, t) = ∫
𝜃

t
u(x, 𝜏)d𝜏, x ∈ Ω, 0 ≤ t ≤ 𝜃.

It is clear that
𝝍(x, 𝜃) = 0, 𝜕t𝝍(x, t) = −u(x, t). (4.15)

For any 𝝓(x, t) ∈ L2(0, 𝜃;L2(Ω)2), we have

∫
𝜃

0
𝝓(x, t) · �̄�(x, t)dt = ∫

𝜃

0

(
∫

t

0
𝝓(x, 𝜏)d𝜏

)
· ū(x, t)dt. (4.16)

Indeed, using the integration by parts and 4.15, we have

∫ 𝜃

0 𝝓(x, t) · �̄�(x, t)dt = ∫ 𝜃

0

(
𝝓(x, t) · ∫ 𝜃

t ū(x, 𝜏)d𝜏
)

dt

= ∫ 𝜃

0 ∫ 𝜃

t ū(x, 𝜏)d𝜏 · d
(∫ t

0 𝝓(x, ς)dς
)

= ∫ 𝜃

t ū(x, 𝜏)d𝜏 · ∫ t
0 𝝓(x, ς)dς

||||𝜃0 + ∫ 𝜃

0

(∫ t
0 𝝓(x, ς)dς

)
ū(x, t)dt

= ∫ 𝜃

0

(∫ t
0 𝝓(x, 𝜏)d𝜏

)
ū(x, t)dt.

Next, we take the test function w = 𝝍 in (4.12) and get

∫Ω
𝜌𝜕2

t u · �̄�dx = −∫Ω
(𝜇(∇u ∶ ∇�̄�) + (𝜆 + 𝜇)(∇ · u)(∇ · �̄�)) dx

+
2∑

𝑗=1
⟨𝒯 𝑗[u],𝝍⟩Γ𝑗

+ ∫Ω
j · �̄�dx. (4.17)
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It follows from (4.15) that

Re ∫ 𝜃

0 ∫Ω 𝜌𝜕2
t u · �̄�dxdt = Re∫Ω𝜌 ∫ 𝜃

0 𝜕t (𝜕tu · �̄�)) + 𝜕tu · ūdtdx

= Re∫Ω𝜌
(
(𝜕tu · �̄�) |||𝜃0 + 1

2
|u|2|||𝜃0

)
dx

= 1
2
||√𝜌u(·, 𝜃)||2

L2(Ω)2 −
1
2
||√𝜌u0||2

L2(Ω)2 − Re∫Ω𝜌u1(x) · �̄�(x, 0)dx.

Integrating (4.17) from t = 0 to t = 𝜃 and taking the real parts yield

1
2
||√𝜌u(·, 𝜃)||2

L2(Ω)2 −
1
2
||√𝜌u0||2

L2(Ω)2 + Re∫
𝜃

0 ∫Ω
𝜇 (∇u(x, t) ∶ ∇�̄�(x, t)) dxdt

+ Re∫
𝜃

0 ∫Ω
(𝜆 + 𝜇)(∇ · u(x, t))(∇ · �̄�(x, t))dxdt

= 1
2
||√𝜌u(·, 𝜃)||2

L2(Ω)2 −
1
2
||√𝜌u0||2

L2(Ω)2

+ 1
2∫Ω

(
𝜇
|||||∫

𝜃

0
∇u(x, t)dt

|||||
2

L2(Ω)2×2

+ (𝜆 + 𝜇)
|||||∫

𝜃

0
∇ · u(x, t)dt

|||||
2)

dx

= Re∫Ω
𝜌u1(x) · �̄�(x, 0)dx + Re∫

𝜃

0 ∫Ω
j(x, t) · �̄�(x, t)dxdt + Re∫

𝜃

0

2∑
𝑗=1

⟨𝒯 𝑗[u],𝝍⟩Γ𝑗
dt, (4.18)

where we have used the fact that|||||∫
𝜃

0
∇u(x, t)dt

|||||
2

L2(Ω)2×2

= ∫
𝜃

0
∇u(x, t)dt ∶ ∫

𝜃

0
∇ū(x, t)dt.

In what follows, we estimate the three terms on the right-hand side of 4.18 separately. It follows from the
Cauchy-Schwarz inequality that

Re∫Ω
𝜌u1(x) · �̄�(x, 0)dx = Re∫Ω

𝜌u1(x) ·
(
∫

𝜃

0
ū(x, t)dt

)
dx

= Re∫
𝜃

0 ∫Ω
𝜌u1(x) · ū(x, t)dxdt

≤ 𝜌max||u1||L2(Ω)2 ∫
𝜃

0
||u(·, t)||L2(Ω)2 dt. (4.19)

For 0 ≤ t ≤ 𝜃 ≤ T, we have from (4.16) that

Re∫
𝜃

0 ∫Ω
j(x, t) · �̄�(x, t)dxdt = Re∫Ω ∫

𝜃

0

(
∫

t

0
j(x, 𝜏)d𝜏

)
· ū(x, t)dtdx

= Re∫
𝜃

0 ∫
t

0 ∫Ω
j(x, 𝜏) · ū(x, t)dxd𝜏dt

≤ ∫
𝜃

0

(
∫

t

0
||j(·, 𝜏)||L2(Ω)2 d𝜏

) ||u(·, t)||L2(Ω)2 dt

≤ ∫
𝜃

0

(
∫

𝜃

0
||j(·, t)||L2(Ω)2 dt

) ||u(·, t)||L2(Ω)2 dt

≤
(
∫

𝜃

0
||j(·, t)||L2(Ω)2 dt

)(
∫

𝜃

0
||u(·, t)||L2(Ω)2 dt

)
. (4.20)

It follows from (4.16) that

Re ∫ 𝜃

0 ⟨𝒯 𝑗[u],𝝍⟩Γ𝑗
dt = Re ∫ 𝜃

0 ∫Γ𝑗
𝒯 𝑗[u] · �̄�dxdt

= Re∫Γ𝑗
∫ 𝜃

0

(∫ t
0 𝒯 𝑗[u](x, 𝜏)d𝜏

)
· ū(x, t)dtdx.
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Let ũ be the extension of u with respect to t inR such that ũ = 0 outside the interval [0, 𝜃]. We obtain from the Parseval
identity (2.4) and Lemma 2.5 that

Re∫Γ𝑗
∫ 𝜃

0 e−2s1t
(∫ t

0 𝒯 𝑗[u](𝜏)d𝜏
)
· ū(t)dtdx

= Re∫Γ𝑗
∫ ∞

0 e−2s1t
(∫ t

0 𝒯 𝑗[ũ](𝜏)d𝜏
)
· ̄̃u(t)dtdx

= Re∫Γ𝑗
∫ ∞

0 e−2s1t
(∫ t

0 ℒ−1◦ℬ𝑗◦ℒ ũ(𝜏)d𝜏
)
· ̄̃u(t)dtdx

= Re∫Γ𝑗
∫ ∞

0 e−2s1t (ℒ−1◦(s−1ℬ𝑗)◦ℒ ũ(t) · ̄̃u(t)
)

dtdx

= 1
2𝜋

∫ ∞
−∞ Re∫Γh

s−1ℬ𝑗
̆̃u(s) · ̄̃̆u(s)dxds2

= 1
2𝜋

∫ ∞
−∞ Re⟨s−1ℬ𝑗

̆̃u, ̆̃u⟩Γ𝑗
ds2 ≤ 0,

where we have used

∫
t

0
u(𝜏)d𝜏 = ℒ−1(s−1ŭ(s)).

After taking s1 → 0, it leads to

Re∫
𝜃

0
⟨𝒯 𝑗[u],𝝍⟩Γ𝑗

dt = Re∫Γ𝑗
∫

𝜃

0

(
∫

t

0
𝒯 𝑗[u](x, 𝜏)d𝜏

)
· ū(x, t)dtdx ≤ 0. (4.21)

Substituting (4.19) to (4.21) into (4.18), we have for any 𝜃 ∈ [0,T] that

1
2
||√𝜌u(·, 𝜃)||2

L2(Ω)2 ≤ 1
2
||√𝜌u0||2

L2(Ω)2 +
(
𝜌max||u1||L2(Ω)2 + ∫

𝜃

0
||j(·, t)||L2(Ω)2 dt

)
·(

∫
𝜃

0
||u(·, t)||L2(Ω)2 dt

)
. (4.22)

Taking the L∞-norm with respect to 𝜃 on both sides of (4.22) yields

||u||2
L∞(0,T;L2(Ω))2 ≲ ||u0||2

L2(Ω)2 + T
(||u1||L2(Ω)2 + ||j||L1(0,T;L2(Ω))2

) ||u||L∞(0,T;L2(Ω))2 ,

which gives the estimate (4.13) after applying the Young inequality.
Integrating (4.22) with respect to 𝜃 from 0 to T and using the Cauchy-Schwarz inequality, we obtain

||u||2
L2(0,T;L2(Ω))2 ≲ T||u0||2

L2(Ω)2 + T3∕2 (||u1||L2(Ω)2 + ||j||L1(0,T;L2(Ω))2
) ||u||L2(0,T;L2(Ω))2 ,

which implies the estimate (4.14) by using the Young inequality again.

5 CONCLUSION

In this paper, we have considered the time-domain elastic scattering problem in an unbounded structure. Using the
Helmholtz decomposition, we present the exact time-domain TBC. Then the scattering problem can be reduced into an
initial-boundary value problem. We study two auxiliary problems: One is to establish the well posedness and stability of
the reduced problem in s-domain, and the other is to establish the well posedness of the reduced problem in time domain
with the Dirichlet boundary condition. In the time domain, we show that the reduced problem has a unique weak solu-
tion by using the energy method. The main ingredients of the proofs are the Laplace transform, the Lax-Milgram theorem,
and the Parseval identity. Moreover, we obtain a priori estimates with explicit time dependence for the quantities of elastic
wave displacement by taking special test functions of the time-domain variational problem for the Navier equation.

The admissible set S𝜆𝑗 ,𝜇𝑗
plays an important role in the proof of well posedness and stability for the problem. We can

only show that the set is nonempty and includes some possible Lamé parameters. We hope to remove the restriction and
show the validity of the results for more general cases in the future. Another possible direction is to study the time-domain
elastic scattering by an unbounded structure in three dimensions. The major difficulty is on the analysis for the TBC
where a 3 × 3 matrix needs to be considered. The progress will be reported somewhere else.
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