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Abstract
This paper is concerned with an inverse random source scattering problem in an 
inhomogeneous background medium. The wave propagation is modeled by the 
stochastic Helmholtz equation with the source driven by additive white noise. 
The goal is to reconstruct the statistical properties of the random source such as 
the mean and variance from the boundary measurement of the radiated random 
wave field at multiple frequencies. Both the direct and inverse problems are 
considered. We show that the direct problem has a unique mild solution by 
a constructive proof. For the inverse problem, we derive Fredholm integral 
equations, which connect the boundary measurement of the radiated wave field 
with the unknown source function. A regularized block Kaczmarz method is 
developed to solve the ill-posed integral equations. Numerical experiments are 
included to demonstrate the effectiveness of the proposed method.

Keywords: inverse source scattering problem, the Helmholtz equation, 
stochastic partial differential equation
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1. Introduction

The inverse source scattering problem, as an important research area in inverse scattering 
theory, is to determine the unknown source that generates prescribed radiated wave patten. 
The problem is largely motivated by medical applications where it is desirable to use electric 
or magnetic measurements on the surface of the human body, such as head, to infer the source 
currents inside the body, such as the brain, that produced these measured data [17, 21].

Due to the significant applications, the inverse source problem has been widely studied by 
many researchers [1, 3–5, 15, 26, 27, 31]. It is known that the problem does not have a unique 
solution at a fixed frequency due to the existence of nonradiating sources [16, 19]. In addition, 
it is ill-posed as small variations in the measured data can lead to huge errors in the reconstruc-
tions. To overcome these obstacles, one may either seek the minimum energy solution [26], 
which represents the pseudo-inverse of the problem, or use multi-frequency data to ensure 
uniqueness and gain increased stability of the solution [10–12, 24].

In this paper, we consider the random source scattering problem for acoustic waves in 
an inhomogeneous background medium. The wave propagation is modeled by the two- 
dimensional stochastic Helmholtz equation:

∆u(x,κ) + κ2(1 + q(x))u(x,κ) = f (x), x ∈ R2, (1.1)

where κ > 0 is the wavenumber, q > −1 is the known scatterer and describes the relative elec-
tric permittivity of the inhomogeneous medium, and the electric current density f is assumed 
to be a random function driven by an additive white noise. Specifically, we assume

f (x) = g(x) + σ(x)Ẇx, (1.2)

where g and σ � 0 are deterministic real functions, Wx is a Brownian sheet or a two-parameter 
Brownian motion, and Ẇx denotes the white noise which can be thought as the derivative 
of the Brownian sheet Wx. A brief introduction can be found in the appendix of [7] on the 
Brownian sheets. In this random source model, g, σ, and σ2 can be viewed as the mean, stan-
dard deviation, and variance of f, respectively. Moreover, we assume that q, g, and σ have com-
pact supports which are contained in the rectangular domain D ⊂ R2 . Let BR = {x : |x| < R} 
be the disk with center 0 and radius R, which is large enough such that D̄ ⊂ BR. As usual, the 
wave field u is required to satisfy the Sommerfeld radiation condition, i.e.

lim
r→∞

r1/2(∂ru − iκu) = 0, r = |x|. (1.3)

Given the random source f, the direct problem is to determine the radiated random wave 
field u. Our focus is on the inverse source scattering problem, which is to determine the source 
f from the measurement of the radiated wave field u on ∂BR = {x : |x| = R}. More precisely, 
the goal is to determine the statistical properties of the source f, i.e. the mean g and variance σ2, 
from the wave field u measured on ∂BR  at a discrete set of wavenumbers κj, j = 1, 2, . . . , N .

Although the deterministic counterpart has been well studied, little is known for the sto-
chastic inverse problem due to the presence of randomness in the model [14, 22]. Recently, 
one-dimensional stochastic inverse source problems were considered in [9, 13, 23, 25], where 
the governing equations were stochastic ordinary differential equations. Utilizing the Green 
functions, the authors presented the first approach in [7, 8] for solving the inverse random 
source scattering problem in higher dimensions, where the stochastic partial differential equa-
tions were considered. Unfortunately, the technique is not applicable to the Helmholtz equa-
tion (1.1) since the explicit Green function is not available for the inhomogeneous background 
medium.
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In this work, we propose a new approach for solving the stochastic inverse source scatter-
ing problem in inhomogeneous media. We study both the direct and inverse source scattering 
problems for the stochastic Helmholtz equation in an inhomogeneous medium. By construct-
ing a sequence of regular processes approximating the white noise, we show that there exists 
a unique mild solution to the stochastic direct scattering problem. Motivated by [1, 2], we 
consider an eigenvalue problem for the inhomogeneous Helmholtz equation  and deduce 
integral equations, which connect the scattering data u and unknown source functions g and 
σ2. Computationally, we present a regularized block Kaczmarz method to solve the ill-posed 
Fredholm integral equations by using multi-frequency data. Numerical experiments show that 
the method is effective to solve the random source scattering problem for both homogeneous 
and inhomogeneous media.

Let the triple (Ω,F , P) be a complete probability space on which the Brownian 
sheet Wx is defined. Here Ω is a sample space, F  is a σ-algebra on Ω, and P is a prob-
ability measure on the measurable space (Ω,F). If u is a random variable, E(u) and 
V(u) = E(u − E(u))2 = E(u2)− (E(u))2 are the expectation and variance of u, respectively. 
If u, v are two random variables, C(u, v) = E[(u − Eu)(v − Ev)] denotes the covariance of 
u and v. P-a.s. means almost surely with respect to the probability measure P. We refer to  
[18, 30] for more details on notations and general theory of stochastic differential equations.

The paper is organized as follows. In section 2, we introduce the model equation and dis-
cuss the solutions for the deterministic and stochastic direct problems. Section 3 is devoted to 
the inverse problem where integral equations are deduced and the regularized block Kaczmarz 
method is developed to reconstruct the mean and the variance of the random source. Numerical 
experiments are presented in section 4 to illustrate the performance of the proposed method. 
The paper is concluded with some general remarks section 5.

2. Direct scattering problem

In this section, we introduce the Helmholtz equation and discuss the solutions of the determin-
istic and stochastic direct source scattering problems.

2.1. Deterministic direct problem

Letting σ = 0 in (1.2), we consider the scattering problem of the two-dimensional determin-
istic Helmholtz equation in an inhomogeneous background medium:

{
∆u(x,κ) + κ2(1 + q(x))u(x,κ) = g(x), x ∈ R2,
∂ru − iκu = o(r−1/2), r → ∞,

 (2.1)

where g ∈ L2(BR) and q ∈ L∞(BR) are deterministic functions with compact supports con-
tained in BR ⊂ R2. Equivalently, the scattering problem (2.1) can be formulated as the 
Lippmann–Schwinger integral equation

u(x,κ) = −κ2
∫

BR

G(x, y,κ)q(y)u(y,κ)dy +
∫

BR

G(x, y,κ)g(y)dy, (2.2)

where G is the Green function of the homogeneous Helmholtz equation. Explicitly, we have

G(x, y,κ) = − i
4

H(1)
0 (κ|x − y|).

M Li et alInverse Problems 34 (2018) 015003
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Here H(0)
1  is the Hankel function of the first kind with order zero. Define the integral operator:

G [ f ](x) =
∫

BR

G(x, y,κ) f (y)dy, ∀ f ∈ L2(BR).

The Lippmann–Schwinger integral equation (2.2) can be rewritten as

u = −κ2G [qu] + G [g].

The following properties on the Green function play an important role in the subsequent 
analysis. The proofs can be found in [7, lemmas 2.1 and 2.2].

Lemma 2.1. Let Ω ⊂ R2  be a bounded domain. We have G(x, y,κ) ∈ L2(Ω), ∀ y ∈ Ω.

Lemma 2.2. Let Ω ⊂ R2  be a bounded domain. We have for any α ∈ ( 3
2 , ∞) that

∫

Ω

|G(x, y,κ)− G(x, z,κ)|αdx � |y − z| 3
2 , ∀ y, z ∈ Ω. (2.3)

Throughout the paper, a � b stands for a � Cb, where C > 0 is a constant. The specific 
value of C is not required but should be clear from the context.

It is known that the scattering problem (2.1) has a unique solution for all the wavenumbers. 
The proof can be found in [10, theorem 2.2].

Theorem 2.3. For any κ > 0, the scattering problem (2.1) admits a unique weak solution 
u ∈ H1(BR), which satisfies

‖u‖H1(BR) � ‖g‖L2(BR).

2.2. Stochastic direct problem

In this section, we discuss the solution for the stochastic Helmholtz equation in an inhomoge-
neous medium. Consider the scattering problem for the stochastic Helmholtz equation

{
∆u(x,κ) + κ2(1 + q(x))u(x,κ) = g(x) + σ(x)Ẇx, x ∈ R2,
∂ru − iκu = o(r−1/2), r → ∞,

 (2.4)

where q ∈ L∞(BR), g ∈ L2(BR), and the regularity of σ is chosen such that the stochastic 
integral

∫

BR

G(x, y,κ)σ(y)dWy

satisfies

E
(∣∣
∫

BR

G(x, y,κ)σ(y)dWy
∣∣2) =

∫

BR

|G(x, y,κ)|2σ2(y)dy < ∞,

where the Itô isometry is used in the above identity.
We consider the singular part of the Green function. It follows from the Hölder inequality 

that ∫

BR

| log 1
|x − y|

∣∣∣
2
σ2(y)dy �

(∫

BR

∣∣∣log 1
|x − y|

∣∣∣
2p

p−2
dy
) p−2

p

(∫

BR

|σ(y)| pdy
) 2

p

.
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Since the first term on the right-hand side of the above inequality is a singular integral, 
we should choose p such that it is well defined. Let ρ > 0 be sufficiently large such that 
B̄R ⊂ Bρ(x), where Bρ(x) is the disc with radius ρ and center at x. A simple calculation yields

∫

BR

∣∣∣log 1
|x − y|

∣∣∣
2p

p−2
dy �

∫

Bρ(x)

∣∣∣log 1
|x − y|

∣∣∣
2p

p−2
dy �

∫ ρ

0
r
∣∣∣log 1

r

∣∣∣
2p

p−2
dr.

It is clear to note that the above integral is well defined when p > 2.
From now on, we assume that σ ∈ L p(BR) where p ∈ (2,∞]. Moreover, we require that 

σ ∈ C0,η(BR), i.e. η-Hölder continuous, where η ∈ (0, 1]. The Hölder continuity will be used 
in the analysis for existence of the solution.

The following theorem is the main result for the direct problem of the stochastic Helmholtz 
equation.

Theorem 2.4. For any κ > 0, the stochastic direct problem (2.4) admits a unique continuous  
stochastic process u : BR → C which satisfies

u(x,κ) = −κ2G [qu](x) + G [g](x) + G [σẆ](x), P-a.s., (2.5)

where

G [σẆ](x) =
∫

BR

G(x, y,κ)σ(y)dWy.

Proof. First we show that there exists a continuous modification of the random field

v(x,κ) = G [σẆ] =

∫

BR

G(x, y,κ)σ(y)dWy, x ∈ Ω.

For any x, z ∈ Ω, we have from the Itô isometry and the Hölder inequality that

E(|v(x,κ)− v(z,κ)|2) =
∫

BR

|G(x, y,κ)− G(z, y,κ)|2σ2(y)dy

�

(∫

BR

|G(x, y,κ)− G(z, y,κ)|
2p

p−2 dy
) p−2

p
(∫

BR

|σ(y)| pdy
) 2

p

.

For p > 2, it follows from (2.3) that
∫

BR

|G(x, y,κ)− G(z, y,κ)|
2p

p−2 dy � |x − z| 3
2 ,

which gives

E(|v(x,κ)− v(z,κ)|2) � ‖σ‖2
L p(BR)

|x − z|
3p−6

2p .

Using the fact that v(x,κ)− v(z,κ) is a random Gaussian variable, we have (see [20, proposi-
tion 3.14]) for any integer m that

E(|v(x,κ)− v(z,κ)|2m) �
(
E(|v(x,κ)− v(z,κ)|2)

)m
� ‖σ‖2m

L p(BR)
|x − z|

m(3p−6)
2p .
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Taking m > 2p
3p−6, we obtain from Kolmogorov’s continuity theorem that there exists a P-a.s. 

continuous modification of the random field v.
Next we present a constructive proof to show the existence. We shall construct a sequence 

of processes Ẇn
x  satisfying σẆn ∈ L2(BR) and a sequence

vn(x,κ) = G [σẆn](x) =
∫

BR

G(x, y,κ)σ(y)dWn
y , x ∈ BR,

which satisfies vn → v in L2(BR) a.s. as n → ∞.
Recall that σ has a compact support in D̄ ⊂ BR. Let Tn = ∪n

j=1Kj be a regular triangulation 
of D, where Kj are triangles. Denote

ξj = |Kj|−
1
2

∫

Kj

dWx, 1 � j � n,

where |Kj| is the area of Kj. It is known from [30] that {ξj}n
j=1 is a family of independent iden-

tically distributed normal random variables with mean zero and variance one. We obtain a 
piecewise constant approximation sequence:

Ẇn
x =

n∑
j=1

|Kj|−
1
2 ξjχj(x),

where χj  is the characteristic function of Kj. Clearly we have for any p � 1 that

E
(
‖Ẇn‖ p

L p(D)

)
= E

(∫

D

∣∣∣
n∑

j=1

|Kj|−
1
2 ξjχj(x)

∣∣∣
p
dx
)
� E

(∫

D

n∑
j=1

|Kj|−
p
2 |ξj| pχj(x)dx

)

=
n∑

j=1

E(|ξj| p)|Kj|1−
p
2 < ∞,

which shows that Ẇn ∈ L p(D), p � 1. It follows from the Hölder inequality that σẆn ∈ L2(D).
Using the Itô isometry, we have

E
(∫

BR

∣∣∣G [σẆ](x)− G [σẆn](x)
∣∣∣
2
dx
)

= E
(∫

BR

∣∣∣
∫

D
G(x, y,κ)σ(y)dWy −

∫

D
G(x, y,κ)σ(y)dWn

y

∣∣∣
2
dx
)

= E
(∫

BR

∣∣∣
n∑

j=1

∫

Kj

G(x, y,κ)σ(y)dWy −
n∑

j=1

|Kj|−1
∫

Kj

G(x, z,κ)σ(z)dz
∫

Kj

dWy

∣∣∣
2
dx
)

= E
(∫

BR

∣∣∣
n∑

j=1

∫

Kj

∫

Kj

|Kj|−1(G(x, y,κ)σ(y)− G(x, z,κ)σ(z))dzdWy

∣∣∣
2
dx
)

=

∫

BR

( n∑
j=1

∫

Kj

∥∥∥Kj|−1
∫

Kj

(G(x, y,κ)σ(y)− G(x, z,κ)σ(z))dz
∣∣∣
2
dy
)

dx

�
∫

BR

( n∑
j=1

|Kj|−1
∫

Kj

∫

Kj

|G(x, y,κ)σ(y)− G(x, z,κ)σ(z)|2dzdy
)

dx

=

n∑
j=1

|Kj|−1
∫

Kj

∫

Kj

∫

BR

|G(x, y,κ)σ(y)− G(x, z,κ)σ(z)|2dxdzdy.

M Li et alInverse Problems 34 (2018) 015003
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Using the triangle and Cauchy–Schwartz inequalities yields
∫

BR

|G(x, y,κ)σ(y)− G(x, z,κ)σ(z)|2dx �
∫

BR

|G(x, y,κ)− G(x, z,κ)|2|σ(y)|2dx

+

∫

BR

|G(x, z,κ)|2|σ(y)− σ(z)|2dx.

It follows from (2.3), lemma 2.1, and the η-Hölder continuity of σ that
∫

BR

|G(x, y,κ)σ(y)− G(x, z,κ)σ(z)|2dx � σ2(y)|y − z| 3
2 + |y − z|2η ,

which gives

E
(∫

BR

∣∣∣G [σẆ](x)− G [σẆn](x)
∣∣∣
2
dx
)

�
n∑

j=1

|Kj|−1
∫

Kj

∫

Kj

σ2(z)|y − z| 3
2 dzdy +

n∑
j=1

|Kj|−1
∫

Kj

∫

Kj

|y − z|2ηdzdy

� ‖σ‖2
L2(D) max

1�j�n
(diamKj)

3
2 + |D| max

1�j�n
(diamKj)

2η → 0

as n → ∞ since the diameter of Kj → 0 as n → ∞.
For each n ∈ N, we consider the scattering problem

{
∆un(x,κ) + κ2(1 + q(x))un(x,κ) = g(x) + σ(x)Ẇn

x , x ∈ R2,
∂run − iκun = o(r−1/2), r → ∞.

 (2.6)

It follows from σẆn
x ∈ L2(BR) and theorem 2.3 that the scattering problem (2.6) has a unique 

solution un ∈ H1(BR) which satisfies the Lippmann–Schwinger integral equation

un(x,κ) = −κ2G [qun](x) + G [g](x) + G [σẆn](x). (2.7)

Consider the following sequence:

un(x,κ)− um(x,κ) = −κ2G [q(un − um)](x) + G [σẆn − σẆm](x). (2.8)

Given q ∈ L∞(BR), define an integral operator Gq : L2(BR) → L2(BR) by

Gq(φ)(x) = G [qφ](x) =
∫

BR

G(κ, x, y)q(y)φ(y)dy, ∀φ ∈ L2(BR).

It is clear to note that the operator Gq is compact from L2(BR) to L2(BR) and the equation (2.8) 
can be written as

(I + κ2Gq)(un − um)(x,κ) = G [σẆn − σẆm](x), (2.9)

where I  is the identity operator. Using the Fredholm alternative theorem and the uniqueness 
result in theorem 2.3, we obtain that the operator equation (2.9) has a unique solution for any 
κ > 0 and the solution satisfies

M Li et alInverse Problems 34 (2018) 015003
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‖un − um‖L2(BR) � ‖G [σẆn − σẆm]‖L2(BR).

Since E(‖G [σẆn − σẆm]‖2
L2(BR)

) → 0 as n, m → ∞, the sequence {un} is a Cauchy se-
quence, i.e.

E(‖un − um‖2
L2(BR)

) → 0 as n, m → ∞,

which shows that the sequence {un} is convergent. Denoting by u the limit of the sequence in 
(2.7), we obtain the mild solution (2.5).

To show the uniqueness, let u1, u2 be two solutions of (2.4) and denote u = u1 − u2. It is 
easy to verify that u satisfies

u(x,κ) = −κ2G [qu](x),

which is equivalent to the homogeneous operator equation

(I + κ2Gq)u(x,κ) = 0.

It follows from the uniqueness result again in theorem 2.3 that u = 0, which completes the 
proof. □ 

3. Inverse scattering problem

In this section, we shall derive integral equations connecting the unknown source functions 
to the data on ∂BR , and present a regularized block Kaczmarz method to solve the stochastic 
inverse problem by using multi-frequency data.

3.1. Reconstruction formulas

Consider the inhomogeneous stochastic Helmholtz equation

∆u(x,κ) + κ2(1 + q(x))u(x,κ) = g(x) + σ(x)Ẇx in BR. (3.1)

Multiplying the complex conjugate of a smooth test function v on both sides of (3.1) and inte-
grating by parts, we obtain

∫

BR

u(x)∆v̄(x)dx + κ2
∫

BR

(1 + q(x))u(x)v̄(x)dx +
∫

∂BR

(∂νu(x)v̄(x)− ∂ν v̄(x)u(x))dS

=

∫

BR

g(x)v̄(x)dx +
∫

BR

σ(x)v̄(x)dW(x),

 (3.2)
where ν is the unit outward normal vector on ∂BR .

We choose v ∈ C2(BR) to be the eigenfunction for the following problem:
{
∆v(x,κ) + κ2(1 + q(x))v(x,κ) = 0 in BR,
v(x,κ) = 0 on ∂BR.

 (3.3)

Substituting such a choice of v into (3.2), we get

M Li et alInverse Problems 34 (2018) 015003
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−
∫

∂BR

∂ν v̄(x,κ)u(x,κ)dS =

∫

BR

g(x)v̄(x,κ)dx +
∫

BR

σ(x)v̄(x,κ)dW(x). (3.4)

Remark 3.1. We point out that the problem (3.3) falls into the Sturm–Liouville problem 
[29, chapter 8.6]. Hence there exits a countable set of eigenpairs (κj, vj(x,κj))

∞
j=1 with κj > 0 

such that the eigenfunctions {vj(x,κj)}∞j=1 form an orthonormal basis of the weighted Hilbert 
space L2

q(BR) with respect to the inner product

( f , g)L2
q(BR) = ((1 + q) f , g)L2(BR).

If we have a knowledge of u on ∂BR , or its statistic characters, e.g. the mean and covari-
ance functions, the equation (3.4) clearly provides a connection between the known boundary 
measurement of the data and the characters of the unknown source functions. Next we present 
the formulas to reconstruct the mean g and the variance σ2 of the random source function.

We split the equation (3.4) into the real and imaginary parts:

−Re
∫

∂BR

∂ν v̄(x,κ)u(x,κ)dS = Re
∫

BR

g(x)v̄(x,κ)dx + Re
∫

BR

σ(x)v̄(x,κ)dW(x)

 (3.5)
and

−Im
∫

∂BR

∂ν v̄(x,κ)u(x,κ)dS = Im
∫

BR

g(x)v̄(x,κ)dx + Im
∫

BR

σ(x)v̄(x,κ)dW(x).

 (3.6)
Noting that g is a real function and

E
(

Re
∫

BR

σ(x)v̄(x,κ)dW(x)
)
= 0, E

(
Im

∫

BR

σ(x)v̄(x,κ)dW(x)
)
= 0,

we take the expectation on both sides of (3.5) and (3.6) and obtain the Fredholm integral equa-
tions to reconstruct g:

−E
(

Re
∫

∂BR

∂ν v̄(x,κ)u(x,κ)dS
)
=

∫

BR

g(x)Rev̄(x,κ)dx, (3.7)

−E
(

Im
∫

∂BR

∂ν v̄(x,κ)u(x,κ)dS
)
=

∫

BR

g(x)Imv̄(x,κ)dx. (3.8)

It follows from (3.7) and (3.8) and [2] that the mean g can be uniquely determined from the 
set of eigenfunctions {vj(x,κj)}∞j=1 of the eigenvalue problem (3.3). In fact, for any g ∈ L2(BR), 
we have g(1 + q)−1 ∈ L2

q(BR) and the generalized Fourier expansion

g(1 + q)−1(x) =
∞∑

j=1

gjvj(x,κj), (3.9)

where the coefficient

gj = (g(1 + q)−1, vj(·,κj))L2
q(BR)

= (g, vj(·,κj))L2(BR) = −E
∫

∂BR

∂ν v̄j(·,κj)u(x,κ)dS.
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At this point, we have the uniqueness result for the reconstruction of the mean g for the 
stochastic inverse source problem in an inhomogeneous medium by using multi-frequency 
scattering data.

Lemma 3.2. Let K = {κ1/2
j }∞j=1 with κj > 0 being the eigenvalues of the problem (3.3). 

Given the standard deviation function σ, suppose that we have two mean functions g1 and g2 
such that the expectation of their radiated waves coincide on the boundary ∂BR  for all wave-
numbers in K, then g1 = g2.

Proof. The proof of this lemma is readily seen from the Fourier expansion (3.9). Let u1 and 
u2 be the random wave fields radiated by the sources 

(
g1,σ

)
 and 

(
g2,σ

)
, respectively. Denote 

u = E(u1 − u2) and g = g1 − g2. It is easy to verify that u satisfies
{
∆u(x,κ) + κ2(1 + q(x))u(x,κ) = g(x) in BR,
u(x,κ) = 0 on ∂BR,

where we have used the linearity of the Helmholtz equation and the coincidence of the radi-
ated wave fields on the boundary ∂BR . By the Fourier expansion (3.9), we obtain that all the 
Fourier coefficients are

gj = −
∫

∂BR

∂ν v̄j(·,κj)u(x,κj)dS = 0,

which gives g = 0, i.e. g1 = g2. □ 

In numerical experiments, the left-hand sides of (3.7) and (3.8) could be approximated by 
a numerical quadrature, e.g.

E
(

Re
∫

∂BR

∂ν v̄(x,κ)u(x,κ)dS
)
= E

(
Re

∫ 2π

0
∂rv̄(x,κ)u(x,κ)Rdθ

)

≈ E
[
Re

M∑
m=1

∂rv̄(xm,κ)u(xm,κ)R∆θ
]
= Re

M∑
m=1

∂rv̄(xm,κ)E(u(xm,κ))R∆θ

and

E
(

Im
∫

∂BR

∂rv̄(x,κ)u(x,κ)dS
)
= E

(
Im

∫ 2π

0
∂rv̄(x,κ)u(x,κ)Rdθ

)

≈ E
[
Im

M∑
m=1

∂rv̄(xm,κ)u(xm,κ)R∆θ
]
= Im

M∑
m=1

∂rv̄(xm,κ)E(u(xm,κ))R∆θ,

where ∆θ = 2π/M  and xm = (R cos θm, R sin θm) with θm = m∆θ.
Therefore, we can reconstruct the mean g from the known data Eu(x), x ∈ ∂BR via (3.7) or 

(3.8) for a set of wavenumbers κ ∈ {κ1,κ2, · · · ,κN}.
Recalling that σ is also a real function and using the Itô isometry for stochastic integrals:

E
∣∣∣Re

∫

BR

σ(x)v̄(x,κ)dW(x)
∣∣∣
2
=

∫

BR

σ2(x)|Rev̄(x,κ)|2dx

and
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E
∣∣∣Im

∫

BR

σ(x)v̄(x,κ)dW(x)
∣∣∣
2
=

∫

BR

σ2(x)|Imv̄(x,κ)|2dx,

we take the variance on both sides of (3.5) and (3.6) and obtain the Fredholm integral equa-
tions to reconstruct the variance σ2:

V
(

Re
∫

∂BR

∂ν v̄(x,κ)u(x,κ)dS
)
=

∫

BR

σ2(x)|Rev(x,κ)|2dx (3.10)

and

V
(

Im
∫

∂BR

∂ν v̄(x,κ)u(x,κ)dS
)
=

∫

BR

σ2(x)|Imv(x,κ)|2dx, (3.11)

where V(u) = E(u2)− (Eu)2 is the variance of the random variable u.
It is severely ill-posed to reconstruct the variance σ2 as little properties are known for 

|v|2 where v satisfies (3.3). The uniqueness of the reconstruction of the mean g follows from 
the fact that the set of eigenfunctions {vn(x,κn)}∞n=1 form an orthonormal basis in L2

q(BR). 
However, we do not have such a nice property for the set of functions {|vn(x,κn)|2}∞n=1.

Similarly, the left-hand sides of (3.10) and (3.11) can be approximated by a numerical 
quadrature:

V
(

Re
∫

∂BR

∂ν v̄(x,κ)u(x,κ)dS
)
= V

(
Re

∫ 2π

0
∂rv̄(x,κ)u(x,κ)Rdθ

)

≈V
(

Re
M∑

m=1

∂rv̄(xm,κ)u(xm,κ)R∆θ
)

=V
[ M∑

m=1

(
Re∂rv̄(xm,κ)Reu(xm,κ)− Im∂rv̄(xm,κ)Imu(xm,κ)

)
R∆θ

]

=(R∆θ)2
M∑

m1=1

M∑
m2=1

{
Re∂rv̄(xm1 ,κ)Re∂rv̄(xm2 ,κ)C(Reu(xm1 ,κ), Reu(xm2 ,κ))

− 2Re∂rv̄(xm1 ,κ)Im∂rv̄(xm2 ,κ)C(Reu(xm1 ,κ), Imu(xm2 ,κ))

+ Im∂rv̄(xm1 ,κ)Im∂rv̄(xm2 ,κ)C(Imu(xm1 ,κ), Imu(xm2 ,κ))
}

and

V
(

Im
∫

∂BR

∂rv̄(x,κ)u(x,κ)dS
)
= V

(
Im

∫ 2π

0
∂rv̄(x,κ)u(x,κ)Rdθ

)

≈V
(

Im
M∑

m=1

∂rv̄(xm,κ)u(xm,κ)R∆θ
)

=V
[ M∑

m=1

(
Re∂rv̄(xm,κ)Imu(xm,κ) + Im∂rv̄(xm,κ)Reu(xm,κ)

)
R∆θ

]

=(R∆θ)2
M∑

m1=1

M∑
m2=1

{
Re∂rv̄(xm1 ,κ)Re∂rv̄(xm2 ,κ)C(Imu(xm1 ,κ), Imu(xm2 ,κ))

+ 2Re∂rv̄(xm1 ,κ)Im∂rv̄(xm2 ,κ)C(Imu(xm1 ,κ), Reu(xm2 ,κ))

+ Im∂rv̄(xm1 ,κ)Im∂rv̄(xm2 ,κ)C(Reu(xm1 ,κ), Reu(xm2 ,κ))
}
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where C(u, v) = E[(u − Eu)(v − Ev)] is the covariance of the random wave fields u and v.
Therefore, we can reconstruct the variance σ2 from the covariance of data C(u(x), u(y)), 

x, y ∈ ∂BR via the linear combination of equations (3.10) and (3.11) for a set of wavenumbers 
κ ∈ {κ1,κ2, · · · ,κN}.

3.2. Numerical method

In this section, we present a regularized block Kaczmarz method to solve the ill-posed int-
egral equations. As an iterative method, the classical Kaczmarz method is used to solve linear 
systems of algebraic equations [28]. The regularized block Kaczmarz method has also been 
adopted in [7, 8] for solving the random source scattering problems for acoustic and elastic 
waves in homogeneous media.

The Fredholm integral equations can be formulated as the following operator equations

Ajy = dj, j = 1, . . . , m, (3.12)

where the index j is for different wavenumber, y represents the unknown g or σ2, dj is the 
given data, and Aj is the integral operators. Given an arbitrary initial guess y0, the classical 
Kaczmarz method for solving (3.12) reads: For k = 0, 1, . . . ,




y0 = yk,
yj = yj−1 + A ∗

j (AjA ∗
j )−1(dj − Ajyj−1), j = 1, . . . , m,

yk+1 = ym,
 (3.13)

where A ∗
j  is the adjoint operator of Aj. In (3.13), there are two loops: the outer loop is car-

ried for iterative index k and the inner loop is done for the different wavenumber κj. Since the 
operator Aj is compact, the operator AjA ∗

j  is ill-pose. A regularization technique is needed.
We propose a regularized Kaczmarz method: Given an arbitrary initial guess y0,




y0 = yk,
yj = yj−1 + A ∗

j (µI + AjA ∗
j )−1(dj − Ajyj−1), j = 1, . . . , m,

yk+1 = ym,
 (3.14)

for k = 0, 1, . . . , where µ > 0 is the regularization parameter and I  is the identity operator. 
Although there are two loops in (3.14), the operator µI + AjA ∗

j  leads to small scale lin-
ear system of equations with size equal to the number of measurements after discretization. 
Moreover, they essentially need to be solved only m times by a direct solver such as the LU 
decomposition since Aj does not change during the outer loop. In practice, the initial guess y0 
is usually set to be zero and the Kacmarz method converges to the minimum norm solution. 
We refer to [8] for the convergence analysis of the regularized block Kaczmarz method.

4. Numerical experiments

In this section, we present two representative numerical examples, one has a homogeneous 
background medium and another has an inhomogeneous background medium, to demonstrate 
the validity and effectiveness of the proposed method.

The scattering data is obtained by the numerical solution of the stochastic Helmholtz equa-
tion in order to avoid the so-called inverse crime. Although the stochastic Helmholtz equa-
tion  may be efficiently solved by using the Wiener Chaos expansions to obtain statistical 
moments such as the mean and variance [6], we choose a different numerical procedure, i.e. 
Monte Carlo method to simulate the actual process of measuring data. In each realization, the 
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stochastic Helmholtz equation is solved by using the finite element method with the perfectly 
matched layer (PML) technique. After all the realizations are done, we take an average of the 
solutions and use it as an approximated scattering data to either the mean or the covariance. It 
is clear to note that the data is more accurate as more number of realizations is taken.

Example 1. First we present an example with a homogeneous background medium where 
the analytic solutions of the eigenfunctions are available. Consider the homogeneous stochas-
tic Helmholtz equation:

∆u(x,κ) + κ2u(x,κ) = g(x) + σ(x)Ẇx, x = (x1, x2)
� ∈ R2,

where the mean g(x1, x2) = g1(3x1, 3x2) and the standard variation σ(x1, x2) = σ1(2x1, 2x2). 
Here

g1(x1, x2) = 5x2
1x2e−x2

1−x2
2 , σ1(x1, x2) = x2

2e−1.5(x2
1+x2

2).

See figure 1 for the surface plots of the exact g (left) and σ2 (right) inside the rectangular  
domain D = [−1, 1]× [−1, 1]. The computational domain is set to be [−3, 3]× [−3, 3] 
with the PML thickness 0.5. After the direct problem is solved and the values of the 
wave field u are obtained at the grid points, the linear interpolation is used to gener-
ate the synthetic data at 40 uniformly distributed points on the circle with radius 2, i.e. 
x1 = 2 cos θj, x2 = 2 sin θj, θj = jπ/20, j = 0, 1, . . . , 39. The corresponding eigenvalue prob-
lem is

{
∆vmn + κ2

mnvmn = 0 in B2,
vmn = 0 on ∂B2,

where B2 is the disc with center 0 and radius 2. Under the polar coordinates

x = (x1, x2)
� = (r cos θ, r sin θ)�, 0 � r � R := 2, 0 � θ � 2π,

the normalized eigenfunctions are given explicitly as

vmn(r, θ) =
1

RJn+1(zmn)
Jn

( zmnr
R

)
einθ

Figure 1. Example 1 (homogeneous background medium): (left) surface plot of the 
exact mean g; (right) surface plot of the exact variance σ2.
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for n = 0, 1, 2, · · · and m = 1, 2, 3, · · ·. Here Jn denotes the Bessel function of the first kind 
with order n and zmn the mth zero of Jn. It is clear to note that

κmn =
zmn

R
.

A simple calculation yields that

∂rvmn(R, θ) = − zmn

R2 einθ.

We use a total number of N2 (n = 0, 1, · · · , N − 1; m = 1, 2, · · · , N ) wavenumbers to recon-
struct the mean g and the variance σ2. The regularization parameter is µ = 1.0 × 10−7 and 
the total number of the outer loop for the Kaczmarz method is 5. Figures 2 and 3 show the 
reconstructions of the mean g and the variance σ2 by using different N. As is expected, more 
accurate results can be obtained as more eigenfunctions are used for the reconstruction.

Figure 2. Example 1 (homogeneous background medium): surface plots of the 
reconstructed mean g by using different number of eigenfunctions. (a) N = 2.  
(b) N = 4. (c) N = 5. (d) N = 8.

M Li et alInverse Problems 34 (2018) 015003



15

Example 2. Now we present an example with an inhomogeneous background medium. 
Consider the inhomogeneous Helmholtz equation:

∆u(x,κ) + κ2(1 + q(x))u(x,κ) = g(x) + σ(x)Ẇx, x = (x1, x2)
� ∈ R2,

where the scatterer q(x) = e−(3x1)
2−(3x2)

2
. Let

g2(x1, x2) = 0.3(1 − x1)
2e−x2

1−(x2+1)2
− (0.2x1 − x3

1 − x5
2)e

−x2
1−x2

2 − 0.03e−(x1+1)2−x2
2

and

σ(x1, x2) = 0.6e−8(r3−0.75r2), r = (x2
1 + x2

2)
1/2,

and reconstruct the mean g(x1, x2) = g(3x1, 3x2) and the variance σ2 inside the rectangular 
domain D = [−1, 1]× [−1, 1]. See figure 4 for the surface plots of the exact mean g (left) and 
variance σ2 (right). Again, the computational domain is set to be [−3, 3]× [−3, 3] with the 
PML thickness 0.5. After the direct problem is solved and the value of u is obtained at the grid 
points, the linear interpolation is used to generate the synthetic data at 40 uniformly distributed 

Figure 3. Example 1 (homogeneous background medium): surface plots of the 
reconstructed variance σ2 by using different number of eigenfunctions. (a) N = 1.  
(b) N = 2. (c) N = 3. (d) N = 10.
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Figure 4. Example 2 (inhomogeneous background medium): (left) surface plot of the 
exact mean g; (right) surface plot of the exact variance σ2.

Figure 5. Example 2 (inhomogeneous background medium): surface plots of the 
reconstructed mean g by using different number of eigenfunctions. (a) N = 15.  
(b) N = 30. (c) N = 45. (d) N = 60.
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points on the circle with radius 2, i.e. x1 = 2 cos θj, x2 = 2 sin θj, θj = jπ/20, i = 0, 1, . . . , 39. 
The corresponding eigenvalue problem is

{
∆vn + κ2

n(1 + q)vn = 0 in B2,
vn = 0 on ∂B2.

where n = 1, 2, . . . , N . Due to the inhomogeneous background medium, we solve the above 
eigenvalue problem numerically since the analytic solution is not available. A total number 
of N wavenumbers are used to reconstruct the mean g and the variance σ2. The regularization 
parameter is µ = 1.0 × 10−7 and the total number of the outer loop for the Kaczmarz method 
is 5. Figures 5 and 6 plot the reconstructions of the mean g and the variance σ2, respectively, 
at a different number of N.

5. Conclusion

We have studied the inverse random source scattering problem in an inhomogeneous back-
ground medium, where the wave propagation is governed by stochastic Helmholtz equation. 

Figure 6. Example 2 (inhomogeneous background medium): surface plots of the 
reconstructed variance σ2 by using different number of eigenfunctions. (a) N = 5.  
(b) N = 8. (c) N = 10. (d) N = 15.
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As a source, the electric current density is assumed to be a random function driven by additive 
white noise. Under a suitable regularity assumptions of the relative electric permit tivity q, the 
mean, g and the standard deviation σ of the source, the direct scattering problem is shown con-
structively to have a unique mild solution. Using the corresponding eigenvalue problem for 
the Helmholtz equation, we deduce Fredholm integral equations which connect the unknown 
source with the known measurement of the radiated wave field for the inverse scattering prob-
lem to reconstruct the mean and the variance of the random source. We present a regularized 
block Kaczmarz method to solve the ill-posed integral equations by using multiple frequency 
data. Numerical examples, one homogeneous background medium and one inhomogeneous 
background medium, are shown to demonstrate the validity and effectiveness of the proposed 
method.
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