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Abstract. This paper is concerned with the acoustic scattering of a point incident wave by a sound
hard obstacle embedded in a two-layered lossy background medium which is separated by an infinite
rough surface. Given the point incident wave, the direct scattering problem is to determine the
acoustic wave field for the given obstacle and infinite rough surface; the inverse scattering problem is
to determine both the obstacle and the infinite rough surface from the reflected and transmitted wave
fields measured on two plane surfaces enclosing the structure. For the direct scattering problem,
the well-posedness is studied by using the the method of boundary integral equations. For the
inverse scattering problem, we prove that the obstacle and the infinite rough surface can be uniquely
determined by the measured wave fields corresponding to a single point incident wave. To prove the
local stability, the domain derivative of the wave field with respect to the change of the shapes of the
obstacle and the infinite rough surface is examined. The local stability indicates that the Hausdorff
distance of two domains is bounded above by the distance of corresponding wave fields if the two
domains are close enough.

1. Introduction

This paper is concerned with the scattering of a point incident wave by an obstacle embedded
in a two-layered background medium which is separated by an infinite rough surface. An obstacle
is an impenetrable object which has a compact support; an infinite rough surface is referred to as
a nonlocal perturbation of an infinite plane surface such that the whole surface lies within a finite
distance of the original plane. Given the point incident wave, the direct scattering problem is to
determine the wave field for the known composite medium consisting of the obstacle and the infinite
rough surface; the inverse scattering problem is to determine simultaneously the obstacle and the
infinite rough surface by the measured wave fields. The scattering problems arise in diverse scientific
areas, such as modeling the optical scattering from obstacles and interfaces of materials in nano-
optics, the acoustic wave propagation over the ground and sea surfaces in remote sensing, and the
radar object recognition above the sea surface or detection of underwater mines.

Specifically, we study the scattering of a time-harmonic acoustic wave, which is generated by a
point source, by a sound hard obstacle and an infinite rough surface. The space above and below
the infinite rough surface is filled with a homogeneous and isotropic energy absorbing material,
respectively. The wave propagation is modeled by the two-dimensional Helmholtz equation. The
scattering problems in such a composite medium are challenging due to the unbounded nature of
the interface and the nonlinearity associated with the inverse problem. These scattering problems
have received considerable attention and a large amount of work have been done. The recent de-
velopments can be found in [25, 26, 33] on the shape and impedance parameter reconstruction in
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the inverse obstacle scattering problems. The characterization of domain derivatives with respect to
local boundary disturbance were studied by Hettlich [20], Hiptmair and Li [22], Kirsch [23], Li [28],
Potthast [38]. However, few results are available for rigorous analysis of the obstacle scattering
problem in unbounded structures. Our goal is to examine mathematically both the direct and the
inverse scattering problems in such a setting.

It is worth mentioning that considerable results are available for the scattering problems in un-
bounded structures. For unbounded periodic surfaces, many mathematical analysis and numerical
computation have been done for both the direct and inverse scattering problems, see Bao [10], Bao,
Cui and Li [11], Nédélec and Starling [37], Bao et al. [5] and references cited therein. For the lo-
cal rough surface scattering problems, Li [28] considered an inverse cavity problem for Maxwell’s
equations, and showed the global uniqueness and a local stability to reconstruct the cavity wall. Am-
mari et al. [1] studied the method of integral equations for the electromagnetic scattering from open
cavities. An optimization method was introduced in [3] to recover a local rough surface. In [4], a con-
tinuation approach over the wave frequency was developed for reconstructing a local rough surface.
We refer to Bao et al. [2], Bao and Sun [6], Bao and Lai [9], Li et al. [30], Kress and Tran [24], Zhang
and Zhang [42] for various mathematical and numerical methods to solve the local rough surface
scattering problems. For the general unbounded non-periodic rough surfaces, the usual Sommerfeld
or Silver–Müller radiation condition is not valid any more. Some appropriate radiation condition
needs to be given as a part of the boundary value problem. In [16,17,41], Chandler-Wilde and Zhang
proposed an upward going radiation condition to replace the usual Sommerfeld radiation condition
for the scattering problem by rough surfaces and inhomogeneous layers. The well-posedness was es-
tablished by Chandler-Wilde and Monk [18] for the two-dimensional Helmholtz equation by using a
variational approach. Chandler-Wilde et al. [19] studied the well-posedness for the three-dimensional
rough surface scattering problem by the method of boundary integral equations. By introducing a
transparent boundary condition, Li et al. [27, 31] proved the existence and uniqueness of the weak
solution for the electromagnetic scattering problem in an unbounded structure. Lu and Zhang [35]
studied the direct and inverse scattering problem by an unbounded rough interface with buried
obstacles. When the scattering profile is a sufficiently small and smooth deformation of a plane
surface, the analytical solution was introduced in [29] by using a boundary perturbation technique
combined with the transformed field expansion. He et al. proposed a spectral method in [21] to
solve the unbounded rough surface scattering problem. Zhang et al. [43] developed a regularized
conjugate gradient method with fast multipole acceleration for a fractal rough surface scattering
problem. We refer to [7,8,12,13,32,34,40] for some mathematical and numerical studies on related
inverse scattering problems.

In this work, we introduce an integral radiation condition for the direct scattering problem. The
asymptotic behaviour of Green’s function is presented. Based on some energy estimates, the unique-
ness of the solution is established for the direct scattering problem. The method of boundary integral
equations is employed to address the existence of the direct scattering problem. The direct approach
is presented to drive the system of boundary integral equations and its well-posedness is discussed.
For the inverse problem, we prove that the obstacle and the infinite rough surface are uniquely
determined by the reflected and transmitted wave fields measured on the plane surfaces which are
above and below the infinite rough surface, respectively. The proof is based on a combination of
the Holmgren uniqueness and unique continuation. Based on the well-posedness arguments for the
direct scattering problem, we obtain the domain derivative of the wave field with respect to the
change of the shapes of the obstacle and the infinite rough surface. Moreover, a local stability is
established. It indicates that the Hausdorff distance of two domains, which are characterized by two
different obstacles and infinite rough surfaces, is bounded above by the distance of corresponding
wave fields if the two obstacles and infinite rough surfaces are close enough.

The outline of the paper is as follows. In Section 2, the model problem is introduced and some
asymptotic properties are given for the Green function. Section 3 addresses the solution of the direct
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Figure 1. Schematic of the scattering of a point source by an obstacle embedded in
a two-layered background medium which is separated by an infinite rough surface.

scattering problem. The uniqueness is proved. The boundary integral equations are presented and
the well-posedness is discussed. The inverse problem is studied in Sections 4 and 5. The global
uniqueness of the inverse problem is obtained in Section 4. Section 5 is devoted to the study of
the local stability. In particular, the existence and characterization of the domain derivative are
examined. As a consequence of the domain derivative, a local stability result is established. The
paper is concluded with some general remarks in Section 6.

2. Problem formulation

For Q ⊂ R2, denote by BC(Q) the set of bounded and continuous functions on Q. It is a Banach
space under the norm

‖φ‖∞ := sup
x∈Q
|φ(x)|.

For 0 < α ≤ 1, denote by C0,α(Q) the Banach space of functions φ ∈ BC(Q), which are Hölder
continuous with the exponent α. The norm is defined by

‖φ‖C0,α(Q) := ‖φ‖∞ + sup
x,y∈Q
x 6=y

|φ(x)− φ(y)|
|x− y|α .

Let C1,α(Q) = {φ ∈ BC(Q) ∩ C1(Q) : ∇φ ∈ C0,α(Q)2}, which is a Banach space under the norm

‖φ‖C1,α(Q) := ‖φ‖∞ + ‖∇φ‖C0,α(Q)2 .

Let νΓ be the unit normal vector on Γ directed into the exterior of D and let νS be the unit
normal vector on the boundary S pointing from region Ω2 to region Ω1. Define

VΓτ = νΓ × (V × νΓ) or VSτ = νS × (V × νS)

and

VΓν = νΓ · V or VSν = νS · V,
which are the tangential and the normal components of the vector V on Γ or S. Any vector V can
be decomposed into its tangential and normal components

V |Γ = VΓτ + VΓννΓ, V |S = VSτ + VSννS .

Denote by ∇Γτ and ∇Sτ the surface gradient on Γ and S, respectively. It is clear to note that

∇v|Γ = ∇Γτ v + (νΓ · ∇v)νΓ, ∇v|S = ∇Sτ v + (νS · ∇v)νS ,

if v is a smooth scalar function defined in a neighborhood of Γ ∪ S.
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Now let us specify the problem geometry, which is shown in Figure 1. Let S be an infinite rough
surface which can be described by

S = {x = (x1, x2) ∈ R2 : x2 = f(x1)},
where f ∈ C2(R). Let

f− = inf
x1∈R

f(x1), f+ = sup
x1∈R

f(x1).

We assume that

−∞ < h− ≤ f− < f+ ≤ h+ <∞,
where h− and h+ are two constants. Hence the surface S divides the whole space R2 into the upper
half space Ω+

1 and the lower half space Ω2, where

Ω+
1 = {x ∈ R2 : x2 > f(x1)}, Ω2 = {x ∈ R2 : x2 < f(x1)}.

Let D be a bounded obstacle with C2 boundary Γ. Without loss of generality, the obstacle is
assumed to be immersed in the upper half space Ω+

1 , i.e., D ⊂⊂ Ω+
1 . Define Ω1 = Ω+

1 \ D. The
results will be same for the case when D ⊂⊂ Ω2. Let Γj = {x ∈ R2 : x2 = hj}, j = 1, 2 be
the plane surface above the obstacle and below the infinite rough surface, respectively, where the
constants h1, h2 satisfy h2 < h− < h+ < h1. Define R1 = {x ∈ R2 : f(x1) < x2 < h1} and
R2 = {x ∈ R2 : h2 < x2 < f(x1)}. Let R = R1 ∪R2 ∪ S.

For a homogeneous medium in the region Ωj , j = 1, 2, the Green function is defined by the solution
of the following equation

∆Gj(x, y) + k2
jGj(x, y) = −δ(x− y), x ∈ Ωj , (2.1)

where kj is the wavenumber in Ωj and is assumed to satisfy

<k2
j > 0, =k2

j > 0, =kj > 0,

which accounts for energy absorbing media. Explicitly, we have

Gj(x, y) =
i

4
H

(1)
0 (kj |x− y|), (2.2)

where H
(1)
0 is the Hankel function of the first kind with order zero.

Let ui be a point incident wave located at xs ∈ R+
1 = {x ∈ R2 : x2 > h1}. It is given by

ui(x) = G1(x, xs) in Ω1. (2.3)

It follows from (2.1) that the incident wave satisfies

∆ui(x) + k2
1u

i(x) = −δ(x− xs) in Ω1. (2.4)

When the incident wave impinges the infinite rough surface S and the obstacle D, the scattered
wave us and the transmitted wave u2 will be generated in Ω1 and Ω2, respectively. Let u1 = ui+us.
It can be verified that the total field uj satisfies

∆u1(x) + k2
1u1(x) = −δ(x− xs), x ∈ Ω1 (2.5)

and

∆u2(x) + k2
2u2(x) = 0, x ∈ Ω2. (2.6)

The obstacle is assumed to be a sound hard, i.e.,

∂u1

∂νΓ
= 0 on Γ. (2.7)

The continuity conditions require that u1 and u2 satisfy

u1 = u2,
∂u1

∂νS
=
∂u2

∂νS
on S. (2.8)



INVERSE OBSTACLE SCATTERING IN AN UNBOUNDED STRUCTURE 5

Here
∂u1

∂νΓ
(x) := lim

σ→0+
νΓ(x) · ∇u1(x+ σνΓ(x)), x ∈ Γ

and
∂u1

∂νS
(x) := lim

σ→0+
νS(x) · ∇u1(x+ σνS(x)),

∂u2

∂νS
(x) := lim

σ→0+
νS(x) · ∇u2(x− σνS(x)), x ∈ S.

It was shown in [29] that a transparent boundary condition can be imposed on Γj , j = 1, 2:

∂uj
∂νΓj

= Tjuj + ρj on Γj , (2.9)

where νΓj is the unit normal vector on Γj , Tj is the boundary operator given by

(Tju)(x1, hj) =

∫

R
iβj(ξ)û(ξ, hj)e

iξx1dξ,

with
β2
j (ξ) = k2

j − ξ2, =βj(ξ) > 0

and

ρ1 =
∂ui

∂νΓj

− T1u
i, ρ2 = 0.

An appropriate radiation condition is needed since the problem is imposed in the open space
R2 \ D. Due to the infinite extend of the surface S, the usual Sommerfeld radiation condition is
not valid. We propose an integral radiation condition which corresponds to the lossy media where
=kj > 0, j = 1, 2:

lim
r→+∞

∫

∂B+
r

(
|us|2 +

∣∣∣∣
∂us

∂ν

∣∣∣∣
2
)

ds = 0, lim
r→+∞

∫

∂B−
r

(
|u2|2 +

∣∣∣∣
∂u2

∂ν

∣∣∣∣
2
)

ds = 0, (2.10)

where ν denote the unit normal vector on the boundary ∂Br directed into the exterior of Br(O).
Here Br(O) is a ball centered at the origin with radius r and boundary ∂Br = ∂B+

r ∪ ∂B−r , where
∂B+

r and ∂B−r denote the semi-circle above and below S, respectively.
Given the point incident field ui in (2.3), the direct scattering problem is to find u1 and u2 which

satisfy (2.5)–(2.8) and (2.10); the inverse scattering problem is to determine simultaneously the
boundary of the obstacle Γ and the infinite rough surface S from the measured wave field uj on
Γj , j = 1, 2. We study both of the direct and inverse scattering problems.

Denote by Tj the set of functions φ ∈ C2(Ωj)∩C1,α(Ωj), j = 1, 2. More specifically, the scattering
problem can be stated as follows.

Problem 2.1. Given the incident field ui in (2.3), the direct scattering problem is to determine
us ∈ T1 and u2 ∈ T2 such that

(i) The total fields u1 = us + ui and u2 satisfy (2.5) and (2.6), respectively;
(ii) The total field u1 satisfies the sound hard boundary condition (2.7);

(iii) The total fields u1 and u2 satisfy the transmission boundary conditions (2.8);
(iv) The scattered fields us and the transmitted fields u2 satisfy the radiation conditions (2.10).

The following result gives the asymptotic behaviour of the Green function and plays an important
role when formulating the boundary integral equations for the direct scattering problem.

Lemma 2.2. For each fixed y ∈ Ωj , j = 1, 2, the Green function Gj admits the asymptotic behaviour

|Gj(x, y)|,
∣∣∣∣
∂Gj(x, y)

∂ν(y)

∣∣∣∣,
∣∣∣∣
∂2Gj(x, y)

∂ν(x)∂ν(y)

∣∣∣∣ ≤ C
(

exp (−1
2=(kj)|x|)
|x| 12

)
, |x| → ∞,

where C is a constant independent of x and y.
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Proof. A simple calculation yields

∂Gj(x, y)

∂xl
= −∂Gj(x, y)

∂yl
= − ikj(xl − yl)

4|x− y| H
(1)
1 (kj |x− y|), l = 1, 2,

and

∂2Gj(x, y)

∂xm∂yl
=

ikj
4

[
kj(xm − ym)(xl − yl)

|x− y|2 H
(1)
0 (kj |x− y|) +

δml
|x− y|H

(1)
1 (kj |x− y|)

− 2
(xm − ym)(xl − yl)

|x− y|3 H
(1)
1 (kj |x− y|)

]
, l,m = 1, 2,

where H
(1)
1 is the Hankel function of the first kind with order one and δml is the Kronecker delta

function. Using the asymptotic expansion

H(1)
µ (kj |x− y|) '

√
2

πkj |x− y|
exp

(
i
(
kj |x− y| − µ

π

2
− π

4

))

=
2 exp

(
− i(µπ2 + π

4 )
)

√
2πkj

[
exp (ikj |x− y|)
|x− y| 12

]
, |x− y| → +∞, µ = 0, 1,

we have

|Gj(x, y)|,
∣∣∣∣
∂Gj(x, y)

∂ν(y)

∣∣∣∣,
∣∣∣∣
∂2Gj(x, y)

∂ν(x)∂ν(y)

∣∣∣∣ ≤ C1

[
exp (−=(kj)|x− y|)

|x− y| 12

]
, |x− y| → +∞, (2.11)

where C1 is a constant independent of x and y.

For each fixed y ∈ Ωj , j = 1, 2, we have x̂ · y < |x|
2 for |x| → ∞, where x̂ = x/|x|. Since

|x− y| =
√
|x|2 − 2x · y + |y|2 = |x| − x̂ · y +O

(
1

|x|

)
≥ |x|

2
+O

(
1

|x|

)
, |x| → ∞, (2.12)

we conclude from =(kj) > 0 and (2.11)–(2.12) that there exists a constant C independent of x, y
such that

|Gj(x, y)|,
∣∣∣∣
∂Gj(x, y)

∂ν(y)

∣∣∣∣,
∣∣∣∣
∂2Gj(x, y)

∂ν(x)∂ν(y)

∣∣∣∣ ≤ C
(

exp (−1
2=(kj)|x|)
|x| 12

)
, |x| → ∞,

which completes the proof. �

3. The direct scattering problem

In this section, we discuss the well-posedness of the direct scattering problem. First, the problem
is shown to have a unique solution. The method of boundary integral equations is used to address
the existence of the solution.

3.1. Uniqueness.

Theorem 3.1. The direct scattering problem has at most one solution.

Proof. Suppose that (v1, v2) and (ṽ1, ṽ2) are two solutions of Problem 2.1. Let u1 = v1 − ṽ1 and
u2 = v2 − ṽ2, then uj , j = 1, 2 satisfy the homogeneous Helmholtz equation ∆uj + k2

juj = 0 with

conditions (2.7)–(2.8) and (2.10).
Denote Ωr = (Br ∩ Ω1) with boundary ∂Ωr = ∂B+

r ∪ Γ ∪ Sr, where ∂B+
r = ∂Br ∩ Ω1 and

Sr = S ∩Br. For each fixed x ∈ Ωr, applying the Green first theorem to u1 in Ωr, we have
∫

Ωr

[
|∇u1|2 + u1(∆u1)

]
dx =

∫

∂Ωr

u1
∂u1

∂ν
dsx =

(∫

∂B+
r

+

∫

Γ
+

∫

Sr

)
u1
∂u1

∂ν
dsx, (3.1)
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where ν = ν(x) stands for the unit normal vector at x ∈ ∂Ωr pointing towards the exterior of Ωr.
Letting r → +∞, we have from (2.7), (2.8), (2.10) and (3.1) that

∫

Ω1

[
|∇u1|2 + u1(∆u1)

]
dx =

∫

S
u1
∂u1

∂ν
dsx +

∫

Γ
u1
∂u1

∂ν
dsx

= −
∫

S
u1
∂u1

∂νS
dsx −

∫

Γ
u1
∂u1

∂νΓ
dsx

= −
∫

S
u1
∂u1

∂νS
dsx, (3.2)

where νΓ denotes the unit normal vector on the boundary Γ directed into the exterior of D, νS(x)
denotes the unit normal vector at x ∈ S pointing from region Ω2 to region Ω1.

Using (3.2) and the homogeneous Helmholtz equation ∆u1 + k2
1u1 = 0, yields

∫

Ω1

[
|∇u1|2 + u1(∆u1)

]
dx =

∫

Ω1

(
|∇u1|2 − k2

1|u1|2
)

dx

=

∫

Ω1

(
|∇u1|2 −<(k2

1)|u1|2 + i=(k2
1)|u1|2

)
dx

= −
∫

S
u1
∂u1

∂νS
dsx, (3.3)

which gives by taking the imaginary part of (3.3) that

−=
[ ∫

S
u1
∂u1

∂νS
dsx

]
= =(k2

1)

∫

Ω1

|u1|2dx ≥ 0. (3.4)

Similarly, we obtain

=
[ ∫

S
u2
∂u2

∂νS
dsx

]
= =(k2

2)

∫

Ω2

|u2|2dx ≥ 0. (3.5)

Noting the boundary conditions (2.8), we have
∫

S
u1
∂u1

∂νS
dsx =

∫

S
u2
∂u2

∂νS
dsx. (3.6)

It follows immediately from combining (3.4)–(3.6) that

=(k2
1)

∫

Ω1

|u1|2dx+ =(k2
2)

∫

Ω2

|u2|2dx = 0. (3.7)

With the aid of =(k2
j ) > 0, j = 1, 2, we have from (3.7) that

∫

Ω1

|u1|2dx =

∫

Ω2

|u2|2dx = 0,

which implies that v1 = ṽ1 in Ω1 and v2 = ṽ2 in Ω2. �

3.2. Potential operators. We introduce several potential operators in order to derive the boundary
integral equations for the direct scattering problem.

On the infinite rough surface S, we define the single-layer potential operator SS : C0,α(S) →
C1,α(S) and the double-layer potential operator KS : C1,α(S)→ C1,α(S) by

(SSφ)(x) =

∫

S

(
G1(x, y)−G2(x, y)

)
φ(y)dsy, x ∈ S,

(KSφ)(x) =

∫

S

(
∂G1(x, y)

∂νS(y)
− ∂G2(x, y)

∂νS(y)

)
φ(y)dsy, x ∈ S,
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where φ is called the density. Define the normal derivative operators K∗S : C0,α(S) → C1,α(S) and
TS : C1,α(S)→ C0,α(S) by

(K∗Sφ)(x) =

∫

S

(
∂G1(x, y)

∂νS(x)
− ∂G2(x, y)

∂νS(x)

)
φ(y)dsy, x ∈ S,

(TSφ)(x) =
∂

∂νS(x)

∫

S

(
∂G1(x, y)

∂νS(y)
− ∂G2(x, y)

∂νS(y)

)
φ(y)dsy, x ∈ S.

On Γ, we define the double-layer potential operator KΓ : C0,α(Γ)→ C1,α(Γ) by

(KΓφ)(x) = 2

∫

Γ

∂G1(x, y)

∂νΓ(y)
φ(y)dsy, x ∈ Γ,

and the normal derivative operator K∗Γ : C0,α(Γ)→ C1,α(Γ) by

(K∗Γφ)(x) = 2

∫

Γ

∂G1(x, y)

∂νΓ(x)
φ(y)dsy, x ∈ Γ.

Let SA = {x ∈ S : |x1| ≤ A}, where A > 0 is a constant. Define the truncated single-layer
potential operator SA : C0,α(SA) → C1,α(S) and the truncated double-layer potential operator
KA : C1,α(SA)→ C1,α(S) by

(SAφ)(x) =

∫

SA

(
G1(x, y)−G2(x, y)

)
φ2(y)dsy, x ∈ S,

(KAφ)(x) =

∫

SA

(
∂G1(x, y)

∂νS(y)
− ∂G2(x, y)

∂νS(y)

)
φ1(y)dsy, x ∈ S.

Similarly, we define the truncated normal derivative operators K∗A : C0,α(SA) → C1,α(S) and TA :
C1,α(SA)→ C0,α(S) by

(K∗Aφ)(x) =

∫

SA

(
∂G1(x, y)

∂νS(x)
− ∂G2(x, y)

∂νS(x)

)
φ2(y)dsy, x ∈ S,

(TAφ)(x) =

∫

SA

(
∂2G1(x, y)

∂νS(x)∂νS(y)
− ∂2G2(x, y)

∂νS(x)∂νS(y)

)
φ1(y)dsy, x ∈ S.

3.3. Boundary integral equations. In this section, we present the direct approach to derive the
boundary integral equations for the direct scattering problem.

Let Br = {x ∈ R2 : |x| < r}. Denote Ωr = Br ∩Ω1 with the boundary ∂Ωr = ∂B+
r ∪Γ∪Sr, where

∂B+
r = ∂Br ∩Ω1 and Sr = S ∩Br. For each fixed x ∈ Ωr, applying the Green second theorem to u1

and G1 in the region Ωr, we obtain

∫

Ωr

[
u1(y)∆G1(x, y)−G1(x, y)∆u1(y)

]
dy

=

∫

∂Ωr

[
u1(y)

∂G1(x, y)

∂ν(y)
− ∂u1(y)

∂ν(y)
G1(x, y)

]
dsy, x ∈ Ω1, (3.8)

where ν(y) stands for the unit normal vector at y ∈ ∂Ωr pointing towards the exterior of Ωr.
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It follows from (2.1), (2.3), and (2.5) that
∫

Ωr

[
u1(y)∆G1(x, y)−G1(x, y)∆u1(y)

]
dy

=

∫

Ωr

u1(y)[∆G1(x, y) + k2
1G1(x, y)]dy −

∫

Ωr

[∆u1(y) + k2
1u1(y)]G1(x, y)dy

= −
∫

Ωr

δ(x− y)u1(y)dy −
∫

Ωr

[−δ(y − xs)]G1(x, y)dy

= −u1(x) +G1(x, xs) = −[u1(x)− ui(x)]. (3.9)

Letting r → +∞ and using (3.8)–(3.9), we have

u1(x)− ui(x) = − lim
r→+∞

∫

∂Ωr

[
u1(y)

∂G1(x, y)

∂ν(y)
− ∂u1(y)

∂ν(y)
G1(x, y)

]
dsy

= −
(∫

S
+

∫

Γ
+ lim
r→+∞

∫

∂B+
r

)[
u1(y)

∂G1(x, y)

∂ν(y)
− ∂u1(y)

∂ν(y)
G1(x, y)

]
dsy. (3.10)

It follows from Lemma 2.2 and the radiation conditions (2.10) that we obtain
∣∣∣∣
∫

∂B+
r

[
u1(y)

∂G1(x, y)

∂ν(y)
− ∂u1(y)

∂ν(y)
G1(x, y)

]
dsy

∣∣∣∣

≤
[ ∫

∂B+
r

|u1(y)|2dsy

] 1
2
[ ∫

∂B+
r

∣∣∣∣
∂G1(x, y)

∂ν(y)

∣∣∣∣
2

dsy

] 1
2

+

[ ∫

∂B+
r

∣∣∣∣
∂u1(y)

∂ν(y)

∣∣∣∣
2

dsy

] 1
2
[ ∫

∂B+
r

|G1(x, y)|2dsy

] 1
2

→ 0, r → +∞. (3.11)

Using (3.10)–(3.11) and the condition (ii) in Problem 2.1, and letting r → +∞, we have for each
fixed x ∈ Ω1 that

u1(x)− ui(x)

= −
∫

S

[
u1(y)

∂G1(x, y)

∂ν(y)
− ∂u1(y)

∂ν(y)
G1(x, y)

]
dsy −

∫

Γ

[
u1(y)

∂G1(x, y)

∂ν(y)
− ∂u1(y)

∂ν(y)
G1(x, y)

]
dsy

=

∫

S

[
u1(y)

∂G1(x, y)

∂νS(y)
− ∂u1(y)

∂νS(y)
G1(x, y)

]
dsy +

∫

Γ
u1(y)

∂G1(x, y)

∂νΓ(y)
dsy,

which gives

u1(x) = ui(x) +

∫

S

[
∂G1(x, y)

∂νS(y)
u1(y)−G1(x, y)

∂u1(y)

∂νS(y)

]
dsy

+

∫

Γ

∂G1(x, y)

∂νΓ(y)
u1(y)dsy, x ∈ Ω1, (3.12)

Noting the continuity conditions (2.8), we may apply the second Green theorem to u2 and G2 in Ω2

and obtain

u2(x) = −
∫

S

[
∂G2(x, y)

∂νS(y)
u1(y)−G2(x, y)

∂u1(y)

∂νS(y)

]
dsy, x ∈ Ω2. (3.13)

It follows from the jump conditions of the single- and double-layer potentials and (3.12) that the
field u1 satisfy the boundary integral equation

u1(x) =2

∫

Γ

∂G1(x, y)

∂νΓ(y)
u1(y)dsy + 2

∫

S

[
∂G1(x, y)

∂νS(y)
u1(y)−G1(x, y)

∂u1(y)

∂νS(y)

]
dsy

+ 2ui(x), x ∈ Γ. (3.14)
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In (3.12) and (3.13), using the jump conditions of the single- and double-layer potentials and the
continuity condition u1|S = u2|S in (2.8), we get the boundary integral equation

u1(x) =

∫

S

[(
∂G1(x, y)

∂νS(y)
− ∂G2(x, y)

∂νS(y)

)
u1(y)−

(
G1(x, y)−G2(x, y)

)∂u1(y)

∂νS(y)

]
dsy

+

∫

Γ

∂G1(x, y)

∂νΓ(y)
u1(y)dsy + ui(x), x ∈ S. (3.15)

Note that the boundary integral equations (3.14)–(3.15) involve the unknown ∂u1
∂νS

on S. It requires

to take the normal derivatives of (3.12) and (3.13) on S, which leads to boundary integral equations
with hyper-singular kernels. We combine the normal derivatives of (3.12) and (3.13) to avoid this
issue. Taking the normal derivatives of (3.12) and (3.13) on S and adding them together, using the

jump conditions of the single- and double-layer potentials, and noting the jump condition ∂u1
∂νS

∣∣
S

=
∂u2
∂νS

∣∣
S

in (2.8), we have the boundary integral equation

∂u1(x)

∂νS(x)
=

∫

S

[(
∂2G1(x, y)

∂νS(x)∂νS(y)
− ∂2G2(x, y)

∂νS(x)∂νS(y)

)
u1(y)−

(
∂G1(x, y)

∂νS(x)
− ∂G2(x, y)

∂νS(x)

)
∂u1(y)

∂νS(y)

]
dsy

+

∫

Γ

∂2G1(x, y)

∂νS(x)∂νΓ(y)
u1(y)dsy +

∂ui(x)

∂νS(x)
, x ∈ S. (3.16)

Theorem 3.2. Let us ∈ T1, u2 ∈ T2 have the integral representations (3.12)–(3.13) and satisfy the
boundary integral equations (3.14)–(3.16). Then (u1, u2) are the solutions of Problem 2.1.

Proof. We only show the proof for the field u1. The corresponding result can be similarly proved for
the field u2. If the field us ∈ T1 has the integral representation (3.12), then we have

us(x) =

∫

S

[
∂G1(x, y)

∂νS(y)
u1(y)−G1(x, y)

∂u1(y)

∂νS(y)

]
dsy +

∫

Γ

∂G1(x, y)

∂νΓ(y)
u1(y)dsy, x ∈ Ω1. (3.17)

Noting that for any x ∈ Ω1 and y ∈ S ∪ Γ, we have x 6= y. Thus, from (2.1) and (3.17), we obtain
that

∆us(x) + k2
1u

s(x)

=

∫

S

(
u1(y)

∂

∂νS
(∆xG1(x, y) + k2

1G1(x, y))− ∂u1(y)

∂νS
(∆xG1(x, y) + k2

1G1(x, y))

)
dsy

+

∫

Γ
u1(y)

∂

∂νΓ
(∆xG1(x, y) + k2

1G1(x, y))dsy = 0, x ∈ Ω1. (3.18)

It follows from (2.4) and (3.18) that

∆u1 + k2
1u1 = (∆us + k2

1u
s) + (∆ui + k2

1u
i) = −δ(x− xs) in Ω1. (3.19)



INVERSE OBSTACLE SCATTERING IN AN UNBOUNDED STRUCTURE 11

Furthermore, with the help of Lemma 2.2 and (3.17), we deduce that

|us(x)| ≤ C
[ ∫

S
|G1(x, y)|

∣∣∣∣
∂u1(y)

∂νS(y)

∣∣∣∣dsy +

∫

S

∣∣∣∣
∂G1(x, y)

∂νS(y)

∣∣∣∣|u1(y)|dsy

+

∫

Γ
|u1(y)|

∣∣∣∣
∂G1(x, y)

∂νΓ(y)

∣∣∣∣dsy
]

≤ C
[∥∥∥∥
∂u1

∂νS

∥∥∥∥
C0,α(S)

∫

S
|G1(x, y)|dsy + ‖u1‖C0,α(S)

∫

S

∣∣∣∣
∂G1(x, y)

∂νS(y)

∣∣∣∣dsy

+ ‖u1‖C0,α(Γ)

∫

Γ

∣∣∣∣
∂G1(x, y)

∂νΓ(y)

∣∣∣∣dsy
]

≤ C
[

lim
r→+∞

∫

Sr

|G1(x, y)|dsy + lim
r→+∞

∫

Sr

∣∣∣∣
∂G1(x, y)

∂νS(y)

∣∣∣∣dsy

+

∫

Γ

∣∣∣∣
∂G1(x, y)

∂νΓ(y)

∣∣∣∣dsy
]
. (3.20)

For each fixed r ≥ 1, as |x| → +∞, by Lemma 2.2, we have

∫

Sr

|G1(x, y)|dsy ≤ C
∫

Sr

∣∣∣∣
exp (1

2 ik1|x− y|)
|x− y| 12

exp

(
1

2
ik1|x− y|

)∣∣∣∣dsy

≤ C exp (−1
4=(k1)|x|)
|x| 12

∫ r

0
exp

(
−1

2
=(k1)y1

)
dy1

≤ C exp (−1
4=(k1)|x|)
|x| 12

(
1− exp

(
−r

2
=(k1)

))
. (3.21)

Similarly, we may show that
∫

Sr

∣∣∣∣
∂G1(x, y)

∂νS(y)

∣∣∣∣dsy ≤ C
exp (−1

4=(k1)|x|)
|x| 12

(
1− exp

(
−r

2
=(k1)

))
, (3.22)

∫

Γ

∣∣∣∣
∂G1(x, y)

∂νΓ(y)

∣∣∣∣dsy ≤ C
exp (−1

2=(k1)|x|)
|x| 12

. (3.23)

Combining (3.20)–(3.23) and noting =(k1) > 0, we obtain

|us(x)| ≤ C
(

exp (−1
4=(k1)|x|)
|x| 12

)
, |x| → +∞

and
∫

∂B+
r

|us|2dsx ≤ C
∫

∂B+
r

exp (−1
2=(k1)|x|)
|x| dsx

≤ C
(

exp (−1
2=(k1)r)

r
2πr

)
≤ C exp

(
−1

2
=(k1)r

)
→ 0, r → +∞,

where C is a positive constant independent of r.
Similarly, we can show that

lim
r→+∞

∫

∂B+
r

∣∣∣∣
∂us(x)

∂ν(x)

∣∣∣∣
2

dsx = lim
r→+∞

∫

∂B−
r

|u2|2dsx = lim
r→+∞

∫

∂B−
r

∣∣∣∣
∂u2(x)

∂ν(x)

∣∣∣∣
2

dsx = 0.
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Since u1 satisfies (3.19) and the above radiation condition, applying the Green second theorem to
u1 and G1 in the region Ω1, using the jump conditions of the single- and double-layer potentials, we
obtain the boundary integral equation

u1(x) = 2

∫

S

[
∂G1(x, y)

∂νS(y)
u1(y)−G1(x, y)

∂u1(y)

∂νS(y)

]
dsy

+ 2

∫

Γ

[
∂G1(x, y)

∂νΓ(y)
u1(y)−G1(x, y)

∂u1(y)

∂νΓ(y)

]
dsy + 2ui(x), x ∈ Γ. (3.24)

From (3.14) and (3.24), it is easy to verify that ∂u1
∂νΓ

∣∣
Γ

= 0.

In (3.12) and (3.13), using the jump conditions of the single- and double-layer potentials, we get
the boundary integral equations

1

2
u1(x) = ui(x) +

∫

S

[
∂G1(x, y)

∂νS(y)
u1(y)−G1(x, y)

∂u1(y)

∂νS(y)

]
dsy

+

∫

Γ

∂G1(x, y)

∂νΓ(y)
u1(y)dsy, x ∈ S, (3.25)

and

u2(x)− 1

2
u1(x) = −

∫

S

[
∂G2(x, y)

∂νS(y)
u1(y)−G2(x, y)

∂u1(y)

∂νS(y)

]
dsy, x ∈ S. (3.26)

Now adding (3.25) and (3.26) gives

u2(x) =

∫

S

[(
∂G1(x, y)

∂νS(y)
− ∂G2(x, y)

∂νS(y)

)
u1(y)−

(
G1(x, y)−G2(x, y)

)∂u1(y)

∂νS(y)

]
dsy

+

∫

Γ

∂G1(x, y)

∂νΓ(y)
u1(y)dsy + ui(x), x ∈ S. (3.27)

From (3.15) and (3.27), it is easy to verify that u1|S = u2|S .
Taking the normal derivatives of (3.12) and (3.13) on S, using the jump conditions of the single-

and double-layer potentials, we get the boundary integral equations

1

2

∂u1(x)

∂νS(x)
=
∂ui(x)

∂νS(x)
+

∫

S

[
∂2G1(x, y)

∂νS(x)∂νS(y)
u1(y)− ∂G1(x, y)

∂νS(x)

∂u1(y)

∂νS(y)

]
dsy

+

∫

Γ

∂2G1(x, y)

∂νS(x)∂νΓ(y)
u1(y)dsy, x ∈ S, (3.28)

and

∂u2(x)

∂νS(x)
− 1

2

∂u1(x)

∂νS(x)
= −

∫

S

[
∂2G2(x, y)

∂νS(x)∂νS(y)
u1(y)− ∂G2(x, y)

∂νS(x)

∂u1(y)

∂νS(y)

]
dsy, x ∈ S. (3.29)

Adding them together, we have the boundary integral equation

∂u2(x)

∂νS(x)
=

∫

S

[(
∂2G1(x, y)

∂νS(x)∂νS(y)
− ∂2G2(x, y)

∂νS(x)∂νS(y)

)
u1(y)−

(
∂G1(x, y)

∂νS(x)
− ∂G2(x, y)

∂νS(x)

)
∂u1(y)

∂νS(y)

]
dsy

+

∫

Γ

∂2G1(x, y)

∂νS(x)∂νΓ(y)
u1(y)dsy +

∂ui(x)

∂νS(x)
, x ∈ S. (3.30)

From (3.16) and (3.30), it is easy to verify that ∂u1
∂νS

∣∣
S

= ∂u2
∂νS

∣∣
S

. �

The system of boundary integral equations (3.14)–(3.16) can be written in the operator form


I−KΓ −KS,Γ SS,Γ
−KΓ,S I−KS SS
−TΓ,S −TS I + K∗S





u1|Γ
u1|S
∂u1
∂νS

∣∣
S


 =




2ui|Γ
ui|S
∂ui

∂νS

∣∣
S


 , (3.31)
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where I is the identity operator and the potential operators

(SS,Γφ)(x) = 2

∫

S
G1(x, y)φ(y)dsy, (KS,Γφ)(x) = 2

∫

S

∂G1(x, y)

∂νS(y)
φ(y)dsy, x ∈ Γ,

and

(KΓ,Sφ)(x) =

∫

Γ

∂G1(x, y)

∂νΓ(y)
φ(y)dsy, (TΓ,Sφ)(x) =

∫

Γ

∂2G1(x, y)

∂νS(x)∂νΓ(y)
φ(y)dsy, x ∈ S,

have continuous kernels, which decay exponentially. It follows from [14, Theorem 1.10] that these
operators are compact.

3.4. Solvability. Since the kernels of the operators KΓ,K
∗
Γ,SA,KA,K

∗
A and TA are weakly singular

and decay exponentially, it follows from [14, Theorem 1.11] and [14, Theorem 2.7] that these integral
operators are compact. Based on the compactness of the truncated operators, the integral operators
SS ,KS ,K

∗
S and TS are compact as described in the following theorem.

Lemma 3.3. The integral operators SS ,KS ,K
∗
S and TS are compact.

Proof. Since the proofs are similar for SS ,KS ,K
∗
S and TS , we shall only show the details for the

operator SS . For each fixed x ∈ S, we have

(SSφ2)(x)− (SAφ2)(x) =

∫

S\SA

(
G1(x, y)−G2(x, y)

)
φ2(y)dsy

=

(∫ +∞

A
+

∫ −A

−∞

)
Ψ(x, y1)dy1 := I1 + I2, (3.32)

where

Ψ(x, y1) = [(G1(x, y)−G2(x, y))φ2(y)|y2=f(y1)](1 + f2
y1

)1/2.

By Lemma 2.2, for each fixed x ∈ S, when A→ +∞, we have |x1 −A| → +∞ and

|I1| ≤
∫ +∞

A
|Ψ(x, y1)|dy1 ≤ C

∫ +∞

A
|(G1(x, y)−G2(x, y))φ2(y)|y2=f(y1)dy1

≤ C sup
y∈S
|φ2(y)|

∫ +∞

A
|G1(x, y)−G2(x, y)|y2=f(y1)dy1

≤ C‖φ2‖C0,α(S)

∫ +∞

A

(
exp (−1

2=(k1)|y|)
|y| 12

∣∣∣∣
y2=f(y1)

+
exp (−1

2=(k2)|y|)
|y| 12

∣∣∣∣
y2=f(y1)

)
dy1

≤ C‖φ2‖C0,α(S)

∫ +∞

A

(
exp (−1

2 k̂|y1|)
|y1|

1
2

)
dy1

≤ C‖φ2‖C0,α(S)

(
1√
A

)∫ +∞

A
exp

(
−1

2
k̂y1

)
dy1

= C‖φ2‖C0,α(S)

(
2

k̂

)(
1√
A

exp

(
−A

2
k̂

))
→ 0, A→ +∞, (3.33)

where C > 0 is a constant but may change from step by step, k̂ = min{=(k1),=(k2)} > 0. Similarly,
we may also show that

|I2| ≤ C‖φ2‖C0,α(S)

(
1√
A

exp

(
−A

2
k̂

))
→ 0, A→ +∞. (3.34)
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Combining (3.32)–(3.34), we obtain

|(SSφ2)(x)− (SAφ2)(x)| ≤ |I1|+ |I2|

≤ C‖φ2‖C0,α(S)

(
1√
A

exp

(
−A

2
k̂

))
→ 0, A→ +∞,

which implies that

‖SS − SA‖∞ =

sup
x∈S
|(SSφ2)(x)− (SAφ2)(x)|

‖φ2‖C0,α(S)
≤ C

(
1√
A

exp

(
−A

2
k̂

))
→ 0, A→ +∞. (3.35)

Note that

[∇x(SSφ2)(x)]− [∇x(SAφ2)(x)] =

∫

S\SA

(
∇xG1(x, y)−∇xG2(x, y)

)
φ2(y)dsy

=

(∫ +∞

A
+

∫ −A

−∞

)
∇xΨ(x, y1)dy1,

where

∇xΨ(x, y1) = [(∇xG1(x, y)−∇xG2(x, y))φ2(y)|y2=f(y1)](1 + f2
y1

)1/2.

For each fixed x ∈ S, using Lemma 2.2 and repeating a proof similar to (3.33) and (3.34), we obtain

|[∇x(SSφ2)(x)]− [∇x(SAφ2)(x)]| ≤ C‖φ2‖C0,α(S)

(
1√
A

exp

(
−A

2
k̂

))
→ 0, A→ +∞,

which implies that

‖∇xSS −∇xSA‖∞ =

sup
x∈S
|[∇x(SSφ2)(x)]− [∇x(SAφ2)(x)]|

‖φ2‖C0,α(S)

≤ C
(

1√
A

exp

(
−A

2
k̂

))
→ 0, A→ +∞. (3.36)

For each fixed x, x̃ ∈ S and x 6= x̃, we have

∇x((SS − SA)φ2)(x)−∇x̃((SS − SA)φ2)(x̃)

=

(∫ +∞

A
+

∫ −A

−∞

)
[∇xΨ(x, y1)−∇x̃Ψ(x̃, y1)]dy1 := I3 + I4. (3.37)

From the mean value theorem and Lemma 2.2, when A→ +∞, we have |x1−A| → +∞, |x̃1−A| →
+∞ and

|∇xGj(x, y)−∇x̃Gj(x̃, y)| ≤ C exp (−1
2=(kj)|y|)
|y| 12

|x− x̃|, A→ +∞, j = 1, 2.

Hence,

|I3| ≤
∫ +∞

A
|∇xΨ(x, y1)−∇x̃Ψ(x̃, y1)|dy1

≤ C
∫ +∞

A
[(|∇xG1(x, y)−∇x̃G1(x̃, y)|+ |∇xG2(x, y)−∇x̃G2(x̃, y)|)|φ2(y)|]y2=f(y1)dy1

≤ C(|x− x̃|) sup
y∈S
|φ2(y)|

∫ +∞

A

(
exp (−1

2=(k1)|y|)
|y| 12

∣∣∣∣
y2=f(y1)

+
exp (−1

2=(k2)|y|)
|y| 12

∣∣∣∣
y2=f(y1)

)
dy1

≤ C(|x− x̃|)‖φ2‖C0,α(S)

(
2

k̂

)(
1√
A

exp

(
−A

2
k̂

))
. (3.38)
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Similarly, we have

|I4| ≤ C(|x− x̃|)‖φ2‖C0,α(S)

(
1√
A

exp

(
−A

2
k̂

))
. (3.39)

Using (3.37)–(3.39), we obtain for 0 < α < 1 that

|∇x((SS − SA)φ2)(x)−∇x((SS − SA)φ2)(x̃)|
|x− x̃|α

≤ (|I3|+ |I4|)|x− x̃|−α ≤ C(|x− x̃|1−α)‖φ2‖C0,α(S)

(
1√
A

exp

(
−A

2
k̂

))

≤ CA1−α‖φ2‖C0,α(S)

(
1√
A

exp

(
−A

2
k̂

))

= C‖φ2‖C0,α(S)

(
A

1
2
−α exp

(
−A

2
k̂

))
→ 0, A→ +∞. (3.40)

For 0 < α < 1, by (3.35), (3.36) and (3.40), it can be deduced that

‖SS − SA‖C1,α(S)

= sup
‖φ2‖C0,α(S) 6=0

‖(SS − SA)φ2‖C1,α(S)

‖φ2‖C0,α(S)

= sup
‖φ2‖C0,α(S) 6=0

1

‖φ2‖C0,α(S)

[
‖(SS − SA)φ2‖∞ + ‖∇x(SS − SA)φ2‖∞

+ sup
x,x̃∈S
x 6=x̃

|∇x((SS − SA)φ2)(x)−∇x((SS − SA)φ2)(x̃)|
|x− x̃|α

]

≤ C
(√

A exp

(
−A

2
k̂

))
→ 0, A→ +∞,

which shows that the operator SS is compact on C0,α(S). �

By Lemma 3.3, the system (3.31) is Fredholm, which implies that the existence of a solution to
(3.31) follows from the uniqueness of the solution. Although the direct scattering problem is shown
to have a unique solution in Theorem 3.1, the boundary integral equations (3.31) may not have a
unique solution due to the possible existence of resonance. This issue can be overcome by using the
combined single- and double-layer potentials. We will not elaborate on this issue and leave it along
with the numerical solution of (3.31) for a future work.

4. Uniqueness of the inverse scattering problem

This section addresses the global uniqueness of the inverse scattering problem. Given the incident
field which satisfies (2.3), we show that the obstacle and the infinite rough surface can be uniquely
determined by the wave field uj |Γj , j = 1, 2.

Let S̃ ∈ C2 be an infinite rough surface which divides Rn into the upper half space Ω̃+
1 and the

lower half space Ω̃2. Let D̃ ⊂⊂ Ω̃+
1 be a bounded obstacle with the boundary Γ̃ ∈ C2. Define

Ω̃1 = Ω̃+
1 \ D̃. Let (ũ1, ũ2) be the unique solutions of Problem 2.1 with D replaced by D̃ and S

replaced by S̃ but for the same incident field ui satisfying (2.3), where ũ1 satisfies the sound hard
boundary condition

∂ũ1

∂ν
Γ̃

= 0 on Γ̃,
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and the continuity conditions

ũ1 = ũ2,
∂ũ1

∂ν
S̃

=
∂ũ2

∂ν
S̃

on S̃,

where ν
Γ̃

be the unit normal vector on Γ̃ directed into the exterior of D̃ and let ν
S̃

be the unit normal

vector on the boundary S̃ pointing from region Ω̃2 to region Ω̃1. Since the point source is assumed to

be located in R+
1 , we have xs ∈ Ω1∩ Ω̃1. In addition, ũ1 satisfies the transparent boundary condition

(2.9).

Lemma 4.1. Let Ω ⊂ R2 be a bounded Lipschitz domain. Consider the boundary value problem
{

∆u+ k2
1u = 0, ∆v + k2

2v = 0 in Ω,

u = v, ∂u
∂ν = ∂v

∂ν on ∂Ω,
(4.1)

where ν is the unit normal vector on Ω. Then u = v = 0 in Ω.

Proof. Consider an extension v̆ of v to the exterior domain Ωe = R2 \ Ω, where v̆ satisfies
{

∆v̆ + k2
2 v̆ = 0 in Ωe,

v̆ = v, ∂v̆
∂ν = ∂v

∂ν on ∂Ω

and the radiation condition

lim
r→∞

∫

∂Br

(
|v̆|2 +

∣∣∣∂v̆
∂ν

∣∣∣
2
)

ds = 0.

Multiplying the equation ∆u + k2
1u = 0 by the complex conjugate of u, integrating over Ω, and

using the integration by parts, we have
∫

Ω
|∇u|2dx− k2

1

∫

Ω
|u|2dx =

∫

∂Ω

∂u

∂ν
uds.

On the other hand, multiplying the equation ∆v̆+k2
2 v̆ = 0 by the complex conjugate of v̆, integrating

over Ωe, using the integration by parts and the radiation condition, we obtain
∫

Ωe
|∇v̆|2dx− k2

2

∫

Ωe
|v̆|2dx = −

∫

∂Ω

∂v̆

∂ν
v̆ds.

Since u = v = v̆ and ∂u
∂ν = ∂v

∂ν = ∂v̆
∂ν on ∂Ω, we add the above two equation and get

∫

Ω
|∇u|2dx+

∫

Ωe
|∇v̆|2dx− k2

1

∫

Ω
|u|2dx− k2

2

∫

Ωe
|v̆|2dx = 0.

Noting =k2
j > 0 and taking the imaging part of the above equation yields that u = 0 in Ω and v̆ = 0

in Ωe, which implies immediately that u = v = 0 in Ω. �

Remark 4.2. The result still holds for k1 = k2 in Lemma 4.1. In this case, the problem (4.1) is
equivalent to the following scattering problem: To find u such that it satisfies the Helmholtz equation

∆u+ k2
1u = 0 in R2

and the radiation condition

lim
r→∞

∫

∂Br

(
|u|2 +

∣∣∣∂u
∂ν

∣∣∣
2
)

ds = 0.

It is clear to note that the above scattering problem has a unique solution u = 0 in R2 due to =k2
1 > 0.

Lemma 4.3. Let u1 be the solution of Problem 2.1. Then u1 6= 0 on Γ or S.
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Proof. We prove it by contradiction. First we assume that u1 = 0 on Γ. Recall the sound hard
boundary condition ∂u1

∂νΓ
= 0 on Γ. Consider an extension ŭ1 of u1 to the domain Ω+

1 :

ŭ1 :=

{
u1 in Ω1,

v1 in D,

where v1 satisfies {
∆v1 + k2

1v1 = 0 in D,

v1 = u1,
∂v1
∂νΓ

= ∂u1
∂νΓ

on Γ.
(4.2)

Hence the extension ŭ1 satisfies {
∆ŭ1 + k2

1ŭ1 = 0 in R1,
∂ŭ1
∂νΓ1

= T1ŭ1 + ρ1 on Γ1.
(4.3)

Since ŭ1 = u1 = 0 on Γ and =k2
1 > 0, it is easy to verify from (4.2) that ŭ1 = v1 = 0 in D. It

follows from the unique continuation that ŭ1 = 0 in R1, which contradicts the transparent boundary
condition in (4.3).

Next we assume that u1 = 0 on S. Since u2 = u1 = 0 on S, we may consider the following problem{
∆u2 + k2

2u2 = 0 in Ω2,

u2 = 0 on S.
(4.4)

In addition, u2 is required to satisfy the radiation condition (2.10). Multiplying the complex conju-
gate of u2, integrating over Ω2, and using the radiation condition, we obtain∫

Ω2

|∇u2|2dx− k2
2

∫

Ω2

|u2|2dx = 0,

which implies u2 = 0 in Ω2 due to =k2
2 > 0. Hence ∂u2

∂νS
= 0 on S. Since u1 = u2 = 0 and

∂u1
∂νS

= ∂u2
∂νS

= 0 on S, by the Holmgren uniqueness theorem, u1 = 0 in R1. In fact, u1 can be

extended to Ω1 ∪ Ω2 as follows

ŭ1 :=

{
u1 in Ω1,

v1 in Ω2,

where v1 satisfies {
∆v1 + k2

1v1 = 0 in Ω2,

v1 = u1,
∂v1
∂νS

= ∂u1
∂νS

on S
(4.5)

and the radiation condition (2.10). Clearly the problem (4.5) has a unique solution v1 = 0 in Ω2. By
the unique continuation, we have u1 = ŭ1 = 0 in R1, which contradicts the transparent boundary
condition (2.9). �

Theorem 4.4. Assume that uj |Γj = ũj |Γj , j = 1, 2 for the given the incident wave ui. Then D = D̃

and S = S̃.

Proof. Let vj = uj − ũj , then vj satisfies the Helmholtz equation

∆vj + k2
j vj = 0 in Ωj ∩ Ω̃j

and the radiation condition. By the assumption vj |Γj = uj |Γj − ũj |Γj and the uniqueness result
for the scattering problem, one can obtain that vj = uj − ũj = 0 and ∇vj = ∇uj − ∇ũj =
0, j = 1, 2 in R+

1 = {x ∈ R2 : xn > h1} and R+
2 = {x ∈ R2 : xn < h2}, respectively. Since

vj ∈ C2(Ωj ∩ Ω̃j) ∩ C1,α(Ωj ∩ Ω̃j), by the unique continuation, we get that

vj(x) = uj(x)− ũj(x) = 0, x ∈ Ωj ∩ Ω̃j (4.6)
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S
D

Γ

Γ1

Γ2

˜D
˜Γ

˜S

Ω

x−1 x+1

Figure 2. Schematic of domains for the proof of uniqueness.

and
∂vj(x)

∂ν
=
∂uj(x)

∂ν
− ∂ũj(x)

∂ν
= 0, x ∈ ∂(Ωj ∩ Ω̃j). (4.7)

First, we show the obstacle can be uniquely determined by the total field u1 on Γ1. Assume that

D 6= D̃. Then D\(D ∩ D̃) 6= ∅ or D̃\(D ∩ D̃) 6= ∅. The schematic of the domains D and D̃ is shown

in Figure 2. Without loss of generality, we assume that D̃ \ (D ∩ D̃) 6= ∅. Denote ∂(D̃ \ (D ∩ D̃))

by C̃ ∪ C, where C̃ ⊂ Γ̃ and C ⊂ Γ. Since ∂ũ1
∂ν

Γ̃
= 0 on Γ̃, we have from (4.6)–(4.7) that ∂u1

∂ν
Γ̃

= 0 on

C̃. Recalling ∂u1
∂νΓ

= 0 on C, we consider the following boundary value problem




∆u1 + k2
1u1 = 0 in D̃ \ (D ∩ D̃),

∂u1
∂ν

Γ̃
= 0 on C̃,

∂u1
∂νΓ

= 0 on C.

Multiplying ∆u1 + k2
1u1 = 0 by the complex conjugate of u1, integrating over D̃ \ (D ∩ D̃), using

the integration by parts and the boundary conditions, we obtain
∫

D̃\(D∩D̃)
|∇u1|2dx− k2

1

∫

D̃\(D∩D̃)
|u1|2dx = 0,

which implies that u1 = 0 in D̃ \ (D ∩ D̃) since =k2
1 > 0. An application of the unique continuation

gives u1 = 0 in R1. But this contradicts the transparent boundary condition (2.9) on Γ1 since ρ is

a nonzero function involving the incident wave. Hence D = D̃.
Next is show that the infinite rough surface S can be uniquely determined by the wave fields u1

and u2 measured on Γ1 and Γ2, respectively. Assume that S 6= S̃, where S̃ = {x ∈ R2 : x2 = f̃(x1)}
with f̃ 6= f . Without loss of generality, we assume that there exist two points x−1 , x

+
1 satisfying

x−1 < x+
1 such that f(x−1 ) = f̃(x−1 ), f(x+

1 ) = f̃(x+
1 ) and f(x1) > f̃(x1) for x1 ∈ (x−1 , x

+
1 ). Define

Ω = {x ∈ R2 : f̃(x1) < x2 < f(x1), x−1 < x1 < x+
1 }. The schematic of the domain Ω is also shown

in Figure 2. Let ∂Ω = Σ ∪ Σ̃, where Σ ⊂ S and Σ̃ ⊂ S̃. By (4.6)–(4.7), we have

u1 = ũ1,
∂u1

∂ν
=
∂ũ1

∂ν
on Σ

and

u2 = ũ2,
∂u2

∂ν
=
∂ũ2

∂ν
on Σ̃.

It follows from the continuity conditions

u1 = u2,
∂u1

∂ν
=
∂u2

∂ν
on Σ



INVERSE OBSTACLE SCATTERING IN AN UNBOUNDED STRUCTURE 19

and

ũ1 = ũ2,
∂ũ1

∂ν
=
∂ũ2

∂ν
on Σ̃.

Combining the above equations yields that

ũ1 = u2,
∂ũ1

∂ν
=
∂u2

∂ν
on Σ ∪ Σ̃.

We consider the following boundary value problem
{

∆ũ1 + k2
1ũ1 = 0, ∆u2 + k2

2u2 = 0 in Ω,

ũ1 = u2,
∂ũ1
∂ν = ∂u2

∂ν on ∂Ω.

It follows from Lemma 4.1 that ũ1 = u2 = 0 in Ω. An application of the unique continuation gives

ũ1 = 0 in R1, which contradicts the transparent boundary condition (2.9). So we have S = S̃. �

5. Local stability

In applications, it is impossible to make exact measurements. Stability is crucial in the practical
reconstruction since it contains necessary information to determine to what extent the data can be
trusted.

Let I : R2 → R2 be the identity mapping or unit matrix and let θ : Γ ∪ S → R2 be an admissible
perturbation, where θ is assumed to be an admissible perturbation in C2(Γ ∪ S,R2) and has a
compact support. For θ ∈ C2(Γ ∪ S,R2), we can extend the definition of function θ(x) to Ωj by

requiring that θ(x) ∈ C2(Ωj ,R2) ∩ C(Ωj ,R2); I + θ : Ωj → Ωj,θ, j = 1, 2. Here the region Ωj,θ

bounded by Γθ and Sθ, where

Γθ = {x+ θ(x) : x ∈ Γ}, Sθ = {x+ θ(x) : x ∈ S}.

Here θ(x) = (θ1(x), θ2(x))>. According to Theorem 3.1, there exist the unique solutions (u1,θ, u2,θ)
to Problem 2.1 corresponding to the region Ωj,θ for any small enough θ. The map θ → uθ is
locally differentiable if for every open set D strictly included in Ωj and strictly included in Ωj,θ, the
restriction of uθ to D is differentiable [39]. The domain derivative of uj,θ at θ = 0 in the direction p
is given by

u′j =
∂uj,θ
∂θ

(0)p, j = 1, 2,

where
∂uj,θ
∂θ (0) = (

∂uj,θ
∂θ1

,
∂uj,θ
∂θ2

)|θ=0 and p(x) = (p1(x), p2(x))> ∈ C2(Γ ∪ S,R2). Define a nonlinear
map

F : Γθ ∪ Sθ → u1,θ|Γ1 .

The domain derivative of the operator F on the boundary Γ ∪ S along the direction p is defined by

F ′(Γ ∪ S, p) := u′1|Γ1 .

Define the jumps on S:

[u1(x)− u2(x)] = lim
a1→0

x+a1∈Ω1

u1(x+ a1)− lim
a2→0

x+a2∈Ω2

u2(x+ a2)

and

[νS · ∇u1(x)− νS · ∇u2(x)] = lim
h→+0

νS · ∇u1(x+ hνS)− lim
h→+0

νS · ∇u2(x− hνS).
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Theorem 5.1. Let (u1, u2) be the solutions of Problem 2.1. Given p ∈ C2(Γ ∪ S,R2), the domain
derivatives (u′1, u

′
2) of (u1, u2) are the radiating solutions of the following problem:





∆u′1 + k2
1u
′
1 = 0 in Ω1,

∆u′2 + k2
2u
′
2 = 0 in Ω2,

νΓ · (∇u′1) = k2
1pΓνu1 +∇ · [pΓν (∇Γτu1)] on Γ,

[u′1 − u′2] = 0 on S,

[(νS · ∇u′1)− (νS · ∇u′2)] = pSν [k2
1u1 − k2

2u2] on S.

(5.1)

Proof. Define the operator

A = ∆ + k2
1I.

Let

ωθ = Au1,θ, (5.2)

then, we have

ωθ = −δ in Ω1,θ (5.3)

and

ωθ(I + θ) = −δ in Ω1. (5.4)

Since A is a linear and continuous operator from H1
loc(Ω1) into D′(Ω1), A is differentiable in the

distribution sense, i.e., υ 7→ 〈Aυ,ψ〉 is differentiable for each ψ ∈ D(Ω1) and

∂A
∂υ

= A, (5.5)

Here D(Ω1) is the space of infinitely differentiable functions with compact support in Ω1 and D′(Ω1)
is the space of distributions. Therefore, it follows from the differentiability of θ 7→ u1,θ(I + θ) and
θ 7→ u1,θ that θ 7→ ωθ(I + θ) is Fréchet differentiable at θ = 0 in the direction p ∈ C2(Γ ∪ S,R2).
Moreover, for an admissible perturbation θ, i.e., θ ∈ C2(Γ ∪ S,R2), and θ in the neighborhood of 0,
from (5.3) and (5.4), their derivatives satisfy

∂ωθ
∂θ

(0)p =
∂

∂θ
(ωθ(I + θ))(0)p− (p · ∇)ω = −(p · ∇)δ + (p · ∇)δ = 0 in Ω1. (5.6)

We deduce from (5.2) and (5.6) that

∂ωθ
∂θ

(0)p =

(
∂A
∂u1,θ

∂u1,θ

∂θ

)
(0)p =

∂A
∂u1

u′1 = 0 in Ω1. (5.7)

It follows from (5.5) and (5.7) that

Au′1 = ∆u′1 + k2
1u
′
1 = 0 in Ω1.

Furthermore, for every perturbation θ ∈ C2(Γ∪S,R2), the total fields and their normal derivative
are assumed to satisfy

u1,θ = u2,θ, νSθ · ∇u1,θ = νSθ · ∇u2,θ on Sθ.

Hence,

u1,θ(I + θ) = u2,θ(I + θ) on S (5.8)

and

[νSθ(I + θ)] · [(∇u1,θ)(I + θ)] = [νSθ(I + θ)] · [(∇u2,θ)(I + θ)] on S. (5.9)
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We have from straightforward calculations that

∂

∂θ
(uj,θ(I + θ))(0)p =

∂uj,θ
∂θ

(0)p+ p · (∇uj) = u′j + p · (∇uj)
=u′j + [pSτ + pSννS ] · [∇Sτuj + (νS · ∇uj)νS ]

=u′j + [pSτ · (∇Sτuj)] + [pSν (νS · ∇uj)] on S. (5.10)

Considering the boundary conditions (2.8) and p ∈ C2(Γ ∪ S,R2), we have from (5.8) and (5.10)
that

[u′1 − u′2] = −pSτ · [∇Sτu1 −∇Sτu2]− pSν [(νS · ∇u1)− (νS · ∇u2)] on S. (5.11)

It follows from [u1 − u2] = 0 on S, and the definition of the surface gradient that

[∇Sτu1 −∇Sτu2] = 0, ∇(u1 − u2) = [νS · ∇(u1 − u2)]νS on S. (5.12)

From (5.11) and (5.12), the jump relations now yield

[u′1 − u′2] = −pSν [(νS · ∇u1)− (νS · ∇u2)] = 0 on S. (5.13)

It follows from [15, Lemma 3] or [36, Lemma 4.8] that

νSθ(I + θ) =
1

‖g(θ)νS‖2
g(θ)νS on S (5.14)

and

νΓθ(I + θ) =
1

‖g(θ)νΓ‖2
g(θ)νΓ on Γ, (5.15)

where the matrix g(θ) is given by

g(θ) = [(I + θ)′]−> =


1 + ∂θ1(x)

∂x1

∂θ1(x)
∂x2

∂θ2(x)
∂x1

1 + ∂θ2(x)
∂x2



−>

on Γ ∪ S

and satisfies

g(0) =

[
1 0

0 1

]
,

∂g(θ)

∂θ
(0)p = −(∇p)> = −

[
∂p1

∂x1

∂p1

∂x2

∂p2

∂x1

∂p2

∂x2

]>
.

Therefore we get from (5.9) and (5.14) that

[g(θ)νS ] · [(∇u1,θ)(I + θ)] = [g(θ)νS ] · [(∇u2,θ)(I + θ)] on S.

which implies that

[g(θ)νS ] · [g(θ)∇(u1,θ(I + θ))] = [g(θ)νS ] · [g(θ)∇(u2,θ(I + θ))] on S. (5.16)
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Using the chain rule, we deduce from (5.16) that

∂

∂θ

{
[g(θ)νS ] · [g(θ)∇(uj,θ(I + θ))]

}
(0)p

=

[(
∂g(θ)

∂θ
(0)p

)
νS

]
· [g(0)(∇uj)] + (g(0)νS) ·

[(
∂g(θ)

∂θ
(0)p

)
(∇uj)

]

+ (g(0)νS) ·
[
g(0)

∂

∂θ
(∇(uj,θ(I + θ)))(0)p

]

=

[(
∂g(θ)

∂θ
(0)p

)
νS

]
· (∇uj) + νS ·

[(
∂g(θ)

∂θ
(0)p

)
(∇uj)

]

+ νS ·
[
∇
(
∂

∂θ
(uj,θ(I + θ))(0)p

)]

=− [(∇p)>νS ] · (∇uj)− νS · [(∇p)>(∇uj)] + νS · [∇u′j +∇(p · (∇uj))]
=− [(∇p)>νS ] · (∇uj)− νS · [(∇p)>(∇uj)] + νS · (∇u′j)

+ νS ·
{
p× [∇× (∇uj)] + (p · ∇)(∇uj) + [(∇uj)× (∇× p) + ((∇uj) · ∇)p]

}

=− [(∇p)>νS ] · (∇uj)− νS · [(∇p)>(∇uj)] + νS · (∇u′j)
+ νS · {(p · ∇)(∇uj) + [(∇uj)× (∇× p) + ((∇uj) · ∇)p]} on S. (5.17)

Since on S ∪ Γ, for j = 1, 2, one can easily verify that

[(∇p)>(∇uj)] = [(∇uj)× (∇× p) + ((∇uj) · ∇)p],

[(∇p)>ν] = [ν × (∇× p) + (ν · ∇)p] = ∇(p · ν)− [(p · ∇)ν]− [p× (∇× ν)]

= ∇(p · ν)− [(p · ∇)ν],

[(p · ∇)ν] · (∇uj) + ν · [(p · ∇)(∇uj)] = (p · ∇)(ν · ∇uj),

[(p · ∇)ν] · ν =
1

2
(p · ∇)(ν · ν) =

1

2
(p · ∇)(|ν|2) =

1

2
(p · ∇)(1) = 0.

With the aid of (5.17), we obtain

∂

∂θ
{[g(θ)νS ] · [g(θ)∇(uj,θ(I + θ))]}(0)p

= −[(∇p)>νS ] · (∇uj)− νS · [(∇p)>(∇uj)]
+ νS · (∇u′j) + νS · [(∇p)>(∇uj)] + νS · [(p · ∇)(∇uj)]

= −[∇(p · νS)] · (∇uj) + [(p · ∇)νS ] · (∇uj) + νS · (∇u′j) + νS · [(p · ∇)(∇uj)]
= −[∇(p · νS)] · (∇uj) + νS · (∇u′j) + [(p · ∇)(νS · ∇uj)]
= −∇ · [(p · νS)(∇uj)] + (p · νS)(∆uj) + νS · (∇u′j) + [(p · ∇)(νS · ∇uj)]
= −∇ · [(p · νS)(∇uj)]− (p · νS)(k2

juj) + νS · (∇u′j) + [(p · ∇)(νS · ∇uj)]
= −∇ · [pSν (∇Sτuj) + pSν (νS · ∇uj)νS ]− pSν (k2

juj) + νS · (∇u′j) + [(p · ∇)(νS · ∇uj)]
= −∇ · [pSν (∇Sτuj)]−∇ · [(νS · ∇uj)(pSννS)]

− pSν (k2
juj) + νS · (∇u′j) + [(p · ∇)(νS · ∇uj)]

(5.18)
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By the continuous conditions (2.8) and p ∈ C2(Γ∪S,R2), from (5.16) and (5.18), the jump relations
now yield

[νS · (∇u′1)− νS · (∇u′2)] = pSν [k2
1u1 − k2

2u2] +∇ · [pSν (∇Sτu1 −∇Sτu2)]

= pSν [k2
1u1 − k2

2u2].

Moreover, for every perturbation θ ∈ C2(Γ ∪ S,R2), the total fields and their normal derivative
are assumed to satisfy

νΓθ · ∇u1,θ = 0 on Γθ.

Hence,

[νΓθ(I + θ)] · [(∇u1,θ)(I + θ)] = 0 on Γ (5.19)

It follows from (5.15) and (5.19) that

[νΓθ(I + θ)] · [(∇u1,θ)(I + θ)]

=
1

‖g(θ)νΓ‖2
[g(θ)νΓ] · [g(θ)∇(u1,θ(I + θ))] = 0 on Γ,

which gives

[g(θ)νΓ] · [g(θ)∇(u1,θ(I + θ))] = 0 on Γ. (5.20)

Using (5.20) and the sound hard boundary condition (2.7), we may follow the same steps as those
for (5.18) and obtain

0 =
∂

∂θ
{[g(θ)νΓ] · [g(θ)∇(u1,θ(I + θ))]}(0)p

= −∇ · [pΓν (∇Γτu1)]− pΓν (k2
1u1) + νΓ · (∇u′1) on Γ,

which yields that

νΓ · (∇u′1) = k2
1pΓνu1 +∇ · [pΓν (∇Γτu1)] on Γ.

Based on the existence of the domain derivatives u′j , the proof of the the integral representations

for u′j follow in the same manner as for the the integral representation of uj . Therefore, the asymp-

totic behavior to the domain derivative u′j has the same form as uj . This means that the domain

derivatives (u′1, u
′
2) are the radiating solutions of the problem (5.1). �

Introduce the domain Ω1,h bounded by Γh and Sh, where

Γh = {x+ hq(x)νΓ : x ∈ Γ}, Sh = {x+ hq(x)νS : x ∈ S}.
where q ∈ C2(Γ ∪ S,R) and h > 0. For any two domains Ω1 and Ω1,h in R2, define the Hausdorff
distance

dist(Ω1,Ω1,h) = max{d(Ω1,h,Ω1), d(Ω1,Ω1,h)},
where

d(Ω1,Ω1,h) = sup
x∈Ω1

inf
y∈Ω1,h

|x− y|.

It can be easily seen that the Hausdorff distance between Ω1,h and Ω1 is of the order h, i.e.,
dist(Ω1,Ω1,h) = O(h). We have the following local stability result.

Theorem 5.2. If q ∈ C2(Γ ∪ S,R) and h > 0 is sufficiently small, then

dist(Ω1,Ω1,h) ≤ C‖u1,h − u1‖C1,α(Γ1),

where u1,h and u1 is the solution of Problem 2.1 corresponding to the domain Ω1,h and Ω1, respec-
tively, and C is a positive constant independent of h.
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Proof. Assume by contradiction that there exists a subsequence from {u1,h}, which is still denoted
as {u1,h} for simplicity, such that

lim
h→0

∥∥∥∥
u1,h − u1

h

∥∥∥∥
C1,α(Γ1)

= ‖u′1‖C1,α(Γ1) = 0, h→ 0,

which yields u′1 = 0 on Γ1. Following a similar proof of Theorem 3.1, we can show the uniqueness of
the solution for problem (5.1). An application of the uniqueness for problem (5.1) yields that u′j = 0

in Ωj , j = 1, 2. Hence, ∇u′j = 0 in Ωj , j = 1, 2.

Taking p = q(x)νΓ on Γ in problem (5.1), we have from the boundary condition of u′1 in problem
(5.1) that

νΓ · (∇u′1) = k2
1qu1 +∇ · [q(∇Γτu1)] = 0.

Since q is arbitrary, we have u1 = 0 on Γ, which is impossible by Lemma 4.3.
Consider the perturbation on S, take p(x) = q(x)νS on S in problem (5.1), from u′j = 0 and

∇u′j = 0 in Ωj , j = 1, 2, one can get

νS · ∇u′1 − νS · ∇u′2 = 0 on S.

One the other hand, from Theorem 5.1, one can get

(νS · ∇u′1)− (νS · ∇u′2) = pSν [k2
1u1 − k2

2u2] = q(k2
1 − k2

2)u1 on S.

For q 6= 0 and k2
1 6= k2

2, it follows that u1 = 0 on S, which is again impossible by Lemma 4.3. �

The result indicates that for small h, if the boundary measurements are O(h) close to each other,
then the corresponding domains are also O(h) close to each other in the Hausdorff distance.

6. Conclusion

In this paper, we have studied the direct and inverse scattering problems of a point incident field
by a sound hard obstacle which is immersed in a two-layered background medium separated by an
infinite rough surface. The uniqueness of the solution for the direct scattering problem is proved.
The existence of the solution for the direct scattering problem is discussed by using the method of
boundary integral equations. For the inverse problem, we prove that the obstacle and the infinite
rough surface are uniquely determined by the wave fields measured on two plane surfaces via a single
point incident field. Moreover, we study the local stability of the inverse problem. It demonstrates
that the Hausdorff distance of two domains is bounded above by the distance of the correspond
wave fields if the two domains are close enough. A crucial step in the proof of the stability is to
obtain the existence and characterization of the domain derivative of the wave field with respect to
the change of the shape of the obstacle and the infinite rough surface. We deduce that the domain
derivative satisfies a boundary value problem of the Helmholtz equation. The results are valid for
the three-dimensional problem and the multiple obstacles which are located either above or below
the infinite rough surface.
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of the acoustic scattered field, J. Math. Anal. Appl., 238 (1999), 259–276.
[16] S. N. Chandler-Wilde and B. Zhang, A uniqueness result for scattering by infinite rough surfaces, SIAM J. Appl.

Math., 58 (1998), 1774–1790.
[17] S. N. Chandler-Wilde and B. Zhang, Scattering of electromagnetic waves by rough interfaces and inhomogeneous

layers, SIAM J. Math. Anal. 30 (1999), 559-583
[18] S. N. Chandler-Wilde and P. Monk, Existence, uniqueness and variational methods for scattering by unbounded

rough surfaces, SIAM J. Math. Anal., 37 (2005), 598–618.
[19] S. N. Chandler-Wilde, E. Heinemeyer, and R. Potthast, Acoustic scattering by mildly rough unbounded surfaces

in three dimensions, SIAM J. Appl. Math., 66 (2006), 1002–1026.
[20] F. Hettlich, The domain derivative of time-harmonic electromagnetic waves at interfaces, Math. Methods Appl.

Sci., 35 (2012), 1681–1689.
[21] Y. He, P. Li, and J. Shen, A new spectral method for numerical solution of the unbounded rough surface scattering

problem, J. Comput. Phys., 275 (2014), 608–625.
[22] R. Hiptmair and J. Li, Shape derivatives for scattering problems, Inverse Problems, 34 (2018), 105001.
[23] A. Kirsch, The domain derivative and two applications in inverse scattering theory, Inverse Problems, 9 (1993),

81–96.
[24] R. Kress and T. Tran, Inverse scattering for a locally perturbed half-plane, Inverse Problems, 16 (2000), 1541–1559.
[25] R. Kress and W. Rundell, Inverse scattering for shape and impedance revisited, J. Integral Equations Applications,

30 (2018), 293–311.
[26] R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value

problem, Inverse Problems, 21 (2005), 1207–1223.
[27] P. Li, H. Wu, and W. Zheng, Electromagnetic scattering by unbounded rough surfaces, SIAM J. Appl. Math., 43

(2011), 1205–1231.
[28] P. Li, An inverse cavity problem for Maxwell’s equations, J. Differential Equations, 252 (2012), 3209–3225.
[29] P. Li and J. Shen, Analysis of the scattering by an unbounded rough surface, Math. Methods Appl. Sci., 35 (2012),

2166–2184.
[30] P. Li, L.-L. Wang, and A. Wood, Analysis of transient electromagentic scattering from a three-dimensional open

cavity, SIAM J. Appl. Math., 75 (2015), 1675–1699.
[31] P. Li, G. Zheng, and W. Zheng, Maxwell’s equations in an unbounded structure, Math. Methods Appl. Sci., 40

(2016), 573–588.
[32] J. Li, G. Sun, and B. Zhang, The Kirsch–Kress method for inverse scattering by infinite locally rough interfaces,

Applicable Analysis, 96 (2017), 85–107.
[33] J. Liu, G. Nakamura, and M. Sini, Reconstruction of the shape and surface impedance from acoustic scattering

data for an arbitrary cylinder, SIAM J. Appl. Math. 67 (2007), 1124–1146.
[34] X. Liu, B. Zhang, and H. Zhang, A direct imaging method for inverse scattering by unbounded rough surfaces,

SIAM J. Imaging Sci., 11 (2018), 1629–1650.
[35] Y. Lu and B. Zhang, Direct and inverse scattering problem by an unbounded rough interface with buried obstacles,

arXiv:1610.03515v1, 2016.
[36] F. Murat and J. Simon, Sur le contrôle par un domaine géométrique, Rapport du L.A. 189, Universiteé Paris 6
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