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Abstract
This paper is concerned with the uniqueness of two inverse moving source 
problems in electrodynamics with partial boundary data. We show that (1) if the 
temporal source function is compactly supported, then the spatial source profile 
function or the orbit function can be uniquely determined by the tangential trace 
of the electric field measured on part of a sphere; (2) if the temporal function 
is given by a Dirac distribution, then the impulsive time point and the source 
location can be uniquely determined at four receivers on a sphere.

Keywords: inverse moving source problems, Maxwell’s equations, 
uniqueness

(Some figures may appear in colour only in the online journal)

1. Introduction

Consider the time-dependent Maxwell equations in a homogeneous medium:

µ∂tH(x, t) +∇× E(x, t) = 0, ε∂tE(x, t)−∇× H(x, t) = −σE + F̃(x, t), x ∈ R3, t > 0,
 (1.1)

where E and H are the electric and magnetic fields, respectively, the source function F̃  is 
known as the electric current density, ε and µ are the dielectric permittivity and the magnetic 
permeability, respectively, and σ is the electric conductivity and is assumed to be zero. Since 
the medium is homogeneous, we assume, without loss of generality, that ε = µ = 1.
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Eliminating the magnetic field H from (1.1), we obtain the Maxwell system for the electric 
field E:

∂2
t E(x, t) +∇× (∇× E(x, t)) = ∂tF̃(x, t) =: F(x, t), x ∈ R3, t > 0, (1.2)

which is supplemented by the homogeneous initial conditions

E(x, 0) = ∂tE(x, 0) = 0, x ∈ R3. (1.3)

The electrodynamic field is assumed to be excited by a moving point source radiating over a 
finite time period. Specifically, the source function F is assumed to be given in the following 
form:

F(x, t) = J(x − a(t)) g(t),

where J : R3 → R3 is the source profile function, g : R+ → R the temporal function, and 
a : R+ → R3 is the orbit function of the moving source. Hence the source term is assumed 
to be a product of the spatially moving source function J(x − a(t)) and the temporal function 
g(t). Physically, the spatially moving source function can be thought as an approximation of 
a pulsed signal which is transmitted by a moving antenna, whereas the temporal function is 
usually used to model the evolution of source magnitude in time. Throughout, we make the 
following assumptions:

 (1)  The profile function J(x) is compactly supported in BR̂ := {x : |x| < R̂} for some R̂ > 0; 
 (2)  the source radiates only over a finite time period [0, T0] for some T0  >  0, i.e. g(t) = 0 for 

t � T0 and t � 0; 
 (3)  the source moves in a bounded domain, i.e. |a(t)| < R1 for all t ∈ R+ and some R1  >  0.

These assumptions imply that the source term F is supported in BR × (0, T0) for R > R̂ + R1. 
Unless otherwise stated, we take T := T0 + R̂ + R1 + R and set ΓR := {x ∈ R3 : |x| = R}. 
Denote by ν  the unit normal vector on ΓR and let Γ ⊂ ΓR be an open subset with a positive 
Lebesgue measure.

In this work, we study the inverse moving source problems of determining the profile func-
tion J(x) and the orbit function a(t) from boundary measurements of the tangential trace of 
the electric field over a finite time interval, E(x, t)× ν|Γ×[0,T]. Specifically, we consider the 
following two inverse problems.

 (i)  IP1. Assume that a(t) is known, the inverse problem is to determine J  from the measure-
ment E(x, t)× ν, x ∈ Γ, t ∈ (0, T).

 (ii)  IP2. Assume that J  is a known vector function, the inverse problem is to determine 
a(t), t ∈ (0, T0) from the measurement E(x, t)× ν, x ∈ Γ, t ∈ (0, T).

The IP1 is a linear inverse source problem, whereas the IP2 is a nonlinear inverse source 
problem. The inverse source problems arise from many scientific and industrial areas such as 
antenna design and synthesis, biomedical imaging, and photo-acoustic tomography [2]. The 
time-dependent inverse source problems have attracted considerable attention [3, 11, 14, 15, 
19, 20, 25]. However, the inverse moving source problems are rarely studied for the wave 
propagation. We refer to [8] on the inverse moving source problems by using the time-reversal 
method and to [21, 22] for the inverse problems of moving obstacles. Numerical methods can 
be found in [16, 18, 24] to identify the orbit of a moving acoustic point source. To the best of 
our knowledge, the uniqueness result is not available for the inverse moving source problem, 
which is the focuse of this paper.

G Hu et alInverse Problems 35 (2019) 075001



3

Recently, a Fourier method was proposed for solving inverse source problems for the time-
dependent Lamé system [4] and the Maxwell system [9], where the source term is assumed 
to be the product of a spatial function and a temporal function. These work were motivated 
by the studies on the uniqueness and increasing stability in recovering compactly supported 
source terms with multiple frequency data [5–7, 12, 13, 26]. It is known that there is no 
uniqueness for the inverse source problems with a single frequency data due to the existence 
of non-radiating sources [1, 23]. In [4, 9], the idea was to use the Fourier transform and com-
bine with Huygens’ principle to reduce the time-dependent inverse problem into an inverse 
problem in the Fourier domain with multi-frequency data. The idea was further extended in 
[10] to handle the time-dependent source problems in elastodynamics where the uniqueness 
and stability were studied.

In this paper, we use partial boundary measurements of dynamical Dirichlet data over a 
finite time interval to recover either the source profile function or the orbit function. In sec-
tions 3 and 4.2, we show that the ideas of [4, 9] and [10] can be used to recover the source 
profile function as well as the moving trajectory which lies on a flat surface. For general 
moving orbit functions, we apply the moment theory to deduce the uniqueness under a priori 
assumptions on the path of the moving source, see section 4.1. When the compactly supported 
temporal function shrinks to a Dirac distribution, we show in section 5 that the data measured 
at four discrete receivers on a sphere is sufficient to uniquely determine the impulsive time 
point and to the source location. This work is a nontrivial extension of the Fourier approach 
from recovering the spatial sources to recovering the orbit functions. The latter is nonlinear 
and more difficult to handle.

The rest of the paper is organized as follows. In section 2, we present some preliminary 
results concerning the regularity and well-posedness of the direct problem. Sections 3 and 4 
are devoted to the uniqueness of IP1 and IP2, respectively. In section 5, we show the unique-
ness to recover a Dirac distribution of the source function by using a finite number of receivers.

2. The direct problem

In addition to those assumptions given in the previous section, we give some additional condi-
tions on the source functions:

J ∈ H2(R3), div J = 0 in R3, g ∈ C1(R+), a ∈ C1(R+).

It follows from [1] that any source function can be decomposed into a sum of radiating and 
non-radiating parts. The non-radiating part cannot be determined and gives rise to the non-
uniqueness issue. By the divergence-free condition of J , we eliminate non-radiating sources 
in order to ensure the uniqueness of the inverse problem. Since the source term J  has a com-
pact support in BR × (0, T), we may show the following result by Huygens’ principle.

Lemma 2.1. It holds that E(x, t) = 0 for all x ∈ BR, t > T .

The proof of lemma 2.1 is similar to that of lemma 2.1 in [9]. It states that the electric field 
E over BR must vanish after time T. This property of the electric field plays an important role 
in the mathematical justification of the Fourier approach.

Noting ∇ · J = 0, taking the divergence on both sides of (1.2), and using the initial condi-
tions (1.3), we have

∂2
t (∇ · E(x, t)) = 0, x ∈ R3, t > 0

G Hu et alInverse Problems 35 (2019) 075001
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and

∇ · E(x, 0) = ∂t(∇ · E(x, 0)) = 0.

Therefore, ∇ · E(x, t) = 0 for all x ∈ R3 and t  >  0. In view of the identify ∇× 
∇× = −∆+∇∇, we obtain from (1.2) and (1.3) that

{
∂2

t E(x, t)−∆E(x, t) = J(x − a(t))g(t), x ∈ R3, t > 0,
E(x, 0) = ∂tE(x, 0) = 0, x ∈ R3.

 (2.1)

We briefly introduce some notation on functional spaces with the time variable. Given the 
Banach space X with norm || · ||X, the space C([0, T]; X) consists of all continuous functions 
f : [0, T] → X  with the norm

||f ||C([0,T];X) := max
t∈[0,T]

||f (t, ·)||X .

The Sobolev space Wm,p (0,T;X), where both m and p  are positive integers such that  
1 � m < ∞, 1 � p < ∞, comprises all functions f ∈ L2(0, T; X) such that ∂k

t f , k =

0, 1, 2, · · · , m exist in the weak sense and belong to Lp (0,T;X). The norm of Wm,p (0,T;X) is 
given by

||f ||Wm,p(0,T;X) :=

(∫ T

0

m∑
k=0

||∂k
t f (t, ·)|| p

X

)1/p

.

Denote Hm = Wm,2.
Now we state the regularity of the solution for the initial value problem (2.1). The proof 

follows similar arguments to the proof of lemma 2.3 in [9] by taking p   =  2.

Lemma 2.2. The initial value problem (2.1) admits a unique solution

E ∈ C(0, T; H3(R3))3 ∩ Hτ (0, T; H2−τ+1(R3))3, τ = 1, 2,

which satisfies

‖E‖C([0,T];H3(R3))3 + ‖E‖Hτ (0,T;H2−τ+1(R3))3 � C‖g‖L2(0,T)‖J‖H2(R3)3 ,

where C is a positive constant depending on R.

Applying the Sobolev embedding theorem, it follows from lemma 2.2 that

E ∈ C([0, T]; H2(R3))3 ∩ C1([0, T]; H1(R3))3.

Denote by I the 3-by-3 identity matrix and by H the Heaviside step function. Recall the 
Green tensor G(x, t) to the Maxwell system (see e.g. [9])

G(x, t) =
1

4π|x|
δ′(|x| − t)I−∇∇�

( 1
4π|x|

H(|x| − t)
)

,

which satisfies

∂2
t G(x, t) +∇× (∇×G(x, t)) = −δ(t)δ(x) I

with the homogeneous initial conditions

G(x, 0) = ∂tG(x, 0) = 0, |x| �= 0.

G Hu et alInverse Problems 35 (2019) 075001
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Taking the Fourier transform of G(x, t) with respect to the time variable yields

Ĝ(x,κ) =
(

g(x,κ)I+
1
κ2 ∇∇�g(x,κ)

)
, (2.2)

which is known as the Green tensor to the reduced time-harmonic Maxwell system with the 
wavenumber κ. Here g is the fundamental solution of the three-dimensional Helmholtz equa-
tion and is given by

g(x,κ) =
1

4π
eiκ|x|

|x|
.

It is clear to verify that Ĝ(x,κ) satisfies

∇× (∇× Ĝ)− κ2Ĝ = δ(x)I, x ∈ R3, |x| �= 0.

3. Determination of the source profile function

In this section we consider IP1. Below we state the uniqueness result. The idea of the proof is 
to adopt the Fourier approach of [9] to the case of a moving point source.

Theorem 3.1. Suppose that the orbit function a is given and that 
∫ T0

0 g(t)dt �= 0.  
Then the source profile function J(x) can be uniquely determined by the partial data set 
{E(x, t)× ν : x ∈ Γ, t ∈ (0, T)}.

Proof. Assume that there are two functions J1 and J2 which satisfy
{
∂2

t E1(x, t) +∇× (∇× E1(x, t)) = J1(x − a(t)) g(t), x ∈ R3, t > 0,
E1(x, 0) = ∂tE1(x, 0) = 0, x ∈ R3,

and
{
∂2

t E2(x, t) +∇× (∇× E2(x, t)) = J2(x − a(t)) g(t), x ∈ R3, t > 0,
E2(x, 0) = ∂tE2(x, 0) = 0, x ∈ R3.

It suffices to show J1(x) = J2(x) in BR if E1(x, t)× ν = E2(x, t)× ν  for all x ∈ Γ, t ∈ (0, T).
Let E = E1 − E2 and

f(x, t) = J1(x − a(t)) g(t)− J2(x − a(t)) g(t).

Then we have


∂2

t E(x, t) +∇× (∇× E(x, t)) = f(x, t), x ∈ R3, t > 0,
E(x, 0) = ∂tE(x, 0) = 0, x ∈ R3,
E(x, t)× ν = 0, x ∈ Γ, t > 0.

Denote by Ê(x,κ) the Fourier transform of E(x, t) with respect to the time t, i.e.

Ê(x,κ) =
∫

R
E(x, t)e−iκtdt, x ∈ BR, κ ∈ R+. (3.1)

G Hu et alInverse Problems 35 (2019) 075001
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By lemma 2.1, the improper integral on the right-hand side of (3.1) makes sense and it holds 
that

Ê(x,κ) =
∫ T

0
E(x, t)e−iκtdt, x ∈ BR, κ > 0.

Hence

Ê(x,κ)× ν = 0, ∀x ∈ Γ, κ ∈ R+.

Taking the Fourier transform of (1.2) with respect to the time t, we obtain

∇× (∇× Ê)− κ2Ê =

∫ T

0
f(x, t)e−iκtdt, x ∈ R3. (3.2)

Since supp(J) ⊂ BR̂ and |a(t)| < R1, it is clear to note that Ê is analytic with respect to x in a 
neighbourhood of ΓR ⊇ Γ and Ê satisfies the Silver–Müller radiation condition:

lim
r→∞

((∇× Ê)× x − iκrÊ) = 0, r = |x|,

for any fixed frequency κ > 0. In fact, the radiation condition of Ê can be straightforwardly 
derived from the expression of E in terms of the Green tensor G(x, t) together with the radia-
tion condition of Ĝ(x;κ). The details may be found in [9]. Hence, we have Ê(x,κ)× ν = 0 
on the whole boundary ΓR. It follows from (2.2) that

Ê(x,κ) =
∫

R3
Ĝ(x − y,κ)

∫ T

0
f(y, t)e−iκtdt dy.

Let Ê × ν and Ĥ × ν  be the tangential trace of the electric and the magnetic fields in 
the frequency domain, respectively. In the Fourier domain, there exists a capacity operator 
T : H−1/2(div,ΓR) → H−1/2(div,ΓR) such that the following transparent boundary condition 
can be imposed on ΓR (see e.g. [17]):

Ĥ × ν = T(Ê × ν) on ΓR. (3.3)

This implies that Ĥ × ν  is uniquely determined by Ê × ν on ΓR, provided Ĥ and Ê are 
radiating solutions. The transparent boundary condition (3.3) can be equivalently written as

(∇× Ê)× ν = iκT(Ê × ν) on ΓR. (3.4)

Next we introduce the functions Ê
inc

 and Ĥ
inc

 by

Ê
inc
(x) = pe−iκx·d and Ĥ

inc
(x) = qe−iκx·d, (3.5)

where d ∈ S2 is a unit vector and p, q are two unit polarization vectors satisfying p · d = 0, 
q = p × d. It is easy to verify that Ê

inc
 and Ĥ

inc
 satisfy the homogeneous time-harmonic 

Maxwell equations in R3:

∇× (∇× Ê
inc
)− κ2Ê

inc
= 0 (3.6)

G Hu et alInverse Problems 35 (2019) 075001
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and

∇× (∇× Ĥ
inc
)− κ2Ĥ

inc
= 0. (3.7)

Let ξ = κd with |ξ| = κ ∈ (0,∞). We have from (3.5) that Ê
inc

= pe−iξ·x and 
Ĥ

inc
= qe−iξ·x. Multiplying both sides of (3.2) by Ê

inc
 and using the integration by parts over 

BR and (3.6), we have from Ê(x,κ)× ν = 0 on ΓR and the transparent boundary condition 
(3.4) that

∫

BR

∫ T

0
f(x, t)e−iκt · Ê

inc
dt dx

=

∫

BR

(∇× (∇× Ê)− κ2Ê) · Ê
inc

dx

=

∫

ΓR

ν × (∇× Ê) · Ê
inc − ν × (∇× Ê

inc
) · Êds

=−
∫

ΓR

(
iκT(Ê × ν) · Ê

inc
+ (Ê × ν) · (∇× Ê

inc
)
)

ds

=0.

 

(3.8)

Hence from (3.8) we obtain
∫

BR

∫ T

0
pe−iξ·x · g(t)J1(x − a(t))e−iκtdtdx =

∫

BR

∫ T

0
pe−iξ·x · g(t)J2(x − a(t))e−iκtdtdx.

By Fubini’s theorem, it is easy to obtain

p · Ĵ1(κd)
∫ T

0
g(t)e−iκd·a(t)e−iκtdt = p · Ĵ2(κd)

∫ T

0
g(t)e−iκd·a(t)e−iκtdt.

 (3.9)

Taking the limit κ → 0+ yields

lim
κ→0

∫ T

0
g(t)e−iκd·a(t)e−iκtdt =

∫ T

0
g(t)dt > 0.

Hence, there exist a small positive constant δ such that for all κ ∈ (0, δ),
∫ T

0
g(t)e−iκd·a(t)e−iκtdt �= 0,

which together with (3.9) implies that

p · Ĵ1(κd) = p · Ĵ2(κd).

Similarly, we may deduce from (3.7) and the integration by parts that

q · Ĵ1(κd) = q · Ĵ2(κd) for all d ∈ S2, κ ∈ (0, δ).

On the other hand, since Ji, i = 1, 2 is compactly supported in BR̂ and ∇x · Ji = 0 in BR̂, we 
have

G Hu et alInverse Problems 35 (2019) 075001



8

∫

R3
de−iκx·d · Ji(x)dx = − 1

iκ

∫

BR̂

∇e−iκx·d · Ji(x)dx

=
1
iκ

∫

BR̂

e−iκx·d∇ · Ji(x)dx = 0.

This implies that d · Ĵi(κd) = 0. Since p, q, d are orthonormal vectors, they form an orthonor-
mal basis in R3. It follows from the previous identities that

Ĵ1(κd) = p · Ĵ1(κd)p + q · Ĵ1(κd)q + d · Ĵ1(κd)d

= p · Ĵ2(κd)p + q · Ĵ2(κd)q + d · Ĵ2(κd)d

= Ĵ2(κd)

for all d ∈ S2 and κ ∈ (0, δ). Noting that Ĵi , i = 1, 2, are analytical functions in R3, we obtain 
Ĵ1(ξ) = Ĵ2(ξ) for all ξ ∈ R3, which completes the proof by taking the inverse Fourier trans-
form. □ 

4. Determination of moving orbit function

In this section, we assume that the source profile function J  is given. To prove the uniqueness 
for IP2, we consider two cases:

Case (i): the orbit {a(t) : t ∈ [0, T0]} ⊂ BR1 ∩ R3 is a curve lying in three dimensions; 

Case (ii): {a(t) : t ∈ [0, T0]} ⊂ BR1 ∩Π, where Π is a plane in three dimensions.

The second case means that the path of the moving source lies on a bounded flat surface 
in three dimensions. Cases (i) and (ii) will be discussed separately in the subsequent two 
subsections.

4.1. Uniqueness to IP2 in case (i)

Before stating the uniqueness result, we need an auxillary lemma.

Lemma 4.1. Let f1, f2, g ∈ C1[0, L] be functions such that

f ′1 > 0, f ′2 > 0, g > 0 on (0, L); f1(0) = f2(0).

In addition, suppose that
∫ L

0
f n
1 (s)g(s)ds =

∫ L

0
f n
2 (s)g(s)ds (4.1)

for all integers n = 0, 1, 2 · · ·. Then it holds that f1 = f2 on [0, L].

Proof. Without loss of generality we assume that f1(0) = f2(0) = 0. Otherwise, we may 
consider the functions s → fj(s)− fj(0) in place of f j . To prove lemma 4.1, we first show 
f1(L) = f2(L) and then apply the moment theory to get f1 ≡ f2.

G Hu et alInverse Problems 35 (2019) 075001
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Assume without loss of generality that f1(L) > f2(L). Write f 1(L)  =  c and supx∈(0,L)g(x) = M .  
Since f ′1(s) > 0 and f 1(0)  =  0, we have c  >  0. Therefore, there exists sufficiently small posi-
tive numbers ε > 0 and δ1, δ2 > 0 such that

f1(s) � c − δ1, f2(s) � c − 2δ1, g(s) � δ2 for all s ∈ [L − 2ε, L − ε],
f1(s) > f2(s) for all s ∈ [L − 2ε, L].

Using the above relations, we deduce from (4.1) that

0 =

∫ L

0
f n
1 (s)g(s)− f n

1 (s)g(s)ds

=

∫ L

L−ε

f n
1 (s)g(s)− f n

2 (s)g(s)ds +
∫ L−ε

L−2ε
f n
1 (s)g(s)− f n

2 (s)g(s)ds

+

∫ L−2ε

0
f n
1 (s)g(s)− f n

2 (s)g(s)ds

�
∫ L−ε

L−2ε
f n
1 (s)g(s)− f n

2 (s)g(s)ds −
∫ L−2ε

0
f n
2 (s)g(s)ds

� εδ2

[
(c − δ1)

n − (c − 2δ1)
n
]
− (L − 2ε)M(c − 2δ1)

n

� (c − δ1)
n
[
εδ2 − (εδ2 + (L − 2ε)M)

(c − 2δ1

c − δ1

)n]
,

which means that

(c − δ1)
n
[
εδ2 − (εδ2 + (L − 2ε)M)

(c − 2δ1

c − δ1

)n]
� 0

for all integers n = 0, 1, 2 · · ·. However, since c−2δ1
c−δ1

< 1, there exists a sufficiently large inte-
ger N  >  0 such that

εδ2 − (εδ2 + (L − 2ε)M)
(c − 2δ1

c − δ1

)N
> 0.

Then we obtain

(c − δ1)
N
[
εδ2 − (εδ2 + (L − 2ε)M)

(c − 2δ1

c − δ1

)N]
> 0,

which is a contradiction. Therefore, we obtain f1(L) = f2(L).
Denote c = f1(0) = f2(0) and d = f1(L) = f2(L). Since f j  is monotonically increasing, the 

relation τ = fj(s) implies that s = f−1
j (τ) for all s ∈ [0, L] and τ ∈ [c, d]. Using the change of 

variables, we get
∫ L

0
f n
j (s)g(s)ds =

∫ d

c
τ ng ◦ ( f−1

j (τ))( f−1
j )′(τ)dτ , j = 1, 2.
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Hence, it follows from (4.1) that
∫ d

c
τ ndµ =

∫ d

c
τ ndν, (4.2)

where µ and ν  are two Lebesgue measures such that

dµ = g ◦ ( f−1
1 (τ))( f−1

1 )′(τ)dτ ,

dν = g ◦ ( f−1
2 (τ))( f−1

2 )′(τ)dτ .

By the Stone–Weierstrass theorem, it is easy to note from (4.2) that dµ = dν , which means

g ◦ ( f−1
1 (τ))( f−1

1 )′(τ) = g ◦ ( f−1
2 (τ))( f−1

2 )′(τ) for all τ ∈ [c, d]. (4.3)

Introduce two functions:

F1(τ) =

∫ f−1
1 (τ)

0
g(s)ds, F2(τ) =

∫ f−1
2 (τ)

0
g(s)ds.

Hence, from (4.3) we deduce F′
1(τ) = F′

2(τ) for τ ∈ [c, d]. Moreover, since f−1
1 (c) = 

f−1
2 (c) = 0, we have F1(c) = F2(c) = 0 and then F1(τ) = F2(τ) for τ ∈ [c, d], i.e.

∫ f−1
1 (τ)

0
g(s)ds =

∫ f−1
2 (τ)

0
g(s)ds. (4.4)

From (4.4), it is easy to know that f−1
1 (τ) = f−1

2 (τ) for all τ ∈ [c, d]. Otherwise, suppose 
f−1
1 (τ0) �= f−1

2 (τ0) at some point τ0 ∈ [c, d]. Since g(s) > 0 for all s ∈ (0, L), we obtain that

∫ f−1
1 (τ0)

0
g(s)ds �=

∫ f−1
2 (τ0)

0
g(s)ds,

which is a contradiction. Consequently, we obtain f−1
1 = f−1

2  and thus f1(s) = f2(s) for all 
s ∈ [0, L]. The proof is complete. □ 

Our uniqueness result for the determination of a is stated as follows.

Theorem 4.2. Assume that g(t) > 0 for t ∈ (0, T0) and that a(0) = O ∈ R3 is lo-
cated at the origin and that each comp onent aj ,j   =  1,2,3 of a satisfies |a′i(t)| < 1 for 
t ∈ [0, T0]. Then the function a(t), t ∈ [0, T0] can be uniquely determined by the data set 
{E(x, t)× ν : x ∈ Γ, t ∈ (0, T)}.

Proof. Assume that there are two orbit functions a and b such that
{
∂2

t E1(x, t) +∇× (∇× E1(x, t)) = J(x − a(t))g(t), x ∈ R3, t > 0,
E1(x, 0) = ∂tE1(x, 0) = 0, x ∈ R3,

and
{
∂2

t E2(x, t) +∇× (∇× E2(x, t)) = J(x − b(t))g(t), x ∈ R3, t > 0,
E2(x, 0) = ∂tE2(x, 0) = 0, x ∈ R3.
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Here we assume that b(0) = O and |b′j(t)| < 1 for t ∈ [0, t0] and j = 1, 2, 3. We need to show 
a(t) = b(t) in (0,T0) if E1(x, t)× ν(x) = E2(x, t)× ν for x ∈ Γ, t ∈ (0, T).

For each unit vector d , we can choose two unit polarization vectors p, q such that 
p · d = 0, q = p × d . Letting E = E1 − E2 and following similar arguments as those of theo-
rem 3.1, we obtain

p · Ĵ(κd)
∫ T

0
g(t)e−iκd·a(t)e−iκtdt = p · Ĵ(κd)

∫ T

0
g(t)e−iκd·b(t)e−iκtdt, (4.5)

q · Ĵ(κd)
∫ T

0
g(t)e−iκd·a(t)e−iκtdt = q · Ĵ(κd)

∫ T

0
g(t)e−iκd·b(t)e−iκtdt, (4.6)

and

d · Ĵ(κd) = 0,

which means

Ĵ(κd) = p · Ĵ(κd)p + q · Ĵ(κd)q.

Therefore, since J �= 0, for each unit vector d  there exists a sequence {κj}+∞
j=1  such that 

limj→0 κj = 0 and for each κj, either p · Ĵ(κjd) �= 0 or q · Ĵ(κjd) �= 0. Hence from (4.5)–(4.6) 
we have

∫ T

0
e−iκjd·a(t)e−iκjtg(t)dt =

∫ T

0
e−iκjd·b(t)e−iκjtg(t)dt, j = 1, 2, · · · . (4.7)

Expanding e−iκjd·a(t)e−iκjt and e−iκjd·a(t)e−iκjt into power series with respect to κj, we write 
(4.7) as

∞∑
n=0

αn

n!
κn

j =

∞∑
n=0

βn

n!
κn

j , (4.8)

where

αn :=
∫ T

0
(d · a(t) + t)ng(t)dt, βn :=

∫ T

0
(d · b(t) + t)ng(t)dt, n = 1, 2 · · · .

In view of the fact that supp(g) ⊂ [0, T0], we get

αn =

∫ T0

0
(d · a(t) + t)ng(t)dt, βn =

∫ T0

0
(d · b(t) + t)ng(t)dt, n = 1, 2 · · · .

Since (4.8) holds for all κj and limj→∞ κj = 0, it is easy to conclude that αn = βn for 
n = 0, 1, 2 · · · . Choosing d = (1, 0, 0), we have

(a1(t) + t)′ = 1 + a′1(t) > 0, (b1(t) + t)′ = 1 + b′1(t) > 0, a1(0) = b1(0).
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It follows from αn = βn and lemma 4.1 that a1(t) = b1(t) for t ∈ [0, T0]. Similarly letting 
d = (0, 1, 0) and d = (0, 0, 1) we have a2(t) = b2(t) and a3(t) = b3(t) for t ∈ [0, T0], respec-
tively, which proves that a(t) = b(t) for t ∈ [0, T0]. □ 

Remark 4.3. In theorem 4.2, it is stated that we can only recover the function a(t) over 
the finite time period [0,T0] because the moving source radiates in this time period, i.e. 
supp(g) = [0, T0]. The information of a(t) for t  >  T0 cannot be retrieved. The monotonicity 
assumption a′

j � 0 for j = 1, 2, 3 can be replaced by the following condition: there exist three 
linearly independent unit directions dj, j = 1, 2, 3 such that

|dj · a′(t)| < 1, t ∈ [0, T0], j = 1, 2, 3.

Note that this condition can always be fulfilled if the source moves along a straight line with 
the speed less than one.

4.2. Uniqueness to IP2 in case (ii)

For simplicity of notation, let x̃ = (x1, x2) for x = (x1, x2, x3) and R2 = {x ∈ R3 : x3 = 0}. 
Let ã(t) ∈ R2 for all t ∈ [0, T0]. In this subsection, we assume that

F(x, t) = J(x̃ − ã(t)) h(x3) g(t), x ∈ R3, t ∈ R+,

where J(x̃) = (J1(x̃), J2(x̃), 0) ∈ H2(R2)3 depends only on x̃ and h ∈ H2(R), 
supp(h) ⊂ (−R̂, R̂)

√
2/2. Moreover, we assume that h does not vanish identically and

supp(J) ⊂ {x̃ ∈ R2 : |x̃| < R̂
√

2/2}, ∂x1 J1(x̃) + ∂x2 J2(x̃) = 0.

The temporal function g is defined the same as in the previous sections. The above assump-
tions imply that we still have supp(F) ⊂ BR̂ × [0, T0] and div F = 0 in R3. We consider the 
inhomogeneous Maxwell system

{
∂2

t E(x, t) +∇× (∇× E(x, t)) = J(x̃ − ã(t)) h(x3) g(t), x ∈ R3, t > 0,
E(x, 0) = ∂tE(x, 0) = 0, x ∈ R3.

 

(4.9)

Since the equation (4.9) is a special case of (1.2), the results of lemmas 2.1 and 2.2 also apply 
to this case.

For our inverse problem, it is assumed that J ∈ A is a given source function, where the 
admissible set

A = {J = (J1, J2, 0) : Ji(0) > Ji(x̃) for i = 1 or i = 2 and all x̃ �= 0}.

The x3-dependent function h is also assumed to be given. We point out that these a priori infor-
mation of J  and h are physically reasonable, while J  and h can be regarded as approximation 
of the Dirac functions (for example, Gaussian functions) with respect to x̃ and x3, respectively. 
Our aim is to recover the unknown orbit function ã(t) ∈ C1([0, T0])

2 which has a upper bound 
|ã(t)| � R1 for some R1  >  0 and for all t ∈ [0, T0]. Let R > R̂ + R1 and T = T0 + R + R̂ + R1.

Below we prove that the tangential trace of the dynamical magnetic field on ΓR × (0, T) 
can be uniquely determined by that of the electric field. It will be used in the subsequent 
uniqueness proof with the data measured on the whole surface ΓR.

Lemma 4.4. Assume that the electric field E ∈ C([0, T]; H2(R3))3 ∩ C1([0, T]; H1(R3))3 
satisfies
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{
∂2

t E(x, t) +∇× (∇× E(x, t)) = 0, |x| > R, t ∈ (0, T),
E(x, 0) = ∂tE(x, 0) = 0, x ∈ R3.

If E × ν = 0 on ΓR × (0, T), then (∇× E)× ν = 0 on ΓR × (0, T).

Proof. Let us assume that E × ν = 0 on ΓR × (0, T) and consider V  defined by

V(x, t) =
∫ t

0
E(x, s)ds, (x, t) ∈ R3 × (0, T).

In view of (4.4) and the fact that E(x, t)× ν = 0 on ΓR × (0, T), we find


∂2

t V(x, t) +∇× (∇× V(x, t)) = 0, |x| > R, t ∈ (0, T),
V(x, 0) = ∂tV(x, 0) = 0, x ∈ R3,
∂tV(x, t)× ν(x) = 0, (x, t) ∈ ΓR × (0, T).

 (4.10)

We define the energy E associated to V  on Ω := {x ∈ R3 : |x| > R}

E(t) :=
∫

Ω

(|∂tV(x, t)|2 + |∇x × V(x, t)|2)dx, t ∈ [0, T].

Since E ∈ C([0, T]; H2(R3))3 ∩ C1([0, T]; H1(R3))3, we have

V ∈ C([0, T]; H2(R3))3 ∩ C1([0, T]; H1(R3))3 ∩ C2([0, T]; L2(R3))3.

It follows that E ∈ C1([0, T]). Moreover, we get

E ′(t) = 2
∫

Ω

[∂2
t V(x, t) · ∂tV(x, t) + (∇x × V(x, t)) · (∇x × ∂tV(x, t))] dx.

Integrating by parts in x ∈ Ω and applying (4.10), we obtain

E ′(t) = 2
∫

Ω

[∂2
t V +∇x × (∇x × V)] · ∂tV(x, t) dx

+ 2
∫

ΓR

(∇x × V) · (ν × ∂tV(x, t))ds

= 0.

This proves that E is a constant function. Since

E(0) =
∫

Ω

(|∂tV(x, 0)|2 + |∇x × V(x, 0)|2)dx = 0,

we deduce E(t) = 0 for all t ∈ [0, T]. In particular, we have
∫

Ω

|E(x, t)|2 dx =

∫

Ω

|∂tV(x, t)|2 dx � E(t) = 0, t ∈ [0, T].

This proves that

E(x, t) = 0, |x| > R, t ∈ (0, T),
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which implies that (∇× E)× ν = 0 on ΓR × (0, T) and completes the proof. □ 

In the following lemma, we present a uniqueness result for recovering ã from the tangential 
trace of the electric field measured on ΓR. Our arguments are inspired by a recent uniqueness 
result [10] to inverse source problems in elastodynamics. Compared to the uniqueness result 
of theorem 4.2, the slow moving assumption of the source is not required in the following 
theorem 4.5.

Theorem 4.5. Assume that g(t) > 0 for t ∈ (0, T0), J ∈ A and the non-vanishing function 
h are both known. Then the function ã(t), t ∈ [0, T0] can be uniquely determined by the data 
set {E(x, t)× ν : x ∈ ΓR, t ∈ (0, T)}.

Proof. Assume that there are two functions ã and b̃ such that
{
∂2

t E1(x, t) +∇× (∇× E1(x, t)) = J(x̃ − ã(t))h(x3)g(t), x ∈ R3, t > 0,
E1(x, 0) = ∂tE1(x, 0) = 0, x ∈ R3,

 (4.11)

and
{
∂2

t E2(x, t) +∇× (∇× E2(x, t)) = J(x̃ − b̃(t))h(x3)g(t), x ∈ R3, t > 0,
E2(x, 0) = ∂tE2(x, 0) = 0, x ∈ R3.

 (4.12)

It suffices to show that ã(t) = b̃(t) in (0,T0) if E1(x, t)× ν = E2(x, t)× ν  for x ∈ ΓR, t ∈ (0, T). 
Denote E = E1 − E2 and

f(x̃, t) = J(x̃ − ã(t))g(t)− J(x̃ − b̃(t))g(t).

Subtracting (4.11) from (4.12) yields
{
∂2

t E(x, t) +∇× (∇× E(x, t)) = f(x̃, t)h(x3)g(t), x ∈ R3, t > 0,
E(x, 0) = ∂tE(x, 0) = 0, x ∈ R3.

 (4.13)

Since h does not vanish identically, we can always find an interval Λ = (a−, a+) ⊂ R+ such 
that

∫ R̂
√

2/2

−R̂
√

2/2
eλx3 h(x3)dx3 �= 0, ∀λ ∈ Λ. (4.14)

Set H := {(x1, x2) : a2
− < x2

2 − x2
1 < a2

+, x1 > 0, x2 > 0}, which is an open set in R2. We 
choose a test function F(x, t) of the form

F(x, t) = pe−iκ1te−iκ2d̃·x̃e
√

κ2
2−κ2

1x3 ,

where d̃ = (d1, d2) is a unit vector, p̃ = ( p1, p2) is a unit vector orthogonal to d̃ , 
d := (d̃, 0) ∈ R3, p := (p̃, 0) ∈ R3 and κ1,κ2 are positive constants such that (κ1,κ2) ∈ H . 
It is easy to verify that

∂2
t F(x, t) +∇× (∇× F(x, t)) = 0. (4.15)
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Since E(x, t)× ν = 0 on ΓR, from lemma 4.4, we also have (∇× E(x, t))× ν = 0 on ΓR. 
Consequently, multiplying both sides of the Maxwell system by F and using integration by 
parts over [0, T]× BR, we can obtain from (4.15) that

∫ T

0

∫

BR

f(x̃, t)h(x3) · F(x, t)dxdt

=

∫ T

0

∫

BR

(
∂2

t E(x, t) +∇× (∇× E(x, t))
)
· F(x, t)dxdt

=

∫ T

0

∫

ΓR

ν × (∇× E(x, t)) · F(x, t)− ν × (∇× F(x, t)) · E(x, t)dsdt

=

∫ T

0

∫

ΓR

ν × (∇× E(x, t)) · F(x, t)− (E(x, t)× ν) · (∇× F(x, t))dsdt

= 0.

Note that in the last step we have used lemma 4.4. Recalling the definition of F and f , we 
obtain from the previous identity that

(∫ R̂
√

2/2

−R̂
√

2/2
e
√

κ2
2−κ2

1x3 h(x3)dx3

)
p ·

∫ T

0

∫

BR̂

f(x̃, t)e−iκ1te−iκ2d̃·x̃dx̃dt = 0.

In view of (4.14) and the choice of κ1,κ2, we get

p ·
∫ T

0

∫

BR̂

f(x̃, t)e−iκ1te−iκ2d̃·x̃dx̃dt = 0.

For a vector v(x̃, t) ∈ R3, denote by v̂(ξ), ξ ∈ R3 the Fourier transform of v with respect to 
the variable (x̃, t), i.e.

v̂(ξ) =
∫

R3
v(x̃, t)e−iξ·(x̃,t)dx̃dt.

Consequently, it holds that

p · f̂(κ2d̃,κ1) = 0

for all κ2 > κ1 > 0 and |d̃| = 1.
On the other hand, since ∂x1 J1 + ∂x2 J2 = 0, fixing f̃ = ( f1, f2), we have ∇x̃ · f̃ = 0. Hence,

d ·
∫ T

0

∫

BR̂

f(x̃, t)e−iκ1te−iκ2d̃·x̃dx̃dt

= − 1
iκ2

∫ T

0

∫

BR̂

f̃(x̃, t) · ∇x̃e−iκ2d̃·x̃dx̃dt

=
1

iκ2

∫ T

0

∫

BR̂

∇x̃ · f̃(x̃, t)e−iκ2d̃·x̃dx̃dt

= 0,
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which means d · f̂(κ2d̃,κ1) = 0 for all (κ1,κ2) ∈ H  and |d̃| = 1. Since both d̃  and p̃ are or-
thonormal vectors in R2, they form an orthonormal basis in R2. Therefore we have

f̂(κ2d̃,κ1) = d · f̂(κ2d̃,κ1)d + p · f̂(κ2d̃,κ1)p = 0

for all (κ1,κ2) ∈ H  and |d̃| = 1. Since f̂  is analytic in R3 and {(κ1,κ2d̃) : (κ1,κ2) ∈ H, |d̃| = 1} is 
an open set in R3, we have f̂(ξ) = 0 for all ξ ∈ R3, which means f(x̃, t) ≡ 0 and then

J(x̃ − ã(t))g(t) = J(x̃ − b̃(t))g(t)

for all x̃ ∈ R2 and t  >  0. This particularly gives

J(x̃ − ã(t)) = J(x̃ − b̃(t)) for all t ∈ (0, T0), x̃ ∈ R2. (4.16)

Assume that there exists one time point t0 ∈ (0, T0) such that ã(t0) �= b̃(t0). By choosing 
x̃ = ã(t0) we deduce from (4.16) that

J(0) = J(ã(t0)− b̃(t0)),

which is a contradiction to our assumption that J ∈ A. This finishes the proof of ã(t) = b̃(t) 
for t ∈ [0, T0]. □ 

Remark 4.6. The proof of theorem 4.5 does not depend on the Fourier transform of the 
electromagnetic field in time, but it requires the data measured on the whole surface ΓR. How-
ever, the Fourier approach presented in the proof of theorems 3.1 and 4.2 straightforwardly 
carries over to the proof of theorem 4.5 without any additional difficulties. Particulary, the re-
sult of theorem 4.5 remains valid with the partial data {E(x, t)× ν : x ∈ Γ ⊂ ΓR, t ∈ (0, T)}.

Remark 4.7. In the case of the scalar wave equation,
{
∂2

t u(x, t) +∇× (∇× u(x, t)) = J(x̃ − ã(t)) h(x3) g(t), x ∈ R3, t > 0,
u(x, 0) = ∂tu(x, 0) = 0, x ∈ R3,

where J : R2 → R+ is a scalar function compactly supported on {(x1, x2) ∈ R2 : x2
1 + x2

2 < R̂2}.  
Then, following the same arguments as in the proof of theorem 4.5, one can prove that 
ã(t), t ∈ [0, T0] can be uniquely determined by the data set {u(x, t) : x ∈ Γ ⊂ ΓR, t ∈ (0, T)}.

5. Inverse moving source problem for a delta distribution

As seen in the previous sections, when the temporal function g is supported on [0,T0], it is 
possible to recover the moving orbit function a(t) for t ∈ [0, T0]. In this section we consider 
the case where the temporal function shrinks to the Dirac distribution g(t) = δ(t − t0) with 
some unknown time point t0  >  0. Our aim is to determine t0 and a(t0) from the electric data at 
a finite number of measurement points.

Consider the following initial value problem of the time-dependent Maxwell equation
{
∂2

t E(x, t) +∇× (∇× E(x, t)) = −J(x − a(t))δ(t − t0), x ∈ R3, t > 0,
E(x, 0) = ∂tE(x, 0) = 0, x ∈ R3.

 (5.1)
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Since ∇ · J = 0, the electric field E(x) in this case can be expressed as

E(x, t) =
∫ ∞

0

∫

R3
G(x − y, t − s)J(y − a(s))δ(s − t0)dyds

=

∫ ∞

0

∫

R3

1
4π|x − y|

δ(|x − y| − (t − s))J(y − a(s))δ(s − t0)dyds

−
∫ ∞

0

∫

R3
∇x∇�

x

( 1
4π|x − y|

H(|x − y|+ s − t)
)

J(y − a(s))δ(s − t0)dyds

=

∫ ∞

0

∫

R3

1
4π|x − y|

δ(|x − y| − (t − s))J(y − a(s))δ(s − t0)dyds

−
∫ ∞

0

∫

R3
∇y∇�

y

( 1
4π|x − y|

H(|x − y|+ s − t)
)

J(y − a(s))δ(s − t0)dyds

=

∫

R3

1
4π|x − y|

δ(|x − y| − (t − t0))J(y − a(t0))dy.

 

(5.2)

Before stating the main theorem of this section, we describe the strategy for the choice of 
four measurement points (or receivers) on the sphere ΓR. The geometry is shown in figure 1. 
First, we choose arbitrarily three different points x1, x2, x3 ∈ ΓR. Denote by P the uniquely 
determined plane passing through x1, x2 and x3, and by L the line passing through the origin 
and perpendicular to P. Obviously the straight line L has two intersection points with ΓR. 
Choose one of the intersection points with the longer distance to plane P as the fourth point 
x4. If the two intersection points have the same distance to P, we can choose either one of 
them as x4. By our choice of xj, j = 1, 2, 3, 4, they cannot lie on one side of any plane passing 
through the origin, if the plane P determined by xj, j = 1, 2, 3 does not pass through the origin.

Theorem 5.1. Let the measurement positions xj ∈ ΓR, j = 1, · · · , 4 be given as above 
and let J  be specified as in the introduction part. We assume additionally that supp(J) = BR̂ 
and there exists a small constant δ > 0 such that |Ji(x)| > 0 for all R̂ − δ � |x| � R̂ 
and i = 1, 2, 3. Then both t0 and a(t0) can be uniquely determined by the data set 
{E(xj, t) : j = 1, · · · , 4, t ∈ (0, T)}, where T = t0 + R̂ + R1 + R.

Proof. Analogously to lemma 2.1, one can prove that E(x, t) = 0 for all x ∈ BR and t  >  T. 
Taking the Fourier transform of E(x, t) in (3.1) with respect to t and making use of the repre-
sentation of E in (5.2), we obtain

Ê(x,κ) =
∫

R3

eiκ(t0+|x−y|)

|x − y|
J(y − a(t0))dy

= eiκt0

∫ ∞

0
eiκρ 1

ρ

∫

Γρ(x)
J(y − a(t0))dydρ,

 

(5.3)

where Γρ(x) := {y ∈ R3 : |y − x| = ρ}. Assume that there are two orbit functions a and b 
and two time points t0 and t̃0 such that

{
∂2

t E1(x, t) +∇× (∇× E1(x, t)) = −J(x − a(t))δ(t − t0), x ∈ R3, t > 0,
E1(x, 0) = ∂tE1(x, 0) = 0, x ∈ R3,
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and
{
∂2

t E2(x, t) +∇× (∇× E2(x, t)) = −J(x − b(t))δ(t − t̃0), x ∈ R3, t > 0,
E2(x, 0) = ∂tE2(x, 0) = 0, x ∈ R3.

We need to prove t0 = t̃0 and a(t0) = b(̃t0) under the condition E1(xj, t) = E2(xj, t) for 
t ∈ [0, T] and j = 1, 2, 3, 4. Below we denote by x ∈ ΓR one of the measurement points xj 
( j = 1, · · · , 4). Introduce the functions F, Fa, Fb: R+ → R as follows:

F(ρ) =
1
ρ

∫

Γρ(x)
J(y)dy,

Fa(ρ) =
1
ρ

∫

Γρ(x)
J(y − a(t0))dy,

Fb(ρ) =
1
ρ

∫

Γρ(x)
J(y − b(̃t0))dy.

Since supp(J) = BR̂ and by our assumption, each component Jj(x) ( j = 1, 2, 3) is either posi-
tive or negative in a small neighborhood of ΓR̂, we can obtain that

inf{ρ ∈ supp(F)} = |x| − R̂, sup{ρ ∈ supp(F)} = |x|+ R̂,

inf{ρ ∈ supp(Fa)} = |x − a(t0)| − R̂, sup{ρ ∈ supp(Fa)} = |x − a(t0)|+ R̂,

inf{ρ ∈ supp(Fb)} = |x − b(̃t0)| − R̂, sup{ρ ∈ supp(Fb)} = |x − b(̃t0)|+ R̂.
 (5.4)

Since E1(x, t) = E2(x, t), t ∈ [0, T] for some point x ∈ ∂BR, from (5.3) we have

eiκt0 F̂a(κ) = eiκ̃t0 F̂b(κ)

for all κ > 0, which means

F̂a(κ) = e−iκ(t0−̃t0)F̂b(κ). (5.5)

x1 x2

x3

x4

P

ΓRO

L

Figure 1. Geometry of the four measurement points.
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Recalling the property of the Fourier transform,

̂Fb(ρ− (t0 − t̃0))(κ) = e−iκ(t0−̃t0)F̂b(κ),

we deduce from (5.5) that

Fb(ρ− (t0 − t̃0)) = Fa(ρ), ρ ∈ R+.

Particularly,

inf{supp(Fb(· − (t0 − t̃0)))} = inf{supp(Fa(·))},
sup{supp(Fb(· − (t0 − t̃0)))} = sup{supp(Fa(·))}.

Therefore, we derive from (5.4) that

|x − b(̃t0)| − R̂ + (t0 − t̃0) = |x − a(t0)| − R̂,

|x − b(̃t0)|+ R̂ + (t0 − t̃0) = |x − a(t0)|+ R̂,

which means

|x − b(̃t0)| − |x − a(t0)| = t̃0 − t0. (5.6)

Physically, the right and left hand sides of the above identity represent the difference of the 
flight time between x and a(t0), b(̃t0). Note that the wave speed has been normalized to one 
for simplicity.

Finally, we prove that the identity (5.6) cannot hold simultaneously for our choice of  
measurement points xj ∈ ΓR ( j = 1, · · · , 4). Obviously, the set {x ∈ R3 : |x − b(̃t0)|−
|x − a(t0)| = t0 − t̃0} represents one sheet of a hyperboloid. This implies that xj ( j = 1, 2, 3, 4) 
should be located on one half sphere of radius R excluding the corresponding equator, which is 
a contradiction to our choice of xj. Then we have t0 = t̃0 and (5.6) then becomes

|x − b(t0)| − |x − a(t0)| = 0.

This implies that x1, x2, x3, x4 should be on the same plane. This is also a contradiction to our 
choice of xi, i = 1, · · · , 4. Then we have a(t0) = b(t0). □ 

Remark 5.2. If the source term on the right hand side of (5.1) takes the form

F(x, t) = −J(x − a(t))
m∑

j=1

δ(t − tj),

with the impulsive time points

t1 < t2 < · · · < tm, |tj+1 − tj| > R.

One can prove that the set {(tj, a(tj)) : j = 1, 2, · · · , m} can be uniquely determined by 
{E(xj, t) : j = 1, · · · , 4, t ∈ (0, T)}, where T = tm + R̂ + R1 + R. In fact, for 2 � j � m, one 
can prove that (tj, a(tj)) can be uniquely determined by {E(xj, t) : j = 1, · · · , 4, t ∈ (Tj−1, Tj)}, 
where Tj = Tj−1 + tj and T1 := t1 + R̂ + R1 + R.

G Hu et alInverse Problems 35 (2019) 075001



20

Acknowledgments

The work of G Hu is supported by the NSFC grant (No. 11671028) and NSAF grant (No. 
U1530401). The work of Y Kian is supported by the French National Research Agency ANR 
(project MultiOnde) grant ANR-17-CE40-0029.

ORCID iDs

Guanghui Hu  https://orcid.org/0000-0002-8485-9896
Yavar Kian  https://orcid.org/0000-0002-5588-3600
Peijun Li  https://orcid.org/0000-0001-5119-6435
Yue Zhao  https://orcid.org/0000-0001-5939-8410

References

	 [1]	 Albanese  R and Monk  P 2006 The inverse source problem for Maxwell’s equations Inverse 
Problems 22 1023–35

	 [2]	 Ammari H, Garnier J, Jing W, Kang H, Lim M, Solna K and Wang H 2013 Mathematical and 
Statistical Methods for Multistatic Imaging (Lecture Notes in Mathematics vol 2098) (Cham: 
Springer)

	 [3]	 Anikonov Yu E, Cheng  J and Yamamoto M 2004 A uniqueness result in an inverse hyperbolic 
problem with analyticity Eur. J. Appl. Math. 15 533–43

	 [4]	 Bao G, Hu G, Kian Y and Yin T 2018 Inverse source problems in elastodynamics Inverse Problems 
34 045009

	 [5]	 Bao G, Li P, Lin J and Triki F 2015 Inverse scattering problems with multi-frequencies Inverse 
Problems 31 093001

	 [6]	 Bao G, Li P and Zhao Y Stability in the inverse source problem for elastic and electromagnetic 
waves (arXiv:1703.03890) 

	 [7]	 Bao G, Lin J and Triki F 2010 A multi-frequency inverse source problem J. Differ. Equ. 249 3443–65
	 [8]	 Garnier G and Fink M 2015 Super-resolution in time-reversal focusing on a moving source Wave 

Motion 53 80–93
	 [9]	 Hu G, Li P, Liu X and Zhao Y 2018 Inverse source problems in electrodynamics Inverse Problems 

Imaging 12 1411–28
	[10]	 Hu G and Kian Y 2018 Uniqueness and stability for the recovery of a time-dependent source and 

initial conditions in elastodynamics (arXiv:1810.09662)
	[11]	 Klibanov M V 1992 Inverse problems and Carleman estimates Inverse Problems 8 575–96
	[12]	 Li  P and Yuan  G 2017 Stability on the inverse random source scattering problem for the one-

dimensional Helmholtz equation J. Math. Anal. Appl. 450 872–87
	[13]	 Li P and Yuan G 2017 Increasing stability for the inverse source scattering problem with multi-

frequencies Inverse Problems Imaging 11 745–59
	[14]	 Li S 2015 Carleman estimates for second order hyperbolic systems in anisotropic cases and an 

inverse source problem. Part II: an inverse source problem Appl. Anal. 94 2287–307
	[15]	 Li S and Yamamoto M 2005 An inverse source problem for Maxwell’s equations in anisotropic 

media Appl. Anal. 84 1051–67
	[16]	 Nakaguchi E, Inui H and Ohnaka K 2012 An algebraic reconstruction of a moving point source for 

a scalar wave equation Inverse Problems 28 065018
	[17]	 Nédélec J-C 2000 Acoustic and Electromagnetic Equations: Integral Representations for Harmonic 

Problems (New York: Springer)
	[18]	 Ohe T, Inui H and Ohnaka K 2011 Real-time reconstruction of time-varying point sources in a 

three-dimensional scalar wave equation Inverse Problems 27 115011
	[19]	 Ola P, Päivärinta L and Somersalo E 1993 An inverse boundary value problem in electrodynamics 

Duke Math. J. 70 617–53
	[20]	 Ramm A G and Somersalo E 1989 Electromagnetic inverse problem with surface measurements at 

low frequencies Inverse Problems 5 1107–16

G Hu et alInverse Problems 35 (2019) 075001

https://orcid.org/0000-0002-8485-9896
https://orcid.org/0000-0002-8485-9896
https://orcid.org/0000-0002-5588-3600
https://orcid.org/0000-0002-5588-3600
https://orcid.org/0000-0001-5119-6435
https://orcid.org/0000-0001-5119-6435
https://orcid.org/0000-0001-5939-8410
https://orcid.org/0000-0001-5939-8410
https://doi.org/10.1088/0266-5611/22/3/018
https://doi.org/10.1088/0266-5611/22/3/018
https://doi.org/10.1088/0266-5611/22/3/018
https://doi.org/10.1017/S0956792504005649
https://doi.org/10.1017/S0956792504005649
https://doi.org/10.1017/S0956792504005649
https://doi.org/10.1088/1361-6420/aaaf7e
https://doi.org/10.1088/1361-6420/aaaf7e
https://doi.org/10.1088/0266-5611/31/9/093001
https://doi.org/10.1088/0266-5611/31/9/093001
https://arxiv.org/abs/1703.03890
https://doi.org/10.1016/j.jde.2010.08.013
https://doi.org/10.1016/j.jde.2010.08.013
https://doi.org/10.1016/j.jde.2010.08.013
https://doi.org/10.1016/j.wavemoti.2014.11.005
https://doi.org/10.1016/j.wavemoti.2014.11.005
https://doi.org/10.1016/j.wavemoti.2014.11.005
https://doi.org/10.3934/ipi.2018059
https://doi.org/10.3934/ipi.2018059
https://doi.org/10.3934/ipi.2018059
http://arxiv.org/abs/1810.09662
https://doi.org/10.1088/0266-5611/8/4/009
https://doi.org/10.1088/0266-5611/8/4/009
https://doi.org/10.1088/0266-5611/8/4/009
https://doi.org/10.1016/j.jmaa.2017.01.074
https://doi.org/10.1016/j.jmaa.2017.01.074
https://doi.org/10.1016/j.jmaa.2017.01.074
https://doi.org/10.3934/ipi.2017035
https://doi.org/10.3934/ipi.2017035
https://doi.org/10.3934/ipi.2017035
https://doi.org/10.1080/00036811.2014.986847
https://doi.org/10.1080/00036811.2014.986847
https://doi.org/10.1080/00036811.2014.986847
https://doi.org/10.1080/00036810500047725
https://doi.org/10.1080/00036810500047725
https://doi.org/10.1080/00036810500047725
https://doi.org/10.1088/0266-5611/28/6/065018
https://doi.org/10.1088/0266-5611/28/6/065018
https://doi.org/10.1088/0266-5611/27/11/115011
https://doi.org/10.1088/0266-5611/27/11/115011
https://doi.org/10.1215/S0012-7094-93-07014-7
https://doi.org/10.1215/S0012-7094-93-07014-7
https://doi.org/10.1215/S0012-7094-93-07014-7
https://doi.org/10.1088/0266-5611/5/6/016
https://doi.org/10.1088/0266-5611/5/6/016
https://doi.org/10.1088/0266-5611/5/6/016


21

	[21]	 Stefanov P D 1989 Inverse scattering problem for a class of moving obstacles C. R. Acad. Bulgare 
Sci. 42 25–7

	[22]	 Stefanov P D 1991 Inverse scattering problem for moving obstacles Math. Z. 207 461–80
	[23]	 Valdivia  N  P 2012 Electromagnetic source identification using multiple frequency information 

Inverse Problems 28 115002
	[24]	 Wang X, Guo Y, Li J and Liu H 2017 Mathematical design of a novel input/instruction device using 

a moving acoustic emitter Inverse Problems 33 105009
	[25]	 Yamamoto M 1998 On an inverse problem of determining source terms in Maxwell’s equations with 

a single measurement Inverse Problems, Tomography, and Image Processing vol 15 (New York: 
Plenum) pp 241–56

	[26]	 Zhao Y and Li P 2019 Stability on the one-dimensional inverse source scattering problem in a two-
layered medium Appl. Anal. 98 682–92 

G Hu et alInverse Problems 35 (2019) 075001

https://doi.org/10.1007/BF02571402
https://doi.org/10.1007/BF02571402
https://doi.org/10.1007/BF02571402
https://doi.org/10.1088/0266-5611/28/11/115002
https://doi.org/10.1088/0266-5611/28/11/115002
https://doi.org/10.1088/1361-6420/aa873f
https://doi.org/10.1088/1361-6420/aa873f
https://doi.org/10.1080/00036811.2017.1399365
https://doi.org/10.1080/00036811.2017.1399365
https://doi.org/10.1080/00036811.2017.1399365

	Inverse moving source problems 
in electrodynamics
	Abstract
	1. Introduction
	2. The direct problem
	3. Determination of the source profile function
	4. Determination of moving orbit function
	4.1. Uniqueness to IP2 in case (i)
	4.2. Uniqueness to IP2 in case (ii)

	5. Inverse moving source problem for a delta distribution
	Acknowledgments
	ORCID iDs
	References


