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Abstract
This paper is concerned with the electromagnetic scattering of a point source 
by a perfectly electrically conducting obstacle which is embedded in a two-
layered lossy medium separated by an unbounded rough surface. Given a 
dipole point source, the direct problem is to determine the electromagnetic 
wave field for the given obstacle and unbounded rough surface; the inverse 
problem is to reconstruct simultaneously the obstacle and unbounded rough 
surface from the reflected and transmitted fields measured on a plane surface 
which is above and below the unknown objects, respectively. For the direct 
problem, its well-posedness is established and a new boundary integral 
equation  is proposed. The analysis is based on the exponential decay of 
the dyadic Green function for Maxwell’s equations  in a lossy medium. For 
the inverse problem, the global uniqueness is proved and a local stability is 
discussed. A crucial step in the proof of the stability is to obtain the existence 
and characterization of the domain derivative of the electric field with respect 
to the shape of the obstacle and unbounded rough surface.

Keywords: Maxwell’s equations, inverse scattering problem, unbounded 
rough surface, domain derivative, uniqueness, local stability
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1. Introduction

Consider the electromagnetic scattering of a dipole point source by an obstacle which is 
embedded in a two-layered medium separated by an unbounded rough surface in three dimen-
sions. An obstacle is referred to as an impenetrable medium which has a bounded closed 
surface; an unbounded rough surface stands for a nonlocal perturbation of an infinite plane 
surface such that the perturbed surface lies within a finite distance of the original plane. Given 
a dipole point source, the direct problem is to determine the electromagnetic wave field for the 
known obstacle and unbounded rough surface; the inverse problem is to reconstruct both the 
obstacle and the unbounded rough surface, from the measured wave field. The scattering prob-
lems arise from diverse scientific areas such as radar and sonar, geophysical exploration, non-
destructive testing, and medical imaging. In particular, the obstacle scattering in unbounded 
structures has significant applications in radar based object recognition above the sea surface 
and detection of underwater or underground mines.

As a fundamental problem in scattering theory, the classical obstacle scattering problem, 
where the obstacle is embedded in a homogeneous medium, has been examined extensively 
by numerous researchers. The details can be found in the monographs [6, 27] and [5, 7, 16] 
on the mathematical and numerical studies of the direct and inverse problems, respectively. 
The unbounded rough surface scattering problems have also been widely examined in both 
of the mathematical and engineering communities. We refer to [8, 12, 15, 25, 28–31, 33] for 
various solution methods including mathematical, computational, approximate, asymptotic, 
and statistical methods. The scattering problems in unbounded structures are quite challeng-
ing due to two major issues: the usual Silver–Müller radiation condition is no longer valid; the 
Fredholm alternative argument does not directly apply due to the unbounded rough surface. 
The mathematical analysis can be found in [10, 11, 18, 22, 32] and [13, 20, 23] on the well-
posedness of the two-dimensional Helmholtz equation and the three-dimensional Maxwell 
equations, respectively. The inverse problems have also been considered mathematically and 
computationally for unbounded rough surfaces in [1–3, 24].

In this paper, we study the electromagnetic obstacle scattering for the three-dimensional 
Maxwell equations in an unbounded structure. Specifically, we consider the illumination of a 
time-harmonic electromagnetic wave, generated from a dipole point source, onto a perfectly 
electrically conducting obstacle which is embedded in a two-layered medium separated by 
an unbounded rough surface. The obstacle is located either above or below the unbounded 
rough surface and may have multiple disjoint components. For simplicity of presentation, we 
assume that the obstacle has only one component and is located above the surface. The free 
space above and below the unbounded rough surface is assumed to be filled with a homogene-
ous and lossy material accounting for the energy absorption, respectively. The problem has 
received much attention and many computational work have been done in the engineering 
community [14, 17, 19]. However, the rigorous analysis is very rare, especially for the three-
dimensional Maxwell equations.

In this work, we introduce an energy decaying condition to replace the Silver–Müller radia-
tion condition in order to ensure the uniqueness of the solution. The asymptotic behaviour of 
dyadic Green’s function is analyzed and plays an important role in the analysis for the well-
posedness of the direct problem. A new boundary integral equation is proposed for the associ-
ated boundary value problem. Based on some energy estimates, the uniqueness of the solution 
for the scattering problem is established. For the inverse problem, we intend to answer the 
following question: what information can we extract about the obstacle and the unbounded 
rough surface from the tangential trace of the electric field measured on the plane surface 
which is above and below the obstacle and unbounded rough surface, respectively? The first 
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result is a global uniqueness theorem. We show that any two obstacles and unbounded rough 
surfaces are identical if they generate the same data. The proof is based on a combination of 
the Holmgren uniqueness and unique continuation. The second result is concerned with a 
local stability: if two obstacles are ‘close’ and two unbounded rough surfaces are also ‘close’, 
then for any δ > 0, the measurements of the two tangential trace of the electric fields being 
δ-close implies that both of the two obstacles and the two unbounded rough surfaces are 
O(δ)-close. A crucial step in the stability proof is to obtain the existence and characteriza-
tion of the domain derivative of the electric field with respect to the shape of the obstacle and 
unbounded rough surface.

The paper is organized as follows. In section 2, we introduce the model problem and present 
some asymptotic analysis for dyadic Green’s function of the Maxwell equations. Section 3 is 
devoted to the well-posedness of the direct scattering problem. An equivalent integral repre-
sentation is proposed for the boundary value problem. A new boundary integral equation is 
developed. In sections 4 and 5, we discuss the global uniqueness and local stability of the 
inverse problem, respectively. The domain derivative is studied. The paper is concluded with 
some general remarks in section 6.

2. Problem formulation

We begin with introducing the problem geometry, which is shown in figure 1. Let S be an 
infinite rough surface given by

S = {x = (x1, x2, x3) ∈ R3 : x3 = f (x1, x2)},

where f ∈ C2(R2). Hence the surface S divides the whole space R3 into the upper half space 
Ω+

1  and the lower half space Ω2, where

Ω+
1 = {x ∈ R3 : x3 > f (x1, x2)}, Ω2 = {x ∈ R3 : x3 < f (x1, x2)}.

Let D be a bounded obstacle with C2 boundary Γ. The obstacle is assumed to be a perfect 
electrical conductor which is located either in Ω+

1  or in Ω2. For instance, we may assume that 
D ⊂⊂ Ω+

1 . Define Ω1 = Ω+
1 \ D. The domain Ωj  is assumed to be filled with some homoge-

neous, isotropic, and absorbing medium which may be characterized by the dielectric permit-
tivity εj > 0, the magnetic permeability µj > 0, and the electric conductivity σj > 0, j = 1, 2.

Let

f− = inf
(x1,x2)∈R2

f (x1, x2), f+ = sup
(x1,x2)∈R2

f (x1, x2).

Denote by Γj = {x ∈ R3 : x3 = hj}, j = 1, 2 the plane surface above the obstacle and below 
the infinite rough surface, respectively, where the constants h1, h2 satisfy

−∞ < h2 < f− < f+ < h1 < ∞.

Define R1 = {x ∈ R3 : f (x1, x2) < x3 < h1} and R2 = {x ∈ R3 : h2 < x3 < f (x1, x2)}. Let 
R = R1 ∪ R2 ∪ S.

In Ωj , the electromagnetic waves satisfy the time-harmonic Maxwell equations  (time 
dependence e−iωt):




∇× Ej = iωµjHj,
∇× Hj = −iωεjEj + Jj,
∇ · (εjEj) = ρj,
∇ · (µjHj) = 0,
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where ω > 0 is the angular frequency, Ej, Hj, Jj  denote the electric field, the magnetic field, 
the electric current density, respectively, and ρj = (iω)−1∇ · Jj is the electric charge density. 
The external current source is assumed to be located in Ω1. The relation between the electric 
current density and the electric field is given by

{
J1 = σ1E1 + Jcs in Ω1,
J2 = σ2E2 in Ω2,

where Jcs stands for the current source. Throughout, we also assume that the material is non-
magnetic, i.e. µ1 = µ2 = µ, where µ is a positive constant. Using the above constitutive rela-
tion, we obtain coupled systems




∇× E1 = iωµH1,
∇× H1 = −iω

(
ε1 + iσ1

ω

)
E1 + Jcs,(

ε1 + iσ1
ω

)
∇ · E1 = 1

iω∇ · Jcs,
∇ · H1 = 0,

in Ω1, (2.1)

and



∇× E2 = iωµH2,
∇× H2 = −iω

(
ε2 + iσ2

ω

)
E2,(

ε2 + iσ2
ω

)
∇ · E2 = 0,

∇ · H2 = 0,

in Ω2. (2.2)

Eliminating the magnetic field H1 in (2.1), we obtain a decoupled equation for the electric 
field E1:

∇× (∇× E1(x))− κ2
1E1(x) = iωµJcs(x), x ∈ Ω1. (2.3)

Similarly, it follows from (2.2) that we may deduce a decoupled Maxwell system for the 
electric field E2:

∇× (∇× E2(x))− κ2
2E2(x) = 0, x ∈ Ω2. (2.4)

Here κj = ω
√(

εj + iσj

ω

)
µ is the wave number in Ωj, j = 1, 2. Since εj,µ,σj  are positive con-

stants, κj satisfies

�(κ2
j ) > 0, �(κ2

j ) > 0, �(κj) > 0,

S

xs
Ei

D
Γ Ω1

Ω2

Γ1

Γ2

Es

E2

Figure 1. Problem geometry of the obstacle scattering in an unbounded structure.
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which accounts for the energy absorption.
By the perfect conductor assumption for the obstacle, it holds that

νΓ × E1 = 0 on Γ, (2.5)

where νΓ denotes the unit normal vector on the boundary Γ directed into the exterior of D. 
The usual continuity conditions need to be imposed, i.e. the tangential traces of the electric 
and magnetic fields are continuous across S:

νS × E1 = νS × E2, νS × H1 = νS × H2 on S, (2.6)

which are equivalent to the continuity conditions

νS × E1 = νS × E2, νS × (∇× E1) = νS × (∇× E2) on S, (2.7)

where νS denotes the unit normal vector on S pointing from Ω2 to Ω1.
The incident electromagnetic fields (Ei, Hi) satisfy Maxwell’s equations

{
∇× (∇× Ei(x))− κ2

1Ei(x) = iωµJcs(x),
∇× (∇× Hi(x))− κ2

1Hi(x) = ∇× Jcs(x),
x ∈ Ω1, (2.8)

where Hi = 1
iωµ (∇× Ei). In Ω1, the total electromagnetic fields (E1, H1) consist of the inci-

dent fields (Ei, Hi) and the scattered fields (Es, Hs). In Ω2, the electromagnetic fields (E2, H2) 
are called the transmitted fields.

In addition, we propose an energy decaying condition

lim
r→+∞

∫

∂B+
r

|Es|2ds = 0, lim
r→+∞

∫

∂B+
r

|∇ × Es|2ds = 0 (2.9)

and

lim
r→+∞

∫

∂B−
r

|E2|2ds = 0, lim
r→+∞

∫

∂B−
r

|∇ × E2|2ds = 0, (2.10)

where ∂B±
r  denotes the hemisphere of radius r above or below S.

For any tangential vector u = (u1, u2, 0)� on Γj , define the capacity operator Tj :

(Tju)(x1, x2, hj) = (v1, v2, 0)�,

where

v̂1 =
1
ωµ

[
βjû1 +

ξ1

βj
(ξ1û1 + ξ2û2)

]
, v̂2 =

1
ωµ

[
βjû2 +

ξ2

βj
(ξ1û1 + ξ2û2)

]
,

with

β2
j (ξ) = κ2

j − |ξ|2, �[βj(ξ)] > 0.

Here û denotes the Fourier transform of u with respect to � = (x1, x2) ∈ R2 and is defined by

û(ξ) =
1

2π

∫

R2
u(�)e−i�·ξd�,

where ξ = (ξ1, ξ2) ∈ R2. It was shown in [20] that a transparent boundary condition can be 
imposed on Γj:

νΓ1 × (∇× E1) = −iωµ(T1EΓ1) + g on Γ1 (2.11)

P Li et alInverse Problems 35 (2019) 095002
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and

νΓ2 × (∇× E2) = −iωµ(T2EΓ2) on Γ2, (2.12)

where νΓj is the unit normal vector on Γj , EΓj = νΓj × (Ej × νΓj) is the tangential component 
of Ej on Γj , and the inhomogeneous term

g = iωµ(T1Ei
Γ1
) + νΓ1 × (∇× Ei).

The dyadic Green function is defined by the solution of the following equation

∇x × (∇x × Gj(x − y))− κ2
j Gj(x − y) = δ(x − y)I in Ωj, (2.13)

where I  is the unitary dyadic and δ is the Dirac delta function. It is known that the dyadic 
Green function is given by

Gj(x − y) =
[

I +
∇y∇y

κ2
j

]
exp (iκj|x − y|)

4π|x − y|
=

[
I +

∇x∇x

κ2
j

]
exp (iκj|x − y|)

4π|x − y|
.

 (2.14)
We assume that the dipole point source is located at xs ∈ R+

1 = {x ∈ R3 : x3 > h1} and 
has a polarization q ∈ R3, |q| = 1. Induced by this dipole point source, the incident electro-
magnetic fields are

Ei(x) = G1(x − xs)q, Hi(x) =
1

iωµ
(∇× Ei(x)), x ∈ Ω1. (2.15)

Hence the current source Jcs satisfies

iωµJcs(x) = qδ(x − xs), x ∈ Ω1.

We next introduce some Banach spaces. For Q ⊂ R3, denote by BC(Q) the set of bounded 
and continuous functions on Q, which is a Banach space under the norm

‖φ‖∞ = sup
x∈Q

|φ(x)|.

For 0 < α � 1, denote by C0,α(Q) the Banach space of functions φ ∈ BC(Q) which are uni-
formly Hölder continuous with exponent α. The norm ‖ · ‖C0,α(Q) is defined by

‖φ‖C0,α(Q) = ‖φ‖∞ + sup
x,y∈Q
x�=y

|φ(x)− φ(y)|
|x − y|α

.

Let C1,α(Q) = {φ ∈ BC(Q) ∩ C1(Q) : ∇φ ∈ C0,α(Q)}, which is a Banach space under the 
norm

‖φ‖C1,α(Q) = ‖φ‖∞ + ‖∇φ‖C0,α(Q).

Denote by Tj( j = 1, 2) the set of functions ψ ∈ C2(Ωj) ∩ C1,α(Ωj). The direct scattering 
problem can be stated as follows.

Problem 2.1. Given the incident field Ei in (2.15), the direct problem is to determine 
Es ∈ T1 and E2 ∈ T2 such that

 (i)  The electric fields E1 = Es + Ei and E2 satisfy (2.3) and (2.4), respectively; 
 (ii)  The electric field E1 satisfies the boundary condition (2.5); 
 (iii)  The electric fields E1 and E2 satisfy the continuity conditions (2.7); 
 (iv)  The scattered fields Es and the transmitted fields E2 satisfy the radiation conditions (2.9) 

and (2.10), respectively.

P Li et alInverse Problems 35 (2019) 095002
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It requires to study the dyadic Green function in order to find the integral representation of 
the solution for the scattering problem. The details may be found in [4] on the general proper-
ties of the dyadic Green function.

Lemma 2.2. For each fixed y ∈ Ωj, j = 1, 2, the dyadic Green function Gj  given in (2.14) 
admits the asymptotic behaviour

|Gj(x − y)|, |∇x × Gj(x − y)| � C

(
exp (− 1

2�(κj)|x|)
|x|

)
, |x| → ∞,

where C is a constant independent of x and y.

Proof. For each fixed y ∈ Ωj, j = 1, 2, since

|x − y| =
√

|x|2 − 2x · y + |y|2 = |x| − x̂ · y +O
(

1
|x|

)
as |x| → ∞,

where x̂ = x/|x|, we have

exp (iκj|x − y|)
|x − y|

=
exp (iκj|x|)

|x|

{
exp (−iκjx̂ · y) +O

(
1
|x|

)}
as |x| → ∞,

 (2.16)

uniformly for each fixed y satisfying |x − y| → ∞. By (2.16), for �(κj) > 0, we obtain for 
|x| → ∞ that

Gj(x − y) =
[

I +
∇y∇y

κ2
j

]
exp (iκj|x|)

4π|x|

{
exp (−iκjx̂ · y) +O

(
1
|x|

)}

=
exp (iκj|x|)

4π|x|

{
[I − x̂x̂] exp (−iκjx̂ · y) +O

(
1
|x|

)
Î
}

=
exp ( 1

2 iκj|x|)
4π|x|

{
[I − x̂x̂] exp

(
iκj

(
|x|
2

− x̂ · y
))

+O
(

1
|x|

)
Î
}

,

and

∇x × Gj(x − y) = −∇y × Gj(x − y)

=
exp (iκj|x|)

4π|x|

{
−∇y ×

[
(I − x̂x̂) exp (−iκjx̂ · y)

]
+O

(
1
|x|

)
Î
}

= iκj
exp (iκj|x|)

4π|x|

{
x̂ × [(I − x̂x̂) exp (−iκjx̂ · y)] +O

(
1
|x|

)
Î
}

= iκj
exp ( 1

2 iκj|x|)
4π|x|

{
x̂ ×

[
(I − x̂x̂) exp

(
iκj

(
|x|
2

− x̂ · y
))]

+O
(

1
|x|

)
Î
}

,

where Î := êê and ̂e = (1, 1, 1)�.

Note that for each fixed y ∈ Ωj, j = 1, 2, we have x̂ · y < |x|
2  for |x| → ∞. Hence, we con-

clude from �(κj) > 0 that there exists a constant C independent of x, y such that

P Li et alInverse Problems 35 (2019) 095002
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|Gj(x − y)|, |∇x × Gj(x − y)| � C

(
exp (− 1

2�(κj)|x|)
|x|

)
,

which completes the proof. □ 

3. Well-posedness of the direct problem

In this section, we show the existence and uniqueness of the solution to problem 2.1 by using 
the boundary integral equation method. First we derive an integral representation for the solu-
tion of problem 2.1 using dyadic Green’s theorem combined with the radiation conditions 
(2.9) and (2.10).

Theorem 3.1. Let the fields (E1, E2) be the solution of problem 2.1, then (E1, E2) have the 
integral representations

E1(x) = Ei(x)+
∫

S

{
[G1(x − y)] · [νS(y)× (∇y × E1(y))]

+ [∇x × G1(x − y)] · [νS(y)× E1(y)]
}

dsy

+

∫

Γ

{
[G1(x − y)] · [νΓ(y)× (∇y × E1(y))]

}
dsy, x ∈ Ω1,

 

(3.1)

and

E2(x) =−
∫

S

{
[G2(x − y)] · [νS(y)× (∇y × E1(y))]

+ [∇x × G2(x − y)] · [νS(y)× E1(y)]
}

dsy, x ∈ Ω2.
 (3.2)

Proof. Let Br = {x ∈ R3 : |x| < r}. Denote Ωr = Br ∩ Ω1 with the boundary 
∂Ωr = ∂B+

r ∪ Γ ∪ Sr, where ∂B+
r = ∂Br ∩ Ω1 and Sr = S ∩ Br. For each fixed x ∈ Ωr , ap-

plying the vector dyadic Green second theorem to E1 and G1 in the region Ωr , we obtain
∫

Ωr

{E1(y) · [∇y × (∇y × G1(y − x))]− [∇y × (∇y × E1(y))] · G1(y − x)}dy

= −
∫

∂Ωr

{[ν(y)× (∇y × E1(y))] · G1(y − x) + [ν(y)× E1(y)] · [∇y × G1(y − x)]}dsy,
 (3.3)

where ν = ν(y) stands for the unit normal vector at y ∈ ∂Ωr pointing out of Ωr .
It follows from (2.3) and (2.13) that

∫

Ωr

{E1(y) · [∇y × (∇y × G1(y − x))]− [∇y × (∇y × E1(y))] · G1(y − x)}dy

=

∫

Ωr

[E1(y)] · [∇y × (∇y × G1(y − x))− κ2
1G1(y − x)]dy

−
∫

Ωr

[∇y × (∇y × E1(y))− κ2
1E1(y)] · [G1(y − x)]dy

=

∫

Ωr

[E1(y) · (δ(y − x)I)]dy −
∫

Ωr

[iωµJcs(y) · G1(y − x)]dy

= E1(x)−
∫

Ωr

[iωµJcs(y) · G1(y − x)]dy,

 

(3.4)

P Li et alInverse Problems 35 (2019) 095002
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where

lim
r→+∞

∫

Ωr

[iωµJcs(y) · G1(y − x)]dy =

∫

Ω1

[qδ(y − xs) · G1(y − x)]dy

= G1(x − xs)q = Ei(x).
 

(3.5)

Hence, letting r → +∞, with the aid of (3.3)–(3.5), we have

E1(x)− Ei(x) = −
∫

∂Ω1

{
[ν(y)× (∇y × E1(y))] · G1(y − x)

+ [ν(y)× E1(y)] · [∇y × G1(y − x)]
}

dsy

= −
(∫

S
+

∫

Γ

+ lim
r→+∞

∫

∂B+
r

){
[ν(y)× (∇y × E1(y))] · G1(y − x)

+ [ν(y)× E1(y)] · [∇y × G1(y − x)]
}

dsy.

 

(3.6)

Following lemma 2.2 and (2.9), we obtain for r → +∞ that
∣∣∣∣
∫

∂B+
r

{
[ν(y)× (∇y × Es(y))] · G1(y − x) + [ν(y)× Es(y)] · [∇y × G1(y − x)]

}
dsy

∣∣∣∣

�

[ ∫

∂B+
r

|∇y × Es(y)|2dsy

] 1
2

·
[ ∫

∂B+
r

|G1(y − x)|2dsy

] 1
2

+

[ ∫

∂B+
r

|Es(y)|2dsy

] 1
2

·
[ ∫

∂B+
r

|∇y × G1(y − x)|2dsy

] 1
2

→ 0.

 

(3.7)

By lemma 2.2 and the definition of incident field Ei, we have for r → +∞ that
∣∣∣∣
∫

∂B+
r

{
[ν(y)× (∇y × Ei(y))] · G1(y − x) + [ν(y)× Ei(y)] · [∇y × G1(y − x)]

}
dsy

∣∣∣∣

�

[ ∫

∂B+
r

|∇y × Ei(y)|2dsy

] 1
2

·
[ ∫

∂B+
r

|G1(y − x)|2dsy

] 1
2

+

[ ∫

∂B+
r

|Ei(y)|2dsy

] 1
2

·
[ ∫

∂B+
r

|∇y × G1(y − x)|2dsy

] 1
2

→ 0.

 

(3.8)

Using (3.6)–(3.8) and conditions (ii), (iv) in problem 2.1, and letting r → +∞, we have for 
each fixed x ∈ Ω1 that

E1(x)− Ei(x) =−
∫

S

{
[ν(y)× (∇y × E1(y))] · G1(y − x)

+ [ν(y)× E1(y)] · [∇y × G1(y − x)]
}

dsy

−
∫

Γ

{
[ν(y)× (∇y × E1(y))] · G1(y − x)

}
dsy

=

∫

S

{
[G1(x − y)] · [νS(y)× (∇y × E1(y))]

+ [∇x × G1(x − y)] · [νS(y)× E1(y)]
}

dsy

+

∫

Γ

{
[G1(x − y)] · [νΓ(y)× (∇y × E1(y))]

}
dsy.
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Similarly, for each fixed x ∈ Ω2, using the continuity conditions (2.7), we have

E2(x) =−
∫

S

{
[G2(x − y)] · [νS(y)× (∇y × E2(y))]

+ [∇x × G2(x − y)] · [νS(y)× E2(y)]
}

dsy

=−
∫

S

{
[G2(x − y)] · [νS(y)× (∇y × E1(y))]

+ [∇x × G2(x − y)] · [νS(y)× E1(y)]
}

dsy,

where

νS(y)× Ej(y) = lim
h→+0

νS(y)× Ej(y + (−1) jhνS(y)),

νS(y)× [∇y × Ej(y)] = lim
h→+0

νS(y)× [∇y × Ej(y + (−1) jhνS(y))]

are to be understood in the sense of uniform convergence on S. □ 

The integral representation (3.1) and (3.2) can be used to derive the boundary integral equa-
tion for the direct scattering problem. Using the jump relations and the continuity conditions 
(2.7), we have from (3.1) and (3.2) that

νΓ(x)× (∇x × E1(x))

= 2νΓ(x)× (∇x × Ei(x))

+ 2
∫

S

{
[νΓ(x)× (∇x × G1(x − y))] · [νS(y)× (∇y × E1(y))]

+ [νΓ(x)× (κ2
1G1(x − y))] · [νS(y)× E1(y)]

}
dsy

+ 2
∫

Γ

{
[νΓ(x)× (∇x × G1(x − y))] · [νΓ(y)× (∇y × E1(y))]

}
dsy, x ∈ Γ,

 (3.9)

νS(x)× E1(x)

= νS(x)× Ei(x)

+

∫

S

{
[νS(x)× (G1(x − y)− G2(x − y))] · [νS(y)× (∇y × E1(y))]

+ [νS(x)× (∇x × G1(x − y)−∇x × G2(x − y))] · [νS(y)× E1(y)]
}

dsy

+

∫

Γ

{
[νS(x)× G1(x − y)] · [νΓ(y)× (∇y × E1(y))]

}
dsy, x ∈ S,

 

(3.10)

and

νS(x)× (∇x × E1(x))

= νS(x)× (∇x × Ei(x))

+

∫

S

{
[νS(x)× (∇x × G1(x − y)−∇x × G2(x − y))] · [νS(y)× (∇y × E1(y))]

+ [νS(x)× (κ2
1G1(x − y)− κ2

2G2(x − y))] · [νS(y)× E1(y)]
}

dsy

+

∫

Γ

{
[νS(x)× (∇x × G1(x − y))] · [νΓ(y)× (∇y × E1(y))]

}
dsy, x ∈ S.

 

(3.11)

P Li et alInverse Problems 35 (2019) 095002



11

To study the boundary integral equations (3.9)–(3.11) and to show the well-posedness of 
the direct problem, we introduce the normed subspace of continuous tangential fields

T(S) := {ψ ∈ C(S) : νS ·ψ = 0}, T(Γ) := {ψ ∈ C(Γ) : νΓ ·ψ = 0}

and the normed space of uniformly Hölder continuous tangential fields

T0,α(S) := {ψ ∈ T(S)| ψ ∈ C0,α(S)}, T0,α(Γ) := {ψ ∈ T(Γ)| ψ ∈ C0,α(Γ)},

where 0 < α < 1.
On the infinite rough surface S, we define the integral operators T : T0,α(S) → T0,α(S) and 

T∗ : T0,α(S) → T0,α(S) by

(TΨ)(x) =
∫

S
[νS(x)× (G1(x − y)− G2(x − y))] · [Ψ(y)]dsy, (3.12)

(T∗Ψ)(x) =
∫

S
[νS(x)× (κ2

1G1(x − y)− κ2
2G2(x − y))] · [Ψ(y)]dsy, (3.13)

and the integral operator K : T0,α(S) → T0,α(S) defined by

(KΨ)(x) =
∫

S
[νS(x)× (∇x × G1(x − y)−∇x × G2(x − y))] · [Ψ(y)]dsy.

 (3.14)

On Γ, we define the integral operator K̃ : T0,α(Γ) → T0,α(Γ) by

(K̃Ψ)(x) = 2
∫

Γ

[νΓ(x)× (∇x × G1(x − y))] · [Ψ(y)]dsy. (3.15)

For each n ∈ Z+, define the truncated operators Tn : T0,α(Sn) → T0,α(S) and 
T∗

n : T0,α(Sn) → T0,α(S) by

(TnΨ)(x) =
∫

Sn

[νS(x)× (G1(x − y)− G2(x − y))] · [Ψ(y)]dsy, (3.16)

(T∗
nΨ)(x) =

∫

Sn

[νS(x)× (κ2
1G1(x − y)− κ2

2G2(x − y))] · [Ψ(y)]dsy, (3.17)

and the operator Kn : T0,α(Sn) → T0,α(S) by

(KnΨ)(x) =
∫

Sn

[νS(x)× (∇x × G1(x − y)−∇x × G2(x − y))] · [Ψ(y)]dsy,

 (3.18)
where Sn = {x ∈ S : |xj| � n, j = 1, 2}. Now, with the aid of (2.14), we have

G1(x − y)− G2(x − y)

=

[
I +

∇x∇x

κ2
1

]
exp (iκ1|x − y|)

4π|x − y|
−
[

I +
∇x∇x

κ2
2

]
exp (iκ2|x − y|)

4π|x − y|

=

[
exp (iκ1|x − y|)

4π|x − y|
I − exp (iκ2|x − y|)

4π|x − y|
I
]

+∇x∇x

[
exp (iκ1|x − y|)

4πκ2
1|x − y|

− exp (iκ2|x − y|)
4πκ2

2|x − y|

]
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and

∇x × Gj(x − y) = ∇x ×
{[

I +
∇x∇x

κ2
j

]
exp (iκj|x − y|)

4π|x − y|

}

= ∇x ×
[
exp (iκj|x − y|)

4π|x − y|
I
]
+∇x ×

{[
∇x∇x

κ2
j

]
exp (iκj|x − y|)

4π|x − y|

}

= ∇x ×
[
exp (iκj|x − y|)

4π|x − y|
I
]

.

The above results imply that the kernels of the operators K̃, Tn, T∗
n and Kn are weakly singular 

and decay exponentially. It follows from [6, theorem 1.11] and [6, theorem 2.7] that these int-
egral operators are compact. Based on the compactness of the truncated operators, the integral 
operators T, T∗ and K are compact as described in the following theorem.

Lemma 3.2. The integral operators T, T∗ and K are compact.

Proof. Since the proofs are similar for T, T∗ and K, we shall only show the details for the 
operator T. For each fixed x ∈ S , it follows from (3.12) and (3.16) that

(TΨ)(x)− (TnΨ)(x)

=

(∫ +∞

n

∫ +∞

−∞
+

∫ −n

−∞

∫ +∞

−∞
+

∫ +n

−n

∫ −n

−∞
+

∫ +n

−n

∫ +∞

n

)
ϕ(x, y1, y2)dy1dy2

= I1 + I2 + I3 + I4,
 (3.19)

where

ϕ(x, y1, y2) = [(νS(x)× (G1(x − y)− G2(x − y))) ·Ψ(y)|y3=f (y1,y2)](1 + f 2
y1
+ f 2

y2
)1/2.

By lemma 2.2, for each fixed x ∈ S , when n → +∞, we have

|I1| �
∫ +∞

n

∫ +∞

−∞
|ϕ(x, y1, y2)|dy1dy2

� C
∫ +∞

n

∫ +∞

−∞
[|G1(x − y)− G2(x − y)| · |Ψ(y)|y3=f (y1,y2)]dy1dy2

� C‖Ψ‖C0,α(S)

∫ +∞

n

∫ +∞

−∞

(
exp (− 1

2�(κ1)|y|)
|y|

+
exp (− 1

2�(κ2)|y|)
|y|

)∣∣∣∣
y3=f (y1,y2)

dy1dy2

� C‖Ψ‖C0,α(S)

∫ +∞

0
exp

(
− 1

4
κ̂y1

)
dy1

∫ +∞

n

exp (− 1
4 κ̂y2)

y2
dy2

= C‖Ψ‖C0,α(S)

(
4
κ̂

)2 (1
n
exp

(
− n

4
κ̂
))

→ 0 as n → +∞

 (3.20)

where κ̂ = min{�(κ1),�(κ2)} > 0, C is a positive constant and may change from step to 
step. Similarly, we may show for j = 2, 3, 4 that

|Ij| � C‖Ψ‖C0,α(S)

(
1
n
exp

(
− n

4
κ̂
))

→ 0 as n → +∞. (3.21)
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Combining (3.19)–(3.21) leads to

|(TΨ)(x)− (TnΨ)(x)| �
4∑

j=1

|Ij| � C‖Ψ‖C0,α(S)

(
1
n
exp

(
− n

4
κ̂
))

→ 0 as n → +∞.

Hence we have

‖(T − Tn)Ψ‖∞ � C‖Ψ‖C0,α(S)

(
1
n
exp

(
− n

4
κ̂
))

→ 0 as n → +∞. (3.22)

For each fixed x, x̃ ∈ S and x �= x̃, it follows from (3.12) and (3.16) that

((T − Tn)Ψ)(x)− ((T − Tn)Ψ)(x̃)

=

(∫ +∞

n

∫ +∞

−∞
+

∫ −n

−∞

∫ +∞

−∞
+

∫ +n

−n

∫ −n

−∞
+

∫ +n

−n

∫ +∞

n

)
[ϕ(x, y1, y2)−ϕ(x̃, y1, y2)]dy1dy2

= I5 + I6 + I7 + I8.
 (3.23)

From lemma 2.2 and the mean value theorem, we get

|Gj(x − y)− Gj(x̃ − y)| � C
exp (− 1

2�(κj)|y|)
|y|

|x − x̃|, j = 1, 2.

Therefore

|I5| �
∫ +∞

n

∫ +∞

−∞
|ϕ(x, y1, y2)−ϕ(x̃, y1, y2)|dy1dy2

� C
∫ +∞

n

∫ +∞

−∞
[(|G1(x − y)− G1(x̃ − y)|+ |G2(x − y)− G2(x̃ − y)|) · |Ψ(y)|y3=f (y1,y2)]dy1dy2

� C(|x − x̃|) sup
y∈S

|Ψ(y)|
∫ +∞

n

∫ +∞

−∞

(
exp (− 1

2 κ̂|y|)
|y|

∣∣∣∣
y3=f (y1,y2)

)
dy1dy2

� C(|x − x̃|)‖Ψ‖C0,α(S)

(
4
κ̂

)2 (1
n
exp

(
−n

4
κ̂
))

.

 

(3.24)

Similarly, for j = 6, 7, 8, we also have

|Ij| � C(|x − x̃|)‖Ψ‖C0,α(S)

(
1
n
exp

(
− n

4
κ̂
))

. (3.25)

Combining (3.23)–(3.25) and noting 0 < α < 1, we obtain

|((T − Tn)Ψ)(x)− ((T − Tn)Ψ)(x̃)|
|x − x̃|α

�
8∑

j=5

|Ij| � C(|x − x̃|1−α)‖Ψ‖C0,α(S)

(
1
n
exp

(
− n

4
κ̂
))

� C(n1−α)‖Ψ‖C0,α(S)

(
1
n
exp

(
− n

4
κ̂
))

= C‖Ψ‖C0,α(S)

(
n−α exp

(
− n

4
κ̂
))

→ 0 as n → +∞.

 

(3.26)
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For 0 < α < 1, it can be deduced from (3.22) and (3.26) that

‖T − Tn‖C0,α(S)

= sup
‖Ψ‖C0,α(S) �=0

‖(T − Tn)Ψ‖C0,α(S)

‖Ψ‖C0,α(S)

= sup
‖Ψ‖C0,α(S) �=0

1
‖Ψ‖C0,α(S)

[
‖(T − Tn)Ψ‖∞

+ sup
x,̃x∈S
x�=x̃

|((T − Tn)Ψ)(x)− ((T − Tn)Ψ)(x̃)|
|x − x̃|α

]

� C
(

n−α exp
(
− n

4
κ̂
))

→ 0 as n → +∞,

which shows that the operator T is compact on T0,α(S). Similarly, it can be shown that opera-
tors T∗ and K are also compact on T0,α(S). □ 

By lemma 3.2, the system of the boundary integral equations  (3.9)–(3.11) is of the 
Fredholm type, i.e. the existence of the solution follows immediately from the uniqueness of 
the solution.

Theorem 3.3. Let Es ∈ T1, E2 ∈ T2 have the integral representations (3.1) and (3.2) 
and satisfy the boundary integral equations (3.9)–(3.11). Then (E1, E2) are the solutions of  
problem 2.1.

Proof. We only show the proof for the field E1. If the field Es ∈ T1 has the integral  
representation (3.1), then we have

Es(x) =
∫

S

{
[G1(x − y)] · [νS(y)× (∇y × E1(y))] + [∇x × G1(x − y)] · [νS(y)× E1(y)]

}
dsy

+

∫

Γ

{
[G1(x − y)] · [νΓ(y)× (∇y × E1(y))]

}
dsy, x ∈ Ω1.

 

(3.27)

Noting that for any x ∈ Ω1 and y ∈ S ∪ Γ, we have x �= y. Taking double curl of (3.27), 
multiplying (3.27) by −κ2

1 = −ω2µ(ε1 + iσ1
ω ), and adding the resulting two equations with 

the aid of (2.13), we obtain

∇× (∇× Es(x))− κ2
1Es(x)

=

∫

S

{
[∇x × (∇x × G1(x − y))− κ2

1G1(x − y)] · [νS(y)× (∇y × E1(y))]

+ [∇x × (∇x × (∇x × G1(x − y))− κ2
1G1(x − y))] · [νS(y)× E1(y)]

}
dsy

+

∫

Γ

{
[∇x × (∇x × G1(x − y))− κ2

1G1(x − y)] · [νΓ(y)× (∇y × E1(y))]
}

dsy

=0, x ∈ Ω1.
 (3.28)

It follows from (2.8) and (3.28) that
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∇× (∇× E1(x))− κ2
1E1(x)

=[∇× (∇× Es(x))− κ2
1Es(x)] + [∇× (∇× Ei(x))− κ2

1Ei(x)]
=iωµJcs(x), x ∈ Ω1.

Furthermore, with the help of lemma 3.2 and (3.27), we deduce that

|Es(x)| �C
[ ∫

S
|G1(x − y)| · |νS(y)× (∇y × E1(y))|dsy

+

∫

S
|∇x × G1(x − y)| · |νS(y)× E1(y)|dsy

+

∫

Γ

|G1(x − y)| · |νΓ(y)× (∇y × E1(y))|dsy

]

�C
[
‖∇ × E1‖C0,α(S)

∫

S
|G1(x − y)|dsy + ‖E1‖C0,α(S)

∫

S
|∇x × G1(x − y)|dsy

+ ‖∇ × E1‖C0,α(Γ)

∫

Γ

|G1(x − y)|dsy

]

�C
[

lim
n→+∞

∫

Sn

|G1(x − y)|dsy + lim
n→+∞

∫

Sn

|∇x × G1(x − y)|dsy

+

∫

Γ

|G1(x − y)|dsy

]
.

 (3.29)

For each fixed n � 1, as |x| → +∞, by lemma 2.2, we have
∫

Sn

|G1(x − y)|dsy � C
∫

Sn

∣∣∣∣
exp ( 1

2 iκ1|x − y|)
|x − y|

exp
(1

2
iκ1|x − y|

)∣∣∣∣dsy

� C
exp (− 1

4�(κ1)|x|)
|x|

∫

Sn

exp
(
− 1

2
�(κ1)|y|

)
dsy

� C
exp (− 1

4�(κ1)|x|)
|x|

(∫ n

0
exp

(
− 1

4
�(κ1)y1

)
dy1

)2

� C
exp (− 1

4�(κ1)|x|)
|x|

(
1 − exp

(
− n

4
�(κ1)

))2
,

 (3.30)

and
∫

Sn

|∇x × G1(x − y)|dsy � C
exp (− 1

4�(κ1)|x|)
|x|

(
1 − exp

(
− n

4
�(κ1)

))2
.

 (3.31)

Similarly, we can obtain
∫

Γ

|G1(x − y)|dsy � C
exp (−�(κ1)|x|)

|x|

∫

Γ

∣∣∣∣ exp (−iκjx̂ · y)[I − x̂x̂] +O
(

1
|x|

)
Î
∣∣∣∣dsy

� C
exp (−�(κ1)|x|)

|x|
.

 (3.32)

Combining (3.29)–(3.32), we have for �(κ1) > 0 that

P Li et alInverse Problems 35 (2019) 095002



16

|Es(x)| � C

(
exp (− 1

4�(κ1)|x|)
|x|

)
as |x| → +∞

and
∫

∂B+
r

|Es|2dsx � C
∫

∂B+
r

exp (− 1
2�(κ1)|x|)
|x|2

dsx

� C

(
exp (− 1

2�(κ1)r)
r2 4πr2

)
= C exp (−1

2
�(κ1)r) → 0 as r = |x| → +∞,

where C is a positive constant independent of r.
Similarly, we can also show that

lim
r→+∞

∫

∂B+
r

|∇ × Es|2dsx = lim
r→+∞

∫

∂B−
r

|E2|2dsx = lim
r→+∞

∫

∂B−
r

|∇ × E2|2dsx = 0.

Furthermore, since E1 satisfies (2.3) and the radiation conditions, applying the vector dy-
adic Green second theorem to E1 and G1 in the region Ω1, we have

E1(x) = Ei(x)

+

∫

S

{
[G1(x − y)] · [νS(y)× (∇y × E1(y))] + [∇x × G1(x − y)] · [νS(y)× E1(y)]

}
dsy

+

∫

Γ

{
[G1(x − y)] · [νΓ(y)× (∇y × E1(y))]

+ [∇x × G1(x − y)] · [νΓ(y)× E1(y)]
}

dsy, x ∈ Ω1.
 

(3.33)

Then, from (3.1) and (3.33), it is easy to verify that νΓ(y)× E1(y)
∣∣
Γ
= 0, i.e. E1 = Es + Ei 

satisfies the boundary condition (ii) of problem 2.1.
Taking νS(x)× of (3.1) and (3.2), respectively, using the jump conditions of the single- and 

double-layer potentials, we get the boundary integral equations

1
2
νS(x)× E1(x) = νS(x)× Ei(x)

+

∫

S

{
[νS(x)× G1(x − y)] · [νS(y)× (∇y × E1(y))]

+ [νS(x)× (∇x × G1(x − y))] · [νS(y)× E1(y)]
}

dsy

+

∫

Γ

{
[νS(x)× G1(x − y)] · [νΓ(y)× (∇y × E1(y))]

}
dsy, x ∈ S,

 

(3.34)

and

νS(x)× E2(x)−
1
2
νS(x)× E1(x)

= −
∫

S

{
[νS(x)× G2(x − y)] · [νS(y)× (∇y × E1(y))]

+ [νS(x)× (∇x × G2(x − y))] · [νS(y)× E1(y)]
}

dsy, x ∈ S.
 (3.35)
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Now adding (3.34) and (3.35) gives

νS(x)× E2(x)

= νS(x)× Ei(x)

+

∫

S

{
[νS(x)× (G1(x − y)− G2(x − y))] · [νS(y)× (∇y × E1(y))]

+ [νS(x)× (∇x × G1(x − y)−∇x × G2(x − y))] · [νS(y)× E1(y)]
}

dsy

+

∫

Γ

{
[νS(x)× G1(x − y)] · [νΓ(y)× (∇y × E1(y))]

}
dsy, x ∈ S.

 

(3.36)

From (3.10) and (3.36), it is easy to verify that νS × E1|S = νS × E2|S.
Taking νS(x)×∇x× of (3.1) and (3.2), respectively, using the jump conditions of the sin-

gle- and double-layer potentials, we get the boundary integral equations

1
2
νS(x)× (∇x × E1(x))

= νS(x)× (∇x × Ei(x))

+

∫

S

{
[νS(x)× (∇x × G1(x − y))] · [νS(y)× (∇y × E1(y))]

+ [νS(x)× (κ2
1G1(x − y))] · [νS(y)× E1(y)]

}
dsy

+

∫

Γ

{
[νS(x)× (∇x × G1(x − y))] · [νΓ(y)× (∇y × E1(y))]

}
dsy, x ∈ S,

 (3.37)

and

νS(x)× (∇x × E2(x))−
1
2
νS(x)× (∇x × E1(x))

= −
∫

S

{
[νS(x)× (∇x × G2(x − y))] · [νS(y)× (∇y × E1(y))]

+ [νS(x)× (κ2
2G2(x − y))] · [νS(y)× E1(y)]

}
dsy, x ∈ S.

 

(3.38)

Now adding (3.37) and (3.38) gives

νS(x)× (∇x × E2(x))

= νS(x)× (∇x × Ei(x))

+

∫

S

{
[νS(x)× (∇x × G1(x − y)−∇x × G2(x − y))] · [νS(y)× (∇y × E1(y))]

+ [νS(x)× (κ2
1G1(x − y)− κ2

2G2(x − y))] · [νS(y)× E1(y)]
}

dsy

+

∫

Γ

{
[νS(x)× (∇x × G1(x − y))] · [νΓ(y)× (∇y × E1(y))]

}
dsy, x ∈ S.

 

(3.39)

From (3.11) and (3.39), it is easy to verify that νS × (∇x × E1)|S = νS × (∇x × E2)|S. □ 

To prove the uniqueness, it suffices to show that E1 = Es and E2 vanish identically in 
Ω1 and Ω2 if Ei = 0. For the sake of brevity for the proof, we consider the homogeneous 
Maxwell’s equations
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∇× (∇× Ej)− κ2
j Ej = 0 in Ωj, (3.40)

along with the boundary condition

νΓ × E1 = 0 on Γ, (3.41)

and the continuity conditions

νS × E1 = νS × E2, νS × (∇× E1) = νS × (∇× E2) on S, (3.42)

and the radiation conditions

lim
r→+∞

∫

∂B+
r

|E1|2ds = lim
r→+∞

∫

∂B+
r

|∇ × E1|2ds

= lim
r→+∞

∫

∂B−
r

|E2|2ds = lim
r→+∞

∫

∂B−
r

|∇ × E2|2ds = 0.
 (3.43)

Theorem 3.4. Let (E1, E2) be the solutions of the problem (3.40)–(3.43). Then (E1, E2) 
vanish identically.

Proof. Denote Ωr = Br ∩ Ω1 with boundary ∂Ωr = ∂B+
r ∪ Γ ∪ Sr, where  

∂B+
r = ∂Br ∩ Ω1 and Sr = S ∩ Br. Taking the dot product of the Maxwell equa-

tion ∇× (∇× E1(x))− κ2
1E1(x) = 0 with the complex conjugate of E1, integrating over Ωr , 

and using the integration by parts, we get
∫

Ω

|∇ × E1|2dx − κ2
1

∫

Ω

|E1|2dx

=

∫

∂Ωr

ν · [E1 × (∇× E1)]dsx = −
∫

∂Ωr

E1 · [ν × (∇× E1)]dsx

=−
∫

∂Ωr

(ν × (∇× E1)) · ((ν × E1)× ν)dsx

=−
(∫

∂B+
r

+

∫

Γ

+

∫

Sr

)
(ν × (∇× E1)) · ((ν × E1)× ν)dsx,

 

(3.44)

where ν = ν(x) stands for the unit normal vector at x ∈ ∂Ωr  pointing out of Ωr . Letting 
r → +∞, we have from (3.41), (3.43) and (3.44) that

∫

Ω

|∇ × E1|2dx − κ2
1

∫

Ω

|E1|2dx =

∫

S
(νS × (∇× E1)) · ((νS × E1)× νS)dsx,

 (3.45)

where νS = νS(x) denotes the unit normal vector at x ∈ S  pointing from region Ω2 to region 
Ω1. By taking the imaginary part of (3.45) that

−�
∫

S
(νS × (∇× E1)) · ((νS × E1)× νS)dsx = �(κ2

1)

∫

Ω1

|E1|2dx � 0.

 (3.46)

Similarly, we may show that

�
∫

S
(νS × (∇× E2)) · ((νS × E2)× νS)dsx = �(κ2

2)

∫

Ω2

|E2|2dx � 0. (3.47)
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Noting the continuity conditions (3.42) and �(κ2
j ) > 0, we obtain from (3.46) and (3.47) that

∫

Ω1

|E1|2dx =

∫

Ω2

|E2|2dx = 0,

which implies that E1 = 0 in Ω1 and E2 = 0 in Ω2. □ 

4. Uniqueness of the inverse problem

This section addresses the uniqueness of the inverse surface scattering problem. For the given 
incident field, we show that the obstacle and the unbounded rough surface can be uniquely 
determined by the tangential trace of the electric field νΓj × Ej|Γj , j = 1, 2.

Let S̃ ∈ C2 be an infinite rough surface which divides R3 into the upper half space Ω̃+
1  

and the lower half space Ω̃2. Let D̃ ⊂⊂ Ω̃+
1  be a bounded domain with the boundary Γ̃ ∈ C2. 

Define Ω̃1 = Ω̃+
1 \ D̃. Let (Ẽ1, Ẽ2) be the unique solutions of problem 2.1 with the surfaces 

(D, S) replaced by (D̃, S̃) but for the same incident field Ei satisfying (2.15). Recall that the 
point dipole source is assumed to be located at xs ∈ R+

1 .

Lemma 4.1. Let Ω ⊂ R3 be a Lipschitz domain. Consider the boundary value problem
{
∇× (∇× E(x))− κ2

1E(x) = 0, ∇× (∇× Ĕ(x))− κ2
2Ĕ(x) = 0 in Ω,

ν × E = ν × Ĕ, ν × (∇× E) = ν × (∇× Ĕ) on ∂Ω,
 (4.1)

where ν  denotes the unit normal vector on the boundary ∂Ω directed into the exterior of Ω. 
Then E = Ĕ = 0 in Ω.

Proof. Consider an extension Ĕ
e
 of Ĕ to the exterior domain Ωe = R3 \ Ω, where Ĕ

e
 satis-

fies
{
∇× (∇× Ĕ

e
(x))− κ2

2Ĕ
e
(x) = 0 in Ωe,

ν × Ĕ
e
= ν × Ĕ, ν × (∇× Ĕ

e
) = ν × (∇× Ĕ) on ∂Ω,

and the radiation conditions

lim
r→∞

∫

∂Br

|Ĕe|2ds = lim
r→∞

∫

∂Br

|∇ × Ĕ
e|2ds = 0.

Taking the dot product of the Maxwell equation ∇× (∇× E(x))− κ2
1E(x) = 0 with the 

complex conjugate of E, integrating over Ω, and using the integration by parts, we get
∫

Ω

|∇ × E|2dx − κ2
1

∫

Ω

|E|2dx = −
∫

∂Ω

(ν × (∇× E)) · ((ν × E)× ν)dsx.

 (4.2)

On the other hand, taking the dot product of the equation ∇× (∇× Ĕ
e
(x))− κ2

2Ĕ
e
(x) = 0 

with the complex conjugate of Ĕ
e
, integrating over Ωe, using the integration by parts and the 

radiation condition, we have
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∫

Ωe
|∇ × Ĕ

e|2dx − κ2
2

∫

Ωe
|Ĕe|2dx =

∫

∂Ω

(ν × (∇× Ĕ
e
)) · ((ν × Ĕ

e
)× ν)dsx.

 (4.3)

Since

ν × E = ν × Ĕ = ν × Ĕ
e
, ν × (∇× E) = ν × (∇× Ĕ) = ν × (∇× Ĕ

e
),

we add (4.2) and (4.3) and get
∫

Ω

|∇ × E|2dx +

∫

Ωe
|∇ × Ĕ

e|2dx − κ2
1

∫

Ω

|E|2dx − κ2
2

∫

Ωe
|Ĕe|2dx = 0.

Noting �(κ2
j ) > 0 and taking the imaging part of the above equation yields that E = 0 in Ω 

and Ĕ
e
= 0 in Ωe, which implies immediately that E = Ĕ = 0 in Ω. □ 

Remark 4.2. In lemma 4.1, the domain Ω does not have to be a bounded and the integration 
by parts still holds in the proof of lemma 4.1 due to �(κ2

j ) > 0 and the radiation conditions. 
We refer to [20] for a closely related problem on the electromagnetic scattering by unbounded 
rough surfaces, where the variational problem is discussed in an unbounded domain.

Remark 4.3. The result still holds for κ1 = κ2 in lemma 4.1. In this case, the problem (4.1) 
is equivalent to the following scattering problem: to find E such that it satisfies the Maxwell 
equation

∇× (∇× E(x))− κ2
1E(x) = 0 in R3

and the radiation condition

lim
r→∞

∫

∂Br

|E|2ds = lim
r→∞

∫

∂Br

|∇ × E|2ds = 0.

It is clear to note that the above scattering problem has a unique solution E = 0 in R3 due to 
�(κ2

1) > 0.

Lemma 4.4. Let E1 be the solution of problem 2.1. Then νS × E1 �= 0 on S.

Proof. We prove it by contradiction. First we assume that νS × E1 = 0 on S. Since 
νS × E1 = νS × E2 on S, we may consider the following problem

{
∇× (∇× E2(x))− κ2

2E2(x) = 0 in Ω2,
νS × E2 = 0 on S.

 (4.4)

In addition, E2 is required to satisfy the radiation condition (2.10). Taking the dot product of 
the Maxwell equation in (4.4) with the complex conjugate of E2, integrating over Ω2, and us-
ing the boundary condition and the radiation condition, we obtain

∫

Ω2

|∇ × E2|2dx − κ2
2

∫

Ω2

|E2|2dx = 0,
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which implies E2 = 0 in Ω2 due to �(κ2
2) > 0. Hence νS × (∇× E2) = 0 on S. Since 

νS × E1 = νS × E2 = 0 and νS × (∇× E1) = νS × (∇× E2) = 0 on S, it follows from the 
Holmgren uniqueness theorem for the Maxwell system in [5, theorem 6.5] that we obtain 
E1 = 0 in R1. In fact, E1 can be extended to Ω1 ∪ Ω2 as follows

Ĕ1 :=
{

E1 in Ω1,
Ee

1 in Ω2,

where Ee
1 satisfies

{
∇× (∇× Ee

1(x))− κ2
1Ee

1(x) = 0 in Ω2,
νS × Ee

1 = νS × E1, νS × (∇× Ee
1) = νS × (∇× E1) on S,

 (4.5)

and the radiation condition (2.10). Clearly the problem (4.5) has a unique solution Ee
1 = 0 in 

Ω2. By the unique continuation, we have E1 = Ĕ1 = 0 in R1, which contradicts the transpar-
ent boundary condition (2.11). □ 

Theorem 4.5. Assume that νΓj × Ej|Γj = νΓj × Ẽj|Γj for the given the incident field Ei. 
Then D = D̃, S = S̃ .

Proof. We prove it by contradiction and assume that D �= D̃, S �= S̃. The schematic of the 
domains (D, S) and (D̃, S̃) is shown in figure 2. Let Fj = Ej − Ẽj , then Fj satisfies Maxwell’s 
equation

∇× (∇× Fj)− κ2
j Fj = 0 in Ωj ∩ Ω̃j

and the radiation condition. By the assumption νΓj × Fj|Γj = νΓj × Ej|Γj − νΓj × Ẽj|Γj = 0 
and the uniqueness result for the direct scattering problem, it follows that Ej(x) = Ẽj(x), j = 1, 2 
in R+

1 = {x ∈ R3 : x3 > h1} and R+
2 = {x ∈ R3 : x3 < h2}, respectively. Since 

Fj ∈ C2(Ωj ∩ Ω̃j) ∩ C1,α(Ωj ∩ Ω̃j), by the unique continuation, we get that

Fj(x) = Ej(x)− Ẽj(x) = 0, x ∈ Ωj ∩ Ω̃j, (4.6)

and

∇× Fj(x) = ∇× Ej(x)−∇× Ẽj(x) = 0, x ∈ Ωj ∩ Ω̃j. (4.7)

First, we prove that the obstacle can be uniquely determined. In the case when D �= D̃ 
which include D ∩ D̃ �= ∅ and D ∩ D̃ = ∅, without loss of generality, we assume that 

Q = D \ (D ∩ D̃) �= ∅ with the boundary ∂Q = Γp ∪ Γ̃p, where Γp ⊂ Γ and Γ̃p ⊂ Γ̃ denotes 
the part of the boundary on Γ and Γ̃, respectively. Thus, from (4.6) and (2.5), we obtain

νΓp × Ẽ1
∣∣
Γp

= νΓ̃p
× Ẽ1

∣∣
Γ̃p

= 0. (4.8)

Consider the boundary value problem
{
∇× (∇× Ẽ1)− κ2

1Ẽ1 = 0 in Q,
ν × Ẽ1 = 0 on ∂Q,
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where ν  is the unit normal on ∂Q. Multiplying the Maxwell equation ∇× (∇× Ẽ1)− κ2
1Ẽ1 = 0 

by the complex conjugate of Ẽ1, integrating over Q, using the integration by parts, we obtain
∫

Q
|∇ × Ẽ1|2dx − κ2

1

∫

Q
|Ẽ1|2dx = 0,

which implies that Ẽ1 = 0 in Q since �(κ2
1) > 0. An application of the unique continua-

tion gives Ẽ1 = 0 in R1. But this contradicts the transparent boundary condition (2.11) on Γ1 
Hence, D = D̃.

Next is show that the infinite rough surface S can be uniquely determined by the wave 
fields νΓ1 × E1 and νΓ2 × E2 measured on Γ1 and Γ2, respectively. Assume that S �= S̃, where 
S̃ = {x ∈ R3 : x3 = f̃ (x1, x2)} with f̃ �= f . Let Sp ⊆ S and S̃p ⊆ S̃. Noting remark 4.2, we 
may assume without loss of generality that Sp ⊂ S is located above S̃p ⊂ S̃p. Thus, we have a 
domain Ω which is bounded by ∂Ω = Sp ∪ S̃p. The schematic of the domain Ω is also shown 
in figure 2. By (2.6), (4.6) and (4.7), we have

νSp × E1 = νSp × Ẽ1, νSp × (∇× E1) = νSp × (∇× Ẽ1) on Sp,

and

ν S̃p
× E2 = ν S̃p

× Ẽ2, ν S̃p
× (∇× E2) = ν S̃p

× (∇× Ẽ2) on S̃p.

It follows from the continuity conditions

νSp × E1 = νSp × E2, νSp × (∇× E1) = νSp × (∇× E2) on Sp,

and

ν S̃p
× Ẽ1 = ν S̃p

× Ẽ2, ν S̃p
× (∇× Ẽ1) = ν S̃p

× (∇× Ẽ2) on S̃p.

Combining the above equations yields that

ν∂Ω × Ẽ1 = ν∂Ω × E2, ν∂Ω × (∇× Ẽ1) = ν∂Ω × (∇× E2) on ∂Ω = Sp ∪ S̃p.

We consider the following boundary value problem
{
∇× (∇× Ẽ1)− κ2

1Ẽ1 = 0, ∇× (∇× E2)− κ2
2E2 = 0 in Ω,

ν∂Ω × Ẽ1 = ν∂Ω × E2, ν∂Ω × (∇× Ẽ1) = ν∂Ω × (∇× E2) on ∂Ω.
 (4.9)

It follows from lemma 4.1 that Ẽ1 = E2 = 0 in Ω. An application of the unique continua-
tion gives Ẽ1 = 0 in R1, which contradicts the transparent boundary condition (2.11). Hence, 
S = S̃. □ 

5. Local stability

In this section, we present a local stability result. Let us begin with the calculation of domain 
derivative which plays an important role in the stability analysis.
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Let I : R3 → R3 be the identity mapping and let θ : Γ ∪ S → R3 be an admissible per-
turbation, where θ is assumed to be an admissible perturbation in C2(Γ ∪ S,R3) and has a 
compact support. For θ ∈ C2(Γ ∪ S,R3), we can extend the definition of function θ(x) to Ωj  
by satisfying: θ(x) ∈ C2(Ωj,R3) ∩ C(Ωj); I + θ : Ωj → Ωj,θ, j = 1, 2. Here the region Ωj,θ 
bounded by Γθ and Sθ, where

Γθ = {x + θ(x) : x ∈ Γ}, Sθ = {x + θ(x) : x ∈ S}.

Let θ(x) = (θ1(x), θ2(x), θ3(x))�. Clearly, Ωj,θ is an admissible perturbed configuration of 
the reference region Ωj . Note that Ωj,0 = Ωj, Γ0 = Γ, and S0 = S. According to theorem 3.4, 
there exist the unique solutions (E1,θ, E2,θ) to problem 2.1 corresponding to the region Ωj,θ 
for any small enough θ. Note that this function Ej,θ = Ej(θ, x) cannot be differentiated with 
respect to θ in the classical sense. For this reason, we adopt the following concept of a domain 
derivative.

Denote by

E′
j =

∂Ej,θ

∂θ
(0)p

the domain derivative of Ej,θ at θ = 0 in the direction p(x) = ( p1(x), p2(x),  
p3(x))� ∈ C2(Γ ∪ S,R3). Define a nonlinear map

Y : Γθ ∪ Sθ → νΓH × E1,θ|Γ1 .

The domain derivative of the operator Y on the boundary Γ ∪ S along the direction p is defined 
by

Y ′(Γ ∪ S, p) := νΓ1 × E′
1|ΓH .

We introduce the notations

VΓτ
= νΓ × (V × νΓ), VΓν

= νΓ · V, VSτ = νS × (V × νS), VSν = νS · V,

which are the tangential and the normal components of a vector V  on the boundary Γ and 
S, respectively. It is clear to note that V = VΓτ + VΓννΓ on Γ and V = VSτ + VSννS on S. 
Denote by ∇Γτ and ∇Sτ  the surface gradient on Γ and S, and denote by ∂νΓ and ∂νS the normal 
derivative on Γ and S, respectively.

Define the jump

[E] = lim
a1→0

x+a1∈Ω1

E1(x + a1)− lim
a2→0

x+a2∈Ω2

E2(x + a2), x ∈ S,
 (5.1)

of the continuous extension of a function E to the boundary from Ω1 and Ω2, respectively.

S

D

Γ
Γ1

Γ2

D
Γp

Sp

Ω

Γp

Sp

Γ

Figure 2. Schematic of domains for the proof of uniqueness.
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Theorem 5.1. Let (E1, E2) be the solutions of problem 2.1. Given p ∈ C2(Γ ∪ S,R3), the 
domain derivatives (E′

1, E′
2) of (E1, E2) are the radiation solutions of the following problem:





∇×∇× E′
1 − κ2

1E′
1 = 0 in Ω1,

∇×∇× E′
2 − κ2

2E′
2 = 0 in Ω2,

νΓ × E′
1 =

[
pΓν

(∂νΓ
E1,Γτ

) + E1,Γν
(∇Γτ

pΓν
)
]
× νΓ on Γ,

[νS × E′] = −[νS × (∇Sτ (pSν ESν ))] on S,

[νS × (∇× E′)] = −ω2µ

[ (
ε+ i σω

)
ESτ

]
pSν − [νS × (∇Sτ (pSν (∇× E)Sν ))] on S.

 (5.2)

Proof. Define the operator A = ∇× (∇×)− κ2
1I  and let

ωθ = AE1,θ, (5.3)

where Ej,θ is a solution of problem 2.1 corresponding to the region Ωj,θ, j = 1, 2 for suffi-
ciently small θ. Then, we have

ωθ = qδ in Ω1,θ (5.4)

and

ωθ(I + θ) = qδ in Ω1. (5.5)

Since A is a linear and continuous operator from H(curl,Ω1) = {u ∈ L2(Ω1)
3 :

∇× u ∈ L2(Ω1)
3} into D′(Ω1), A is differentiable in the distribution sense, i.e. υ �→ 〈Aυ,ψ〉 

is differentiable for each ψ ∈ D(Ω1) and

∂A
∂υ

= A. (5.6)

Here D(Ω1) is the standard space of infinitely differentiable functions with compact support 
in Ω1 and D′(Ω1) is the standard space of distributions. Therefore, it follows from the differ-
entiability of θ �→ E1,θ(I + θ) and θ �→ E1,θ that θ �→ ωθ(I + θ) is continuously Fréchet 
differentiable at θ = 0 in the direction p ∈ C2(Γ ∪ S,R3). Moreover, for an admissible per-
turbation θ, their derivatives satisfy

∂

∂θ
(ωθ(I + θ))(0)p =

∂ωθ

∂θ
(0)p + (p · ∇)ω in Ω1. (5.7)

We deduce from (5.3)–(5.5) and (5.7) that

∂ωθ

∂θ
(0)p =

∂A
∂E1,θ

∂E1,θ

∂θ
(0)p =

∂A
∂E1

E′
1

=
∂

∂θ
(ωθ(I + θ))(0)p − (p · ∇)ω

= (p · ∇)qδ − (p · ∇)qδ = 0 in Ω1.

 

(5.8)

It follows from (5.6) and (5.8) that

AE′
1 = ∇× (∇× E′

1)− κ2
1E′

1 = 0 in Ω1.

For the boundary condition, we may follow the same steps as those in [21] and obtain
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νΓ × E′
1 =

[
pΓν

(∂νΓ
E1,Γτ

) + E1,Γν
(∇Γτ

pΓν
)
]
× νΓ on Γ.

Furthermore, for every perturbation θ ∈ C2(Γ ∪ S,R3), the tangential traces of the electric 
fields are assumed to be continuous across S, i.e.

νθ × E1,θ = νθ × E2,θ on Sθ. (5.9)

Hence, we have

[νθ(I + θ)]× [E1,θ(I + θ)] = [νθ(I + θ)]× [E2,θ(I + θ)] on S. (5.10)

Moreover, it follows from [9, lemma 3] and [26, lemma 4.8] that

νθ(I + θ) =
1

‖g(θ)νS‖L2(S)
g(θ)νS on S, (5.11)

where the matrix g(θ) = (I + ∂θ
∂x )

−� satisfies

g(0) = I,
∂g(θ)
∂θ

(0)p = −(∇p)�.

By (5.10) and (5.11), we have

[g(θ)νS]× [E1,θ(I + θ)] = [g(θ)νS]× [E2,θ(I + θ)] on S (5.12)

and

∂

∂θ
{[g(θ)νS]× [E1,θ(I + θ)]}(0)p =

∂

∂θ
{[g(θ)νS]× [E2,θ(I + θ)]}(0)p on S.

 (5.13)

Using the chain rule, we deduce from (5.13) that

∂

∂θ
{[g(θ)νS]× [Ej,θ(I + θ)]}(0)p

=

[(
∂g(θ)
∂θ

(0)p
)
νS

]
× Ej + νS ×

[
∂

∂θ
(Ej,θ(I + θ))(0)p

]

= −((∇p)�νS)× Ej + νS × [E′
j + (p · ∇)Ej] on S, j = 1, 2.

 

(5.14)

Since on S we have

((∇p)�νS)× Ej = [νS × (∇× p) + (νS · ∇)p]× Ej

= [νS × (∇× p)]× Ej + [(νS · ∇)p]× Ej

= −νS × [Ej × (∇× p)]− (∇× p)× (νS × Ej) + [(νS · ∇)p]× Ej

= −νS × [Ej × (∇× p)]− νS × [(Ej · ∇)p]
− (∇p)(νS × Ej) + (∇ · p)(νS × Ej), j = 1, 2.

 

(5.15)

With the aid of (5.14) and (5.15), we obtain

P Li et alInverse Problems 35 (2019) 095002



26

∂

∂θ
{[g(θ)νS]× [Ej,θ(I + θ)]}(0)p

= −{−νS × [Ej × (∇× p)]− νS × [(Ej · ∇)p]− (∇p)(νS × Ej)

+ (∇ · p)(νS × Ej)}+ νS × E′
j + νS × [(p · ∇)Ej]

= {νS × [Ej × (∇× p)] + νS × [(Ej · ∇)p] + νS × [(p · ∇)Ej]}
+ νS × E′

j + (∇p)(νS × Ej)− (∇ · p)(νS × Ej)

= νS × [Ej × (∇× p) + (Ej · ∇)p + (p · ∇)Ej]

+ νS × E′
j + (∇p)(νS × Ej)− (∇ · p)(νS × Ej)

= νS × [(∇× Ej)× p] + νS × [p × (∇× Ej) + Ej × (∇× p) + (Ej · ∇)p
+ (p · ∇)Ej] + νS × E′

j + (∇p)(νS × Ej)− (∇ · p)(νS × Ej)

= νS × [(∇× Ej)× p] + νS × [∇(p · Ej)] + νS × E′
j

+ (∇p)(νS × Ej)− (∇ · p)(νS × Ej) on S, j = 1, 2.
 (5.16)

By taking into account of the continuous conditions (2.7) and p ∈ C2(Γ ∪ S,R3), from 
(5.1) and (5.16), the jump relations read

[νS × E′] = −[νS × ((∇× E)× p)]− [νS × (∇(p · E))]. (5.17)

For the first term of in the right hand side of (5.17), we conclude from the continuous con-
ditions (2.7) and the jump condition [(∇× E)Sν ] = 0 that

[νS × ((∇× E)× p)] = [(∇× E)(νS · p)− p(νS · (∇× E))]
= [((∇× E)Sτ + (∇× E)SννS)pSν − (pSτ + pSννS)(∇× E)Sν ]

= [(∇× E)Sτ pSν − (∇× E)Sν pSτ ]

= [(∇× E)Sτ ]pSν − [(∇× E)Sν ]pSτ

= [(∇× E)Sτ ]pSν = 0 on S.

 

(5.18)

It follows from [νS × E] = [νS × ESτ ] = 0 and the definition of the surface gradient ∇Sτ  that 
we obtain [νS × (∇Sτ (pSτ · ESτ ))] = 0. Thus, the second term in the right hand side of (5.17) 
reduces to

[νS × (∇(p · E))] = [νS × (∇Sτ (p · E))]
= [νS × (∇Sτ ((pSτ + pSννS) · (ESτ + ESννS)))]

= [νS × (∇Sτ (pSτ · ESτ + pSν ESν ))]

= [νS × (∇Sτ (pSν ESν ))] on S.

 

(5.19)

Finally, by (5.17)–(5.19), we have the boundary condition

[νS × E′] = −[νS × (∇Sτ (pSν ESν ))] on S.

We define H′ = 1
iωµ (∇× E′), and similarly, we can obtain

[νS × H′] =− [νS × ((∇× H)× p)]− [νS × (∇(p · H))]

=− [(∇× H)Sτ ]pSν − [νS × (∇Sτ (pSν HSν ))]

=iω
[(

ε+ i
σ

ω

)
ESτ

]
pSν − [νS × (∇Sτ (pSν HSν ))] on S,

 

(5.20)
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which implies that

[νS × (∇× E′)] = iωµ
(

iω
[(

ε+ i
σ

ω

)
ESτ

]
pSν − 1

iωµ
[νS × (∇Sτ (pSν (∇× E)Sν ))]

)

= −ω2µ

[(
ε+ i

σ

ω

)
ESτ

]
pSν − [νS × (∇Sτ (pSν (∇× E)Sν ))] on S.

 (5.21)

Based on the existence of the domain derivatives E′
j, the proof of the the integral represen-

tations for E′
j follow in the same manner as for the the integral representation of Ej. Therefore, 

the asymptotic behavior to the domain derivative E′
j has the same form as Ej. This means that 

the domain derivatives (E′
1, E′

2) are the radiation solutions of the problem (5.2). □ 

Introduce the domain Ω1,h bounded by Γh and Sh, where

Γh = {x + hq(x)νΓ : x ∈ Γ}, Sh = {x + hq(x)νS : x ∈ S}

where q ∈ C2(R3,R) and h  >  0. For any two domains Ω1 and Ω1,h in R3, define the Hausdorff 
distance

dist(Ω1,Ω1,h) = max{ρ(Ω1,h,Ω1), ρ(Ω1,Ω1,h)},

where

ρ(Ω1,Ω1,h) = sup
x∈Ω1

inf
y∈Ω1,h

|x − y|.

It can be easily seen that the Hausdorff distance between Ω1,h and Ω1 is of the order h, i.e. 
dist(Ω1,Ω1,h) = O(h). We have the following local stability result.

Theorem 5.2. If q ∈ C2(Γ ∪ S,R) and h  >  0 is sufficiently small, then

dist(Ω1,Ω1,h) � C‖νΓ1 × E1,h − νΓ1 × E1‖C0,α(Γ1),

where E1,h and E1 is the solution of problem 2.1 corresponding to the domain Ω1,h and Ω1, 
respectively, and C is a positive constant independent of h.

Proof. Assume by contradiction that there exists a subsequence from {E1,h}, which is still 
denoted as {E1,h} for simplicity, such that

lim
h→0

∥∥∥∥
νΓ1 × E1,h − νΓ1 × E1

h

∥∥∥∥
C0,α(Γ1)

= ‖νΓ1 × E′
1‖C0,α(Γ1) = 0 as h → 0,

which yields νΓH × E′
1 = 0 on Γ1. Following a similar proof of theorem 3.4, we can show the 

uniqueness of the solution for problem (5.2). An application of the uniqueness for problem 
(5.2) yields that E′

j = 0 in Ωj, j = 1, 2. Furthermore, we also have ∇× E′
j = 0 in Ωj, j = 1, 2.

Taking p(x) = q(x)νΓ on Γ in problem (5.2), we have from the boundary condition of E′
1 

in problem (5.2) that

νΓ × E′
1 = [(q(x)νΓ)Γν

(∂νΓ
E1,Γτ

) + E1,Γν
(∇Γτ

(q(x)νΓ)Γν
)]× νΓ

= [q(∂νΓ
E1,Γτ

) + E1,Γν
(∇Γτ

q)]× νΓ = 0 on Γ.
 (5.22)
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Since q is arbitrary in (5.22), we have

∂νΓ
E1,Γτ

= ∂νΓ
[νΓ × (E1 × νΓ)]

= ∂νΓ
E1 − ∂νΓ

[(νΓ · E1)νΓ] = 0 on Γ,
 (5.23)

and

E1,Γν
= νΓ · E1 = 0 on Γ. (5.24)

It follows from (5.23) and (5.24) that

∂νΓ
E1 = 0 on Γ. (5.25)

With the aid of νΓ × E1|Γ = 0 and νΓ · E1|Γ = 0, we have

E1 = 0 on Γ. (5.26)

Therefore, combining (5.25) and (5.26), we infer by unique continuation that

E1 = 0 in R1,

which contradicts the transparent boundary condition (2.11).
We next consider the perturbation on S, take p(x) = q(x)νS on S in problem (5.2), from 

∇× E′
j = 0 in Ωj , one can get

0 = [νS × (∇× E′)] = −ω2µ

[(
ε+ i

σ

ω

)
ESτ

]
pSν − [νS × (∇Sτ (pSν (∇× E)Sν ))]

= −ω2µ

[(
ε+ i

σ

ω

)
ESτ

]
q − [νS × (∇Sτ (q(∇× E)Sν ))] on S.

 

(5.27)

Since q is arbitrary in (5.27) and E1,Sτ = [νS × (E1 × νS)] = [νS × (E2 × νS)] = E2,Sτ, 
we have

0 =

[(
ε+ i

σ

ω

)
ESτ

]
=

[(
ε1 + i

σ1

ω

)
−
(
ε2 + i

σ2

ω

)]
E2,Sτ on S. (5.28)

For ε1 �= ε2 and σ1 �= σ2, from (5.28) that

E1,Sτ = E2,Sτ = 0 on S. (5.29)

Taking the dot product of the Maxwell equation (2.4) with the complex conjugate of E2, 
integrating over Ω2, and using (5.29) and the radiation condition (2.10), we obtain
∫

Ω2

|∇ × E2|2dx − κ2
2

∫

Ω2

|E2|2dx = −
∫

S
(νS × (∇× E2)) · ((νS × E2)× νS)dsx = 0, (5.30)

which implies E2 = 0 in Ω2 due to �(κ2
2) > 0. Hence from (2.7), we have 

νS × E1 = νS × E2 = 0 on S, which is impossible by lemma 4.4. □ 

The result indicates that for small h, if the boundary measurements are O(h) close to each 
other, then the corresponding domains are also O(h) close to each other in the Hausdorff 
distance.
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6. Conclusion

In this paper, we have studied the direct and inverse electromagnetic obstacle scattering prob-
lems for the three-dimensional Maxwell equations  in an unbounded structure. We present 
an equivalent integral equation to the boundary value problem and show that it has a unique 
solution. For the inverse problem, we prove that the obstacle and unbounded rough surface 
can be uniquely determined by the tangential component of the electric field measured on 
two plane surfaces which enclose the unknown obstacle and unbounded rough surface. The 
local stability shows that the Hausdorff distance of the two regions, corresponding to small 
perturbations of the obstacle and the unbounded rough surface, is bounded by the distance of 
corre sponding tangential trace of the electric fields if they are close enough. To prove the sta-
bility, the domain derivative of the electric field with respect to the change of the shape of the 
obstacle and unbounded rough surface is examined. In particular, we deduce that the domain 
derivative satisfies a boundary value problem of the Maxwell equations, which is similar to 
the model equation of the direct problem. The results hold for multiple obstacles which are 
located either above or below the unbounded rough surface.
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