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a b s t r a c t

The interior elastic transmission eigenvalue problem, arising from the inverse scattering
theory of non-homogeneous elastic media, is nonlinear, non-self-adjoint and of fourth
order. This paper proposes a numerical method to compute real elastic transmission
eigenvalues. To avoid treating the non-self-adjoint operator, an auxiliary nonlinear
function is constructed. The values of the function are generalized eigenvalues of a
series of self-adjoint fourth order problems. The roots of the function are the trans-
mission eigenvalues. The self-adjoint fourth order problems are computed using the
H2-conforming Argyris element. The secant method is employed to search the roots
of the nonlinear function. The convergence of the proposed method is proved.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Inverse elastic scattering theory became an active research area recently (see, e.g., [1] and the references therein). In
this paper, we consider the computation of the interior elastic transmission eigenvalue problem (ETE) arising from the
inverse scattering theory of non-homogeneous elastic media. Similar to the acoustic and electromagnetic transmission
eigenvalue problems [2], the ETE plays a critical role in the qualitative reconstruction methods for inhomogeneous media.
The ETE is a new nonlinear non-self-adjoint eigenvalue problem and its theory is far from complete [3].

Numerical methods for the acoustic transmission eigenvalues have been developed by many researchers since 2010
(see, e.g., [4–18]). There exist some papers on the electromagnetic transmission eigenvalue problems [19–21]. It is
non-trivial to develop finite element methods for the transmission eigenvalue problems since they are nonlinear, non-
self-adjoint and of high order [22]. There are a few papers on the computation of the ETE. In [23], the authors proposed a
discontinuous Galerkin method based on a mixed formulation. Recently, Chang et al. implemented an efficient quadratic
Jacobi–Davidson method combining with partial locking or partial deflation techniques to compute many positive
eigenvalues [24]. We also refer the readers to the two recent papers appeared on arXiv [25,26].

The goal of this paper is to develop an effective numerical method to compute real transmission eigenvalues. Real
transmission eigenvalues can be reconstructed from the scattered waves and used to estimate material property of the
elastic body (see, e.g., [27]). It is shown in [3] that there exists a countable set of real elastic transmission eigenvalues.
The problem of the existence of complex elastic transmission eigenvalues is largely open. Unlike the Laplacian eigenvalue
problem or the biharmonic eigenvalue problem, the transmission eigenvalue problem is nonlinear and non-self-adjoint.
To overcome these difficulties, we reformulate the ETE as a problem to seek the root of a nonlinear function. Specifically,
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following the idea of [5] for the acoustic transmission eigenvalue problem, the ETE is first written as a nonlinear
fourth order eigenvalue problem. Then a nonlinear function, whose roots are the real elastic transmission eigenvalues, is
constructed. The values of the nonlinear function are generalized eigenvalues of some self-adjoint coercive fourth order
problems, which can be treated using the classical H2-conforming finite elements. Finally, the secant method is used to
compute the roots of the nonlinear function.

The rest of the paper is organized as follows. In Section 2, we introduce the elastic transmission eigenvalue problem
and derive a quadratic eigenvalue problem based on a fourth order partial differential equation. To avoid treating the
nonlinearity and non-self-adjointness directly, the ETE is decomposed into a nonlinear function and a series of linear
self-adjoint fourth order eigenvalue problems. The values of the nonlinear function are generalized eigenvalues of the
fourth order problems. The roots of the nonlinear function are transmission eigenvalues. In Section 3, the H2-conforming
Argyris element for the fourth order problems is presented and the convergence is proved. The secant method is used
in Section 4 to compute roots of the nonlinear function and the error estimate is obtained. Some preliminary numerical
examples are presented in Section 5.

2. The elastic transmission eigenvalue problem

Let x = (x, y)⊤ ∈ R2 and D ⊂ R2 be a bounded Lipschitz polygon. The elastic wave equation is

∇ · σ (u) + ω2ρu = 0 in D ⊂ R2, (1)

where u(x) = (u1(x), u2(x))⊤ is the displacement vector of the wave field, ω > 0 is the angular frequency, ρ(x) is the
mass density, and σ (u) is the stress tensor given by the generalized Hooke law

σ (u) = 2µε(u) + λtr(ε(u))I,

where I ∈ R2×2 is the identity matrix and µ, λ are the Lamé parameters satisfying µ > 0, λ + µ > 0. The strain tensor
ε(u) is defined as

ε(u) =
1
2
(∇u + (∇u)⊤),

where ∇u is the displacement gradient tensor

∇u =

[
∂xu1 ∂yu1
∂xu2 ∂yu2

]
.

Explicitly, we have

σ (u) =

[
(λ + 2µ)∂xu1 + λ∂yu2 µ(∂yu1 + ∂xu2)

µ(∂xu2 + ∂yu1) λ∂xu1 + (λ + 2µ)∂yu2

]
. (2)

Given u, v ∈ H1
0 (D)

2, it follows from the integration by parts that

(σ (u), ∇v) =

∫
D
σ (u) : ∇v dx

=

∫
D
(2µε(u) : ε(v) + λ(∇ · u)(∇ · v)) dx, (3)

where A : B = tr(AB⊤) is the Frobenius inner product of square matrices A and B. We recall the first Korn inequality [28,
Corollary 11.2.25]: there exists a positive constant C such that

∥ε(u)∥L2 ≥ C∥u∥H1 for all u ∈ H1
0 (D)

2.

Let ρ0, ρ1 ∈ L2(D) be the mass density of the background medium and the mass density of D, respectively. In this
paper, we consider the case when ρ1 > ρ0 such that

p ≤ ρ0(x) ≤ P, p∗ ≤ ρ1(x) ≤ P∗, x ∈ D, (4)

where p, p∗, P, P∗ are positive constants and p∗ > P .
The elastic transmission eigenvalue problem is to find ω2 such that there exists a non-trivial solution (w, v) satisfying

∇ · σ (w) + ω2ρ0w = 0 in D, (5a)

∇ · σ (v) + ω2ρ1v = 0 in D, (5b)

w = v on Γ , (5c)

σ (w)ν = σ (v)ν on Γ , (5d)
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where σ (w)ν denotes the matrix multiplication of the stress tensor σ (w) and the unit outward normal ν to Γ := ∂D.
Assume that p∗ ≥ 1 ≥ P . It is shown in [3] that the set of elastic transmission eigenvalues is discrete, with infinity being
the only possible accumulation point.

Since ω is the angular frequency in the elastic waves, the goal of this paper is to develop an effective numerical method
to compute real transmission eigenvalues which are physically meaningful. To this end, we first rewrite (5) as a fourth
order problem. Define the Sobolev space

V = {φ ∈ H2(D)2 : φ = 0 and σ (φ)ν = 0 on Γ }. (6)

Subtracting (5b) from (5a) and rearranging terms, one obtains

∇ · σ (w − v) + ω2ρ0(w − v) = ω2(ρ1 − ρ0)v.

Applying (5b) once again, one gets(
∇ · σ + ω2ρ1

)
(ρ1 − ρ0)−1 (

∇ · σ + ω2ρ0
)
(w − v) = 0.

Let u = w − v. From (5c) and (5d), one has that

u = 0 and σ (u)ν = 0 on Γ .

Consequently, the transmission eigenvalue problem can be formulated as follows. Find ω2 and u ̸= 0 such that(
∇ · σ + ω2ρ1

)
(ρ1 − ρ0)−1 (

∇ · σ + ω2ρ0
)
u = 0. (7)

The weak formulation of (7) is to find ω2
∈ C and 0 ̸= u ∈ V such that(

(ρ1 − ρ0)−1 (
∇ · σ + ω2ρ0

)
u,

(
∇ · σ + ω2ρ1

)
ϕ
)

= 0 for all ϕ ∈ V , (8)

where ω denotes the complex conjugate of ω. Let τ = ω2. We define two sesquilinear forms on V × V

Aτ (φ, ϕ) =
(
(ρ1 − ρ0)−1 (∇ · σ + τρ0) φ, (∇ · σ + τρ0) ϕ

)
+ τ 2(ρ0φ, ϕ),

B(φ, ϕ) = (σ (φ), ∇ϕ).

It is clear that Aτ is symmetric. Due to (3), B is also symmetric.
The variational problem for (8) can be written as to find τ ∈ R and 0 ̸= u ∈ V such that

Aτ (u, ϕ) = τB(u, ϕ) for all ϕ ∈ V . (9)

This is a nonlinear problem since τ appears on both sides of the equation. For a fixed τ , we consider an associated
generalized eigenvalue problem of finding γ := γ (τ ) such that

Aτ (u, ϕ) = γB(u, ϕ) for all ϕ ∈ V . (10)

Then τ is a transmission eigenvalue if τ is a root of the nonlinear function

f (τ ) := γ (τ ) − τ . (11)

The following lemma can be verified in a straightforward manner.

Lemma 2.1. A value τ > 0 is a transmission eigenvalue satisfying (9) if and only if f (τ ) = 0 and γ satisfies (10).

In the rest of this section, we analyze the generalized eigenvalue problem (10). Denote by ∥·∥ the L2-norm. It is shown
in [29] that there exists β > 0 such that

∥∇ · σ (φ)∥2
+ ∥φ∥

2
≥ β∥φ∥

2
H2(D)2 for φ ∈ V .

The following lemma is useful in the subsequent analysis. The proof can be carried out following the proof of Lemma
3.1 in [3] for domains with smooth boundaries and thus omitted here.

Lemma 2.2. Let ρ0, ρ1 be smooth enough and assume that p∗ ≥ 1 ≥ P. Then Aτ is a coercive sesquilinear form on V × V ,
i.e., there exists a constant α > 0 such that

Aτ (φ, φ) ≥ α∥φ∥
2 for all φ ∈ V .

The source problem associated with (10) is to find u ∈ V such that, for f ∈ H1(D)2,

Aτ (u, φ) = (σ (f ), ∇φ) for all φ ∈ V . (12)

Due to Lemma 2.2, the following theorem is a consequence of the Lax–Milgram Lemma.
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Theorem 2.3. There exists a unique solution u ∈ V to (12). Furthermore, it holds that

∥u∥H2(D)2 ≤ C∥f ∥H1(D)2 . (13)

Proof. Due to the boundedness of ρ0 and ρ1, for φ, ϕ ∈ V , there exists some constant C > 0 such that

|Aτ (φ, ϕ)|

=
⏐⏐((ρ1 − ρ0)−1 (∇ · σ + τρ0) φ, (∇ · σ + τρ0) ϕ

)
+ τ 2(ρ0φ, ϕ)

⏐⏐
≤C (|∇ · σ (φ)| |∇ · σ (ϕ)| + |∇ · σ (φ)| |ϕ| + |∇ · σ (ϕ)| |φ| + |φ| |ϕ|)

≤C ∥φ∥V ∥ϕ∥V .

Hence Aτ is bounded. The coercivity of Aτ follows from Lemma 2.2. Let F be a linear functional on V such that

F (φ) := (σ (f ), ∇φ),

for all φ ∈ V . Then the Lax–Milgram Lemma implies that there exists a unique solution u to the problem

Aτ (u, φ) = F (φ) for all φ ∈ V .

Moreover, we have

∥u∥H2(D)2 ≤ C∥F∥V ′ ,

where V ′ represents the dual space of V . Using the definition of σ (f ), we obtain that

∥F∥V ′ ≤ Cλ,µ∥f ∥H1(D)2 ,

which shows the estimate (13) and the proof is complete. □

In the rest of the paper, we assume that the following regularity for u holds

∥u∥H2+ξ (D)2 ≤ C∥f ∥H1(D)2 , (14)

where ξ ≥ 0 is the elliptic regularity parameter. Note that for the biharmonic equation, ξ ∈ ( 12 , 1] is determined by the
angles at the corners of D and ξ = 1 if D is convex [30].

It follows from Theorem 2.3 that there exists a solution operator T : H1(D)2 → V such that

u = T f .

Clearly, the operator T is self-adjoint since Aτ is symmetric. T is also a compact operator due to the compact embedding of
H2(D)2 into H1(D)2 (see, e.g., Theorem 1.2.1 of [22]). The generalized eigenvalue problem (10) has the following equivalent
operator form

ηu = Tu, where η = γ −1.

From the classical spectral theory of compact self-adjoint operators, T has at most a countable set of real eigenvalues
and zero is the only possible accumulation point. Consequently, we have the following lemma for the generalized
eigenvalue problem (10).

Lemma 2.4. Let ρ0 and ρ1 satisfy (4) and the conditions in Lemma 2.2 are satisfied. Then the generalized eigenvalue problem
(10) has at most a countable set of positive eigenvalues and +∞ is the only possible accumulation point.

In view of Lemma 2.1, the computation of real transmission eigenvalues can be carried out as follows:

1. Obtain an approximation fh(τ ) of f (τ ) by computing the generalized eigenvalue γh(τ ) of (10) using the H2-conforming
Argyris element;

2. Compute the zero of fh(τ ) using some iterative root-finding method.

3. The argyris element for γ(τ)

In this section, we employ the Argyris element to compute γ (τ ). The convergence for the source problem (12) is
established first. Then the theory of Babuška and Osborn [31] is applied to obtain the convergence for the eigenvalue
problem (10).

Let T be a regular triangular mesh for D and K ∈ T be a triangle. We employ the H2-conforming Argyris element, which
uses P5, the set of polynomials of degree up to 5 on K , to discretize (10). Note that dim(P5) = 21. For N = {N1, . . . ,N21},
the degrees of freedom are 3 values at the vertices of K , 6 values of the first order partial derivatives at the vertices of K ,
9 values of the second order derivatives at the vertices of K , and 3 values of the normal derivatives at the midpoints of
three edges of K [28].
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Note that the Argyris element does not belong to the affine families. This is due to the fact that normal derivatives are
used as degrees of freedom. Fortunately, their interpolation properties are quite similar to those of affine families. Hence
the Argyris element is referred to be almost-affine. Let v ∈ H2(D) and Ihv be the interpolation of v by the Argyris element.
For v ∈ H1+α(D), α > 0, the following interpolation result holds (see, e.g., [22])

∥v − Ihv∥H2(D) ≤ Chs−1
|v|Hs+1(D), (15)

where 1 ≤ s ≤ min{5, 1 + α} depends on the regularity of v.
Let Vh ⊂ V be the Argyris finite element space associated with T . The degrees of freedom of functions in Vh related to

the boundary nodes need a careful treatment. Let e ⊂ Γ be an edge of a triangle T ⊂ T with the unit outward normal
ν := (νx, νy)⊤ and unit tangent vector (tx, ty)⊤. The case when νxνy = 0 is easy to treat. Assume that νxνy ̸= 0 and thus
txty ̸= 0. It is clear that

txνx + tyνy = 0, t2x + t2y = 1, ν2
x + ν2

y = 1. (16)

On e, u = (u1, u2)⊤ = 0. Hence the tangential derivatives of u1 and u2 are also 0, i.e.,

tx∂xu1 + ty∂yu1 = 0, tx∂xu2 + ty∂yu2 = 0. (17)

The boundary condition σ (u)ν = 0 implies that

((λ + 2µ)∂xu1 + λ∂yu2)νx + µ(∂yu1 + ∂xu2)νy = 0,
µ(∂xu2 + ∂yu1)νx + (λ∂xu1 + (λ + 2µ)∂yu2)νy = 0.

Substituting

∂yu1 = −
tx
ty

∂xu1, ∂yu2 = −
tx
ty

∂xu2,

into the above equations, one has that

(λ + 2µ)νx∂xu1 −
τx

τy
λνx∂xu2 −

tx
ty

µνy∂xu1 + µνy∂xu2 = 0,

µνx∂xu2 −
tx
ty

µνx∂xu1 + λνy∂xu1 −
tx
ty
(λ + 2µ)νy∂xu2 = 0.

Collecting similar terms and using the fact that txνx + tyνy = 0, one obtains that

∂xu1

[
νx(λ + 2µ) − µ

tx
ty

νy

]
+ ∂xu2

[
µνy −

tx
ty

λνx

]
= 0,

∂xu1

[
λνy −

tx
ty

µνx

]
+ ∂xu2

[
µνx − (λ + 2µ)νy

tx
ty

]
= 0,

i.e.,

∂xu1[tyνx(λ + 2µ) − µtxνy] − ∂xu2(λ + µ)νxtx = 0,
−∂xu1(λ + µ)νxtx + ∂xu2[µνxty − (λ + 2µ)νytx] = 0.

The above equation can be viewed as a homogeneous linear system for ∂xu1 and ∂xu2. The determinant of the coefficient
matrix is

µ(λ + 2µ)ν2
x (1 − t2x ) + µ(λ + 2µ)t2x (1 − ν2

x )
+ (λ + 2µ)2ν2

x t
2
x + µ2ν2

x t
2
x − (λ + µ)2ν2

x t
2
x

= µ(λ + 2µ)(ν2
x + t2x ) + ν2

x t
2
x ((λ + 2µ)2 + µ2

− (λ + µ)2 − 2µ(λ + 2µ))
= µ(λ + 2µ)(ν2

x + t2x )
> 0,

where we have used (16). As a result of the above equation and (17), it holds that

∂xu1 = ∂yu1 = ∂xu2 = ∂yu2 = 0,

i.e., all the first-order derivatives are 0.
For the Argyris element, one also need to consider the degrees of freedom related to the second order partial derivative

of a boundary node. For ui, i = 1, 2, one has that

∂2ui

∂x2
tx +

∂2ui

∂x∂y
ty = 0,
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∂2ui

∂x∂y
tx +

∂2ui

∂y2
ty = 0,

which implies that

∂2ui

∂x2
=

t2y
t2x

∂2ui

∂y2
,

∂2ui

∂x∂y
= −

ty
tx

∂2ui

∂y2
. (18)

If a boundary node is a corner, then

∂2ui

∂x2
=

∂2ui

∂y2
=

∂2ui

∂x∂y
= 0, i = 1, 2.

Now we are ready to introduce the discrete problem for (12). For f ∈ H1(D)2, find uh ∈ Vh such that

Aτ (uh, φh) = (σ (f ), ∇φh) for all φh ∈ Vh. (19)

The existence of a unique solution uh to (19) holds as the continuous problem since the conforming finite element is
used. As a consequence, there exists a discrete solution operator Th : H1(D)2 → H2(D)2 such that

uh = Thf .

Theorem 3.1. Let u and uh be the solutions of the continuous problem (12) and discrete problem (19), respectively. Then the
following error estimate holds

∥u − uh∥H1(D)2 ≤ Ch2ξ
∥f ∥H1(D)2 ,

where ξ = s − 1.

Proof. From Céa’s Lemma, the following error estimate holds

∥u − uh∥H2(D)2 ≤ C inf
vh∈Vh

∥u − vh∥H2(D)2 ,

for some constant C . Using (15) and (14), one has that

∥u − uh∥H2(D)2 ≤ Chs−1
|u|Hs+1(D)2 = Chξ

|u|H2+ξ (D)2 ≤ Chξ
∥f ∥H1(D)2 ,

where s = 1 + ξ . For g ∈ H1
0 (D)

2, let φg be the unique solution of

Aτ (φg , φ) = (σ (g), ∇φ) for all φ ∈ V .

The rest of the proof follows the Aubin–Nitsche Lemma (see, e.g., Theorem 3.2.4 of [22]) with suitable choices of Sobolev
spaces. Let e := u − uh and g ∈ H1(D)2. Using the Galerkin orthogonality, for any vh ∈ Vh, we have that

(σ (g), ∇e) = Aτ (φg , u − uh)
= Aτ (φg − vh, u − uh)
≤ C∥φg − vh∥H2∥u − uh∥H2 ,

which yields

(σ (g), ∇e) ≤ C∥u − uh∥H2 inf
vh∈Vh

∥φg − vh∥H2 .

Furthermore,

∥u − uh∥H1 = sup
g∈H1(D)2,g ̸=0

(u − uh, g)
∥g∥H1

≤ C∥u − uh∥H2 sup
g∈H1(D)2,g ̸=0

{
inf

vh∈Vh

∥φg − vh∥
∥g∥H1

}
.

Consequently, we get

∥u − uh∥H1(D)2 ≤ Ch2ξ
∥f ∥H1(D)2 ,

which completes the proof. □

Using the operators T and Th, we can rewrite the above error estimate as

∥T f − Thf ∥ ≤ Ch2ξ
∥f ∥H1(D)2 .

Thus we have that

∥T − Th∥ ≤ Ch2ξ .
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Now we consider the discrete eigenvalue problem: Find γh ∈ R such that

Aτ (uh, φh) = γh(σ (uh), ∇φh) for all φh ∈ Vh. (20)

The discrete eigenvalue problem is obtained by replacing f with γhuh in (19). The reciprocal of the exact eigenvalue γ is
the eigenvalue of the solution operator T . The reciprocal of γh is the eigenvalue of the finite element solution operator
Th. If Th converges to T in norm as h → 0, the finite element spectral approximation theory of variationally formulated
eigenvalue problems by Babuška and Osborn [31] guarantees the convergence of γh to γ .

Since both Aτ and B are symmetric, T is self-adjoint. Similarly, Th is self-adjoint. The estimate for the eigenvalue
problem follows directly from the theory of Babuška and Osborn [31] (Theorem 8.1 therein).

Theorem 3.2. Let γ be a generalized eigenvalue of (10) with algebraic multiplicity m. Let γh,1, . . . , γh,m be the m eigenvalues
of (20) approximating γ . Define γ̂h =

1
m

∑m
j=1 γh,j. The following estimate holds

|γ − γ̂h| ≤ Ch2ξ ,

where C := C(τ ) > 0 depends on τ but not h.

Let {φi}
n
i=1 be the basis functions of the Argyris element satisfying the boundary conditions. Let An×n be the matrix

given by Aij = Aτ (φj, φi) and Bn×n be given by Bi,j = (σ (φj), ∇φi). Then γh’s in (20) are the generalized eigenvalues of
Ax = γ Bx.

4. Computation of the root of fh(τ)

Now we turn to the problem of how to compute the root of the nonlinear function fh(τ ), the discrete version of f (τ )
defined in (11). For simplicity, we assume that ρ0 and ρ1 are constants. Consider the case when γ (τ ) is the first eigenvalue
of (10). Similar result holds for other eigenvalues.

The continuity of f is obvious since the generalized eigenvalue γ (τ ) of (10) depends on τ continuously. In fact, f is
differentiable and the derivative is negative on an interval given in Theorem 4.1. We first recall the elastic eigenvalue
problem which will be used later (see, e.g., [31]). Find a non-trivial eigenpair (δ, u) ∈ R × H1

0 (D)
2 such that∫

D
(2µϵ(u) : ϵ(u) + λ divu divv) dx = δ

∫
D
uvdx (21)

for all v ∈ H1
0 (D)

2.

Theorem 4.1. Let δ1 be the first elastic eigenvalue. The function f (τ ) is differentiable. Furthermore, f (τ ) is a decreasing function
on

(
0, δ1(ρ0+ρ1)

2ρ0ρ1

)
.

Proof. Let γ1(τ , ρ0, ρ1) be the first generalized eigenvalue of (10). The following Rayleigh quotient holds

γ1(τ , ρ0, ρ1)

= inf
w∈V

Aτ (w,w)
B(w,w)

= inf
w∈V

(
1

ρ1−ρ0
(∇ · σ + τρ0)w, (∇ · σ + τρ0)w

)
+ τ 2(ρ0w,w)

(σ (w), ∇w)

= inf
w∈V

(
1

ρ1−ρ0
∇ · σ (w), ∇ · σ (w)

)
+ 2τ

(
ρ0

ρ1−ρ0
w, ∇ · σ (w)

)
+ τ 2

(
ρ0ρ1

ρ1−ρ0
w,w

)
(σ (w), ∇w)

.

When ρ0 and ρ1 are constants, we have

γ1(τ , ρ0, ρ1) = inf
w∈V

1
ρ1−ρ0

(∇ · σ (w), ∇ · σ (w)) + τ 2 ρ0ρ1
ρ1−ρ0

(w,w)

(σ (w), ∇w)
−

2τρ0

ρ1 − ρ0
.

Note that the sesquilinear form

a(u, v) := (σ (u), ∇v) = 2µε(u) : ε(v) + λ(∇ · u)(∇ · v)

is bounded, symmetric, and coercive. Hence

γ1(τ , ρ0, ρ1)

= inf
w∈V ,a(w,w)=1

{
(∇ · σ (w), ∇ · σ (w))

ρ1 − ρ0
+ τ 2 ρ0ρ1

ρ1 − ρ0
(w,w)

}
−

2τρ0

ρ1 − ρ0
.
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Let κ := τ 2 ρ0ρ1
ρ1−ρ0

. We define a new function

s(κ) = inf
w∈V ,a(w,w)=1

{
1

ρ1 − ρ0
∥∇ · σ (w)∥2

+ κ∥w∥
2
}

.

For a fixed κ ∈ (0, ∞), there exists a wκ such that wκ ∈ V , a(wκ ,wκ ) = 1, and

s(κ) =

{
1

ρ1 − ρ0
∥∇ · σ (wκ )∥2

+ κ∥wκ∥
2
}

.

For a small enough positive h,

s(κ + h) − s(κ) ≤

{
1

ρ1 − ρ0
∥∇ · σ (wκ )∥2

+ (κ + h)∥wκ∥
2
}

−

{
1

ρ1 − ρ0
∥∇ · σ (wκ )∥2

+ κ∥wκ∥
2
}

= h∥wκ∥
2.

On the other hand, we have

s(κ + h) − s(κ) ≥

{
1

ρ1 − ρ0
∥∇ · σ (wκ+h)∥2

+ (κ + h)∥wκ+h∥
2
}

−

{
1

ρ1 − ρ0
∥∇ · σ (wκ+h)∥2

+ κ∥wκ+h∥
2
}

= h∥wκ+h∥
2.

Consequently,

∥wκ+h∥
2

≤
s(κ + h) − s(κ)

h
≤ ∥wκ∥

2.

The above inequality implies that ∥wκ∥
2 is monotonically decreasing and thus bounded. Note that a(wκ ,wκ ) = 1. Then

the continuity of s and the compact embedding of V into L2(D)2 implies the existences of a w̃ such that wκ+h converges
in L2(D)2 strongly and wκ+h converges in H2(D)2 weakly. In addition, wκ+h satisfies(

1
ρ1 − ρ0

∇ · σ (wκ+h), ∇ · σ (φ)
)

+ (κ + h) (wκ+h, φ) = s(k + h) (σ (w), ∇φ) ,

for all φ ∈ V . Taking h → 0, we obtain(
1

ρ1 − ρ0
∇ · σ (w̃), ∇ · σ (φ)

)
+ κ

(
w̃, φ

)
= s(k)

(
σ (w̃), ∇φ

)
,

for all φ ∈ V . Thus w̃ = wκ . Consequently,

∥wκ+h∥
2

→ ∥wκ∥
2, h → 0.

Then the derivative of s(κ) is ∥wκ∥
2.

Combing the above estimates, we obtain

f ′(τ ) = 2τ
ρ0ρ1

ρ1 − ρ0
∥wκ∥

2
−

2ρ0

ρ1 − ρ0
− 1

= 2τ
ρ0ρ1

ρ1 − ρ0
∥wκ∥

2
−

ρ1 + ρ0

ρ1 − ρ0
.

Let δ1 be the first elastic eigenvalue. One has that

∥wκ∥
2

≤
1
δ1

(σ (wκ ), ∇wκ ) =
1
δ1

,

since (σ (wκ ), ∇wκ ) = 1. This implies that

f ′(τ ) ≤
2τρ0ρ1

δ1(ρ1 − ρ0)
−

ρ1 + ρ0

ρ1 − ρ0
. (22)

In particular, f is decreasing, i.e.,

f ′(τ ) ≤ 0 if τ <
δ1(ρ0 + ρ1)

2ρ0ρ1
.

It is easy to see that f (τ ) > 0 if τ → 0 and f (τ ) < 0 if τ → ∞. □
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Now we turn to the problem of approximating the root of f (τ ). Since we only have the finite element approximation
for f , the nonlinear equation to be solved is the following discrete version of (11):

fh(τ ) := γh(τ ) − τ . (23)

It is clear that fh(τ ) is continuous. The existence of the transmission eigenvalue, i.e., the root of fh(τ ), can be established
if one can find an interval such that fh(τ ) changes signs at the ends of the interval.

To this end, let Br be the largest ball of radius r such that Br ⊂ D and BR be the smallest ball of radius R such that
D ⊂ BR. Let b1 and b2 be given by

b1 = max
(
τ1(BR, P, p∗),

√
d1(D)/P∗

)
, b2 = τ1(Br , p, P∗), (24)

where τ1(BR, P, p∗) is the first real transmission eigenvalue of BR with ρ0 = P, ρ1 = p∗, τ1(Br , p, P∗) is the first real
transmission eigenvalue of BR with ρ0 = p, ρ1 = P∗, d1(D) is the first Dirichlet eigenvalue of the negative Laplacian on D
(see [22]).

It is shown in [3] that the first transmission eigenvalue τ for (9) is such that τ ∈ (b1, b2). It is done by showing that
f (b1) > 0 and f (b2) < 0 such that f (τ ) must have a root in (b1, b2) due to the continuity of f (τ ).

Using Theorem 3.2, there exists a constant C such that

|fh(τ ) − f (τ )| ≤ Ch2α. (25)

The following lemma is a consequence of the above discussion.

Lemma 4.2. If h is small enough, fh(τ ) has at least one root in (b1, b2) where b1, b2 are defined in (24).

Proof. Using (25), if h is small enough, fh(b1) > 0 and fh(b2) < 0 since f (b1) > 0 and f (b2) < 0. Since fh(τ ) is continuous,
there exists at least a τ ∗

h such that fh(τ ∗

h ) = 0. □

The next lemma shows that the root of fh(τ ) approximates that of f (τ ).

Lemma 4.3. Let f (τ ) and fh(τ ) be two continuous functions. For a small enough ϵ > 0, there exists some η > 0 such that
f ′(τ ) ≤ −η < 0 and |f (τ ) − fh(τ )| < ϵ on an interval [c−ϵ/η, d+ϵ/η] for some 0 < c < d. If f (τ ∗) = 0 for some τ ∗

∈ (c, d),
then there exists a τ ∗

h such that fh(τ ∗

h ) = 0 and

|τ ∗
− τ ∗

h | < ϵ/η.

Proof. For ϵ > 0 small enough, from (22), there exists η > 0 such that

f ′(τ ) ≤ −η for τ ∈

(
0,

δ1(ρ0 + ρ1)
2ρ0ρ1

− ϵ

)
. (26)

Since f ′(τ ) ≤ −η < 0, if ϵ is small enough, there must exist τ1 and τ2 such that f (τ1) > ϵ and f (τ2) < −ϵ. Furthermore,
|f (τ ) − fh(τ )| < ϵ for all τ implies that fh(τ1) > 0 and fh(τ2) < 0. The existence of τ ∗

h such that fh(τ ∗

h ) = 0 follows
immediately since fh(τ ) is continuous.

Assume that |τ ∗
− τ ∗

h | ≥ ϵ/η. Since f (τ ∗) = 0, we have f (τ ∗

h ) = f ′(ξ )(τ ∗
− τ ∗

h ) for ξ between τ ∗

h and τ ∗. Thus we have
either f (τ ∗

h ) > ϵ or f (τ ∗

h ) < −ϵ. Both contradict the fact that |fh(τ ∗

h ) − f (τ ∗

h )| < ϵ. This completes the proof. □

It seems straightforward to use the bisection method to compute the root of fh(τ ) if one has a and b defined in (24)
(see [5]). However, it is necessary to compute τ1(BR, P, p∗) and τ1(Br , p, P∗), i.e., the first elastic transmission eigenvalue
for a ball with constant mass densities, which is not simpler at all. Based on the fact that fh(τ ) is positive close to zero
and monotonically decreasing on some interval right to zero, it is suitable to use the secant method to find the root of
fh(τ ). Let tol be the tolerance. The algorithm to compute the elastic transmission eigenvalues is as follows.

SMETE

generate a regular triangular mesh T for D
construct matrix Bh corresponding to B in (10)
choose x1 > x0 > 0 small enough
d = abs(x1 − x0)
τ = x0 and construct the matrix Aτ ,h
compute the first generalized eigenvalue γ0 of Aτ ,hx = γ Bhx
τ = x1 and construct matrix Aτ ,h
compute the first generalized eigenvalue γ1 of Aτ ,hx = γ Bhx
while δ > tol

τ = x1 − γ1
x1−x0
γ1−γ0

construct the matrix Aτ ,h
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compute the first eigenvalue γτ of Aτ ,hx = γ Bhx
d = abs(γτ − τ )
x0 = x1, x1 = τ

γ0 = γ1, γ1 = γτ

output τ

In practice, one can choose x0 and x1 be two small positive numbers, e.g., x0 = 0.1 and x1 = 0.2. The following theorem
guarantees the converge for the proposed method.

Theorem 4.4. Assume that the Argyris element method is used to solve the generalized eigenvalue problem (10) on a regular
triangular mesh T for D with mesh size h and the secant method is employed to compute the root of fh(τ ) with tolerance tol.
Let τ be the exact transmission eigenvalue, i.e., the root of (11), and τ s

h be the computed root of (23) by the secant method such
that τ , τ s

h ∈

(
0, δ1(ρ0+ρ1)

2ρ0ρ1
− ϵ

)
. Then

|τ − τ s
h| ≤ Ch2ξ/η + tol. (27)

Proof. Let τh be the exact root of fh(τ ). Since τ s
h is computed by the secant method, one has that

|τh − τ s
h| < tol.

Since τ is the root of f (τ ), we have that γ = τ . Similarly, γh = τh. Using Lemma 4.3 and Theorem 3.2, for h small enough,
we have

|τ − τh| = |γ − γh| < Ch2ξ/η.

Triangle inequality implies that

|τ − τ s
h| ≤ |τ − τh| + |τh − τ s

h| < Ch2ξ/η + tol. □

5. Numerical examples

In this section, we present some numerical results for three domains:

1. the unit square,
2. an L-shape domain given by

(0, 1) × (0, 1) \ [1/2, 1] × [0, 1/2],

3. a triangle whose vertices are

(0, 0), (0, 1), and (1, 0).

Four levels of uniformly refined triangular meshes are generated. The size of the initial mesh is h1 = 1/8 and hi =

hi−1/2, i = 2, 3, 4. All examples are done using Matlab 2016a on a MacBook Pro with 16G memory and 3.3 GHz Intel Core
i7 processor.

Since the Argyris element leads to many degrees of freedom, we were only able to compute four levels of meshes,
i.e., h ≈ 1/8, 1/16, 1/32, 1/64. Further refinements would lead to very large matrix eigenvalue problems which take too
long to solve (more than a few hours).

5.1. Generalized eigenvalues of (10)

We check the convergence rate of the Argyris method for the fourth order generalized eigenvalue problem (10) with
fixed τ = 2. Other parameters are chosen as follows

µ = 1/16, λ = 1/4, ρ0 = 1, ρ1 = 4. (28)

The relative error is defined as

Ei+1 =
|γi+1 − γi|

|γi|
, i = 1, 2, 3,

where γi is the generalized eigenvalue computed using the mesh with size hi. Then the convergence order is defined as

convergence order = log2
Ei+1

Ei+2
, i = 1, 2. (29)

The first eigenvalues for three domains are shown in Table 1. The lower convergence order for the L-shape domain is
expected since the domain is non-convex. The convergence orders for the unit square and the triangle are much higher.
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Table 1
The smallest generalized eigenvalue of (10) for three domains with µ = 1/16, λ = 1/4, ρ0 = 1, ρ1 = 4.
h Unit square Order L-shape Order Triangle Order

1/8 1.94313093 4.26827573 4.65382003
1/16 1.94288801 4.25165430 4.64788746
1/32 1.94288581 6.7867 4.24202856 0.7824 4.64781308 6.3157
1/64 1.94288527 2.0265 4.23602214 0.6771 4.64781232 6.5994

Table 2
The first (real) transmission eigenvalues computed by the secant method with µ = 1/16, λ = 1/4, ρ0 = 1, ρ1 = 4.
‘‘NOI’’ denotes the number of iterations.
Unit square NOI L-shape NOI Triangle NOI

1.94288499 7 4.90134451 6 5.36467493 7

Fig. 1. fh(τ ) v.s. τ .

5.2. Monotonicity of fh(τ )

We study fh(τ ) for three domains using the meshes with h3 ≈ 1/32 and parameters given in (28). The first elastic
eigenvalues are δ1 = 3.251402 for the unit square, δ1 = 4.325472 for the L-shape domain, and δ1 = 13.444678 for the
disk. According to Theorem 4.1, f (τ ) is a decreasing function on

(
0, δ1(ρ0+ρ1)

2ρ0ρ1

)
. Plugging the values for δ1, ρ0, ρ1, one has

that f (τ ) is decreasing on

(0, 2.032126), (0, 2.703420) and (0, 8.402924), (30)

for the unit square, the L-shape domain and the triangle, respectively. In Fig. 1, we plot fh(τ ) = γh(τ )−τ for three domains,
where γh(τ ) is the smallest eigenvalue of (10). It can be seen that fh(τ ) is decreasing on much larger intervals than those
in (30) predicted by Theorem 4.1.

5.3. Transmission eigenvalues

We choose x0 = 0.1 and x1 = 0.2 in the secant method. In Table 2, we show the first (real) transmission eigenvalues
computed by the secant method for three domains with mesh size h ≈ 1/32 and tol = 1.0e−6. The numbers of iterations
are shown as well.
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