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Abstract

Consider the scattering of a time-harmonic elastic plane wave by a periodic rigid surface. The elastic wave propagation
is governed by the two-dimensional Navier equation. Based on a Dirichlet-to-Neumann (DtN) map, a transparent boundary
condition (TBC) is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. By using
the finite element method, the discrete problem is considered, where the TBC is replaced by the truncated DtN map. A new
duality argument is developed to derive the a posteriori error estimate, which contains both the finite element approximation
error and the DtN truncation error. An a posteriori error estimate based adaptive finite element algorithm is developed to solve
the elastic surface scattering problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed
method.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

The scattering theory in periodic structures, which are known as gratings in optics, has many significant
applications in micro-optics including the design and fabrication of optical elements such as corrective lenses,
anti-reflective interfaces, beam splitters, and sensors [1,2]. Driven by the optical industry applications, the time-
harmonic scattering problems have been extensively studied for acoustic and electromagnetic waves in periodic
structures. We refer to [3,4] and the references cited therein for the mathematical results on well-posedness of the
solutions for the diffraction grating problems. Computationally, various numerical methods have been developed,
such as boundary integral equation method [5,6], finite element method [7,8], boundary perturbation method [9].
Recently, the scattering problems for elastic waves have received much attention due to the important applications
in seismology and geophysics [10–12]. This paper concerns the scattering of a time-harmonic elastic plane wave by
a periodic surface. Compared with acoustic and electromagnetic wave equations, the elastic wave equation is less
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studied due to the complexity of the coexistence of compressional and shear waves with different wavenumbers. In
addition, there are two challenges for the scattering problem: the solution may have singularity due to a possible
nonsmooth surface; the problem is imposed in an open domain. In this paper, we intend to address both issues.

The first issue can be overcome by using the a posteriori error estimate based adaptive finite element method.
A posteriori error estimates are computable quantities from numerical solutions and measure the solution errors of
discrete problems without requiring any a priori information of real solutions [13,14]. They are crucial in designing
numerical algorithms for mesh modification such as refinement and coarsening [15,16]. The aim is to equidistribute
the computational effort and optimize the computation. The a posteriori error estimate based adaptive finite element
method has the ability of error control and asymptotically optimal approximation property [17,18]. It has become an
important numerical tool for solving differential equations, especially for those where the solutions have singularity
or multiscale phenomena.

The second issue concerns the domain truncation. The surface scattering problem is imposed in an open domain,
which needs to be truncated into a bounded computational domain. An appropriate boundary condition is required
on the boundary of the truncated domain so that no artificial wave reflection occurs. Such a boundary condition
is called a non-reflecting boundary condition or a transparent boundary condition (TBC) [19–23]. Despite a huge
amount of work done so far in this aspect, it still remains to be one of the important and active research topics in
the computational wave propagation. Since Bérenger proposed a perfectly matched layer (PML) technique to solve
Maxwell’s equations [24], the research on PML has undergone a tremendous development due to its effectiveness
and simplicity [25–34]. Various constructions of PML have been proposed for solving a wide range of wave
propagation problems. The idea of PML technique is to surround the domain of interest by a layer of finite thickness
of fictitious medium that may attenuate the waves coming from inside of the computational domain. When the waves
reach the outer boundary of the PML region, their amplitudes are so small that the homogeneous Dirichlet boundary
condition can be imposed.

Combined with the PML technique, an adaptive finite element method was proposed in [35] to solve the two-
dimensional diffraction grating problem. It was shown that the a posteriori error estimate consists of the finite
element discretization error and the PML truncation error which decays exponentially with respect to the PML
parameters. Due to the competitive numerical performance, the methods was quickly extended to solve the two- and
three-dimensional obstacle scattering problems [36,37] and the three-dimensional diffraction grating problem [38].
Based on the a posteriori error analysis, the adaptive finite element PML method provides an effective numerical
strategy to solve a variety of acoustic, electromagnetic, and elastic wave propagation problems which are imposed
in unbounded domains [39,40].

The Dirichlet-to-Neumann (DtN) method is another approach to handle the domain truncation. The idea is to
construct an explicit solution, which is usually given as an infinite Fourier series, in the exterior of the domain
of interest. By taking the normal derivative of the solution, the Neumann data can be expressed in terms of the
Dirichlet data. This relationship gives the DtN map and can be used as a boundary condition, which is known as
the TBC. Since the TBC is exact, the artificial boundary can be put as close as possible to the scattering structures,
which can reduce the size of the computational domain.

Recently, as a viable alternative to the PML, the adaptive finite element DtN method has been proposed to solve
the scattering problems imposed in open domains, such as the obstacle scattering problems [41,42], the diffraction
grating problems [43]. In this approach, the TBC is applied on the artificial boundary which is chosen to enclose the
domain of interest. These TBCs are based on nonlocal DtN maps and are given as infinite Fourier series. Practically,
the infinite series needs to be truncated into the sum of finite number of terms by choosing an appropriate truncation
parameter N . It is known that the convergence of the truncated DtN map could be arbitrarily slow to the original
DtN map in the operator norm [44]. To overcome this issue, the duality argument has to be developed to obtain the a
posteriori error estimate between the solution of the scattering problem and the finite element solution. Comparably,
the a posteriori error estimates consists of the finite element discretization error and the DtN truncation error, which
decays exponentially with respect to the truncation parameter N .

In this paper, we present an adaptive finite element DtN method for the elastic wave scattering problem in
periodic structures. The goal is threefold: (1) prove the exponential convergence of the truncated DtN operator;
(2) give a complete a posteriori error estimate; (3) develop an effective adaptive finite element algorithm. This
paper significantly extends the work on the acoustic scattering problem [43], where the Helmholtz equation was
considered. Apparently, the techniques differ greatly from the existing work because of the complicated transparent
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Fig. 1. Schematic of the elastic wave scattering by a periodic structure.

boundary condition associated with the elastic wave equation. A related work can be found in [45] for an adaptive
finite element DtN method for solving the obstacle scattering problem of elastic waves.

Specifically, we consider the scattering of an elastic plane wave by a one-dimensional rigid periodic surface,
where the wave motion is governed by the two-dimensional Navier equation. The open space above the surface is
assumed to be filled with a homogeneous and isotropic elastic medium. The Helmholtz decomposition is utilized
to reduce the elastic wave equation equivalently into a coupled boundary value problem of the Helmholtz equation.
By combining the quasi-periodic boundary condition and a DtN operator, an exact TBC is introduced to reduce
the original scattering problem into a boundary value problem of the elastic wave equation in a bounded domain.
The discrete problem is studied by using the finite element method with the truncated DtN operator. Based on the
Helmholtz decomposition, a new duality argument is developed to obtain an a posteriori error estimate between the
solution of the original scattering problem and the discrete problem. The a posteriori error estimate contains the
finite element approximation error and the DtN operator truncation error, which is shown to decay exponentially
with respect to the truncation parameter. The estimate is used to design the adaptive finite element algorithm to
choose elements for refinements and to determine the truncation parameter N . Due to the exponential convergence
of the truncated DtN operator, the choice of the truncation parameter N is not sensitive to the given tolerance.
Numerical experiments are presented to demonstrate the effectiveness of the proposed method.

The outline of the paper is as follows. In Section 2, the model equation is introduced for the scattering problem.
In Section 3, the boundary value problem is formulated by using the TBC and the corresponding weak formulation is
studied. In Section 4, the discrete problem is considered by using the finite element method with the truncated DtN
operator. Section 5 is devoted to the a posterior error estimate. In Section 6, we discuss the numerical implementation
of the adaptive algorithm and present two examples to illustrate the performance of the proposed method. The paper
is concluded with some general remarks and directions for future work in Section 7.

2. Problem formulation

Consider the scattering of a time-harmonic plane wave by an elastically rigid surface, which is assumed to
be invariant in the z-axis and periodic in the x-axis with period Λ. Due to the periodic structure, the problem
can be restricted into a single periodic cell where x ∈ (0,Λ). Let x = (x, y) ∈ R2. Denote the surface by
S = {x ∈ R2

: y = f (x), x ∈ (0,Λ)}, where f is a Lipschitz continuous function. Let ν and τ be the unit normal
and tangent vectors on S, respectively. Above S, the open space is assumed to be filled with a homogeneous
and isotropic elastic medium with unit mass density. Denote Ω+

f = {x ∈ R2
: y > f (x), x ∈ (0,Λ)}. Let

Γ = {x ∈ R2
: y = b, x ∈ (0,Λ)} and Γ ′

= {x ∈ R2
: y = b′, x ∈ (0,Λ)}, where b and b′ are constants

satisfying b > b′ > maxx∈(0,Λ) f (x). Denote Ω = {x ∈ R2
: f (x) < y < b, x ∈ (0,Λ)}. The problem geometry is

shown in Fig. 1.
The incident wave uinc satisfies the two-dimensional elastic wave equation

µ∆uinc
+ (λ + µ)∇∇ · uinc

+ ω2uinc
= 0 in Ω+

f ,
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where ω > 0 is the angular frequency and µ, λ are the Lamé parameters satisfying µ > 0, λ + µ > 0. Specifically,
the incident wave can be the compressional plane wave uinc(x) = deiκ1 x·d or the shear plane wave uinc(x) = d⊥eiκ2 x·d,
where d = (sin θ, − cos θ )⊤, d⊥

= (cos θ, sin θ )⊤, θ = (−π/2, π/2) is the incident angle, κ1 = ω/(λ + 2µ)1/2 and
κ2 = ω/µ1/2 are known as the compressional and shear wavenumbers, respectively. For clarity, we shall take the
compressional plane wave as the incident field. The results will be similar if the incident field is the shear plane
wave.

Due to the interaction between the incident wave and the surface, the scattered wave is generated and satisfies

µ∆u + (λ + µ)∇∇ · u + ω2u = 0 in Ω+

f . (2.1)

Since the surface S is elastically rigid, the displacement of the total field vanishes and the scattered field satisfies

u = −uinc on S. (2.2)

For any solution u of (2.1), it has the Helmholtz decomposition

u = ∇φ1 + curlφ2, (2.3)

where φ j , j = 1, 2 are scalar potential functions and curlφ2 = (∂yφ2, −∂xφ2)⊤. Substituting (2.3) into (2.1), we
may verify that φ j satisfies the Helmholtz equation

∆φ j + κ2
j φ j = 0 in Ω+

f . (2.4)

Taking the dot product of (2.2) with ν and τ , respectively, yields that

∂νφ1 − ∂τφ2 = uinc
· ν, ∂νφ2 + ∂τφ1 = −uinc

· τ on S.

Let α = κp sin θ . It is clear to note that uinc is a quasi-periodic function with respect to x , i.e., uinc(x, y)e−iαx

is a periodic function with respect to x . Motivated by uniqueness of the solution, we require that the solution u of
(2.1)–(2.2) is also a quasi-periodic function of x with period Λ.

We introduce some notations and functional spaces. Let H 1(Ω ) be the standard Sobolev space. Denote a
quasi-periodic functional space

H 1
qp(Ω ) = {u ∈ H 1(Ω ) : u(Λ, y) = u(0, y)eiαΛ

}.

Let H 1
S,qp(Ω ) = {u ∈ H 1

qp(Ω ) : u = 0 on S}. Clearly, H 1
qp(Ω ) and H 1

S,qp(Ω ) are subspaces of H 1(Ω ) with the
standard H 1-norm. For any function u ∈ H 1

qp(Ω ), it admits the Fourier expansion on Γ :

u(x, b) =

∑
n∈Z

u(n)(b)eiαn x , u(n)(b) =
1
Λ

∫ Λ

0
u(x, b)e−iαn x dx, αn = α + n

(
2π

Λ

)
.

The trace functional space H s(Γ ), s ∈ R is defined by

H s(Γ ) =
{
u ∈ L2(Γ ) : ∥u∥H s (Γ ) < ∞

}
,

where the norm is given by

∥u∥H s (Γ ) =

(
Λ
∑
n∈Z

(
1 + α2

n

)s
|u(n)(b)|

2

)1/2

.

Let H1
qp(Ω ), H1

S,qp(Ω ), H s(Γ ) be the Cartesian product spaces equipped with the corresponding 2-norms of
H 1

qp(Ω ), H 1
S,qp(Ω ), H s(Γ ), respectively. Throughout the paper, the notation a ≲ b stands for a ≤ Cb, where C

is a positive constant whose value is not required but should be clear from the context.

3. The boundary value problem

The scattering problem (2.1)–(2.2) is formulated in the open domain Ω+

f , which needs to be truncated into the
bounded domain Ω . An appropriate boundary condition is required on Γ to avoid artificial wave reflection.

Let φ j be the solution of the Helmholtz equation (2.4) along with the bounded outgoing wave condition. It is
shown in [12] that φ j is a quasi-periodic function and admits the Fourier series expansion

φ j (x, y) =

∑
n∈Z

φ
(n)
j (b)ei

(
αn x+β

(n)
j (y−b)

)
, y > b, (3.1)
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where

β
(n)
j =

⎧⎪⎨⎪⎩
(
κ2

j − α2
n

)1/2
, |αn| < κ j ,

i
(
α2

n − κ2
j

)1/2
, |αn| > κ j .

(3.2)

We assume that κ j ̸= |αn| for n ∈ Z to exclude possible resonance. Taking the normal derivative of (3.1) on Γ
yields

∂yφ j (x, b) =

∑
n∈Z

iβ (n)
j φ

(n)
j (b)eiαn x .

As a quasi-periodic function, the solution u(x, y) = (u1(x, y), u2(x, y))⊤ admits the Fourier expansion

u(x, y) =

∑
n∈Z

(u(n)
1 (y), u(n)

2 (y))⊤eiαn x , y > b,

where u(n)
j is the Fourier coefficient of u j . Define a boundary operator

Bu = µ∂y u + (λ + µ)(0, 1)⊤∇ · u on Γ .

It is shown in [40] that the solution of (2.1) satisfies the transparent boundary condition

Bu = T u :=

∑
n∈Z

M (n)(u(n)
1 (b), u(n)

2 (b))⊤eiαn x on Γ , (3.3)

where T is called the Dirichlet-to-Neumann (DtN) operator and M (n) is a 2 × 2 matrix given by

M (n)
=

i
χn

[
ω2β

(n)
1 µαnχn − ω2αn

ω2αn − µαnχn ω2β
(n)
2

]
. (3.4)

Here χn = α2
n + β

(n)
1 β

(n)
2 .

By the transparent boundary condition (3.3), the variational problem of (2.1)–(2.2) is to find u ∈ H1
qp(Ω ) with

u = −uinc on S such that

a(u, v) = 0, ∀v ∈ H1
S,qp(Ω ), (3.5)

where the sesquilinear form a : H1
qp(Ω ) × H1

qp(Ω ) → C is defined as

a(u, v) = µ

∫
Ω

∇u : ∇vdx + (λ + µ)
∫
Ω

(∇ · u) (∇ · v) dx

− ω2
∫
Ω

u · vdx −

∫
Γ

T u · vds.

Here A : B = tr(AB⊤) is the Frobenius inner product of two square matrices A and B.
The well-posedness of the variational problem (3.5) was discussed in [46]. It was shown that the variational

problem (3.5) has a unique solution for all frequencies if the surface S is Lipschitz continuous. Hence we may
assume that the variational problem (3.5) admits a unique solution and the solution satisfies the estimate

∥u∥H1(Ω) ≲ ∥uinc
∥H1/2(S) ≲ ∥uinc

∥H1(Ω). (3.6)

By the general theory of Babuska and Aziz [47], there exists γ > 0 such that the following inf–sup condition holds

sup
0̸=v∈H1

qp(Ω)

|a(u, v)|
∥v∥H1(Ω)

≥ γ ∥u∥H1(Ω), ∀u ∈ H1
qp(Ω ).

4. The discrete problem

We consider the discrete problem of (3.5) by using the finite element approximation. Let Mh be a regular
triangulation of Ω , where h denotes the maximum diameter of all the elements in Mh . Since our focus is on the
a posteriori error estimate, for simplicity, we assume that S is polygonal and ignore the approximation error of the
boundary S. Thus any edge e ∈ Mh is a subset of ∂Ω if it has two boundary vertices. Moreover, we require that if
(0, y) is a node on the left boundary, then (Λ, y) is also a node on the right boundary and vice versa, which allows
to define a finite element space whose functions are quasi-periodic respect to x .
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Let Vh ⊂ H1
qp(Ω ) be a conforming finite element space, i.e.,

Vh :=
{
v ∈ C(Ω )2

: v|K ∈ Pm(K )2 for any K ∈ Mh, v(0, y) = e−iαΛv(Λ, y)
}
,

where m is a positive integer and Pm(K ) denotes the set of all polynomials of degree no more than m. The finite
element approximation to the variational problem (3.5) is to find uh

∈ V h with uh
= −uinc on S such that

a(uh, vh) = 0, ∀vh
∈ Vh,S, (4.1)

where Vh,S = {v ∈ Vh : v = 0 on S}.
In the variational problem (4.1), the boundary operator T is defined as an infinite series, in practice, it must be

truncated to a sum of finitely many terms as follows

TN u =

∑
|n|≤N

M (n)(u(n)
1 (b), u(n)

2 (b))⊤eiαn x , (4.2)

where N > 0 is a sufficiently large constant. Using the truncated boundary operator, we arrive at the truncated
finite element approximation: Find uh

N ∈ Vh such that it satisfies uh
N = −uinc on S and the variational problem

aN (uh
N , vh) = 0, ∀vh

∈ V h,S, (4.3)

where the sesquilinear form aN : Vh × V h → C is defined as

aN (u, v) = µ

∫
Ω

∇u : ∇vdx + (λ + µ)
∫
Ω

(∇ · u)(∇ · v)dx

− ω2
∫
Ω

u · vdx −

∫
Γ

TN u · vds.

It follows from [48] that the discrete inf–sup condition of the sesquilinear form aN can be established for sufficient
large N and small enough h. Based on the general theory in [47], it can be shown that the discrete variational
problem (4.3) has a unique solution uh

N ∈ V h . The details are omitted for brevity.

5. The a posteriori error analysis

For any triangular element K ∈ Mh , denoted by hK its diameter. Let Bh denote the set of all the edges of K .
For any e ∈ Bh , denoted by he its length. For any interior edge e which is the common side of K1 and K2 ∈ Mh ,
we define the jump residual across e as

Je = µ∇uh
N |K1 · ν1 + (λ + µ)(∇ · uh

N |K1 )ν1 + µ∇uh
N |K2 · ν2 + (λ + µ)(∇ · uh

N |K2 )ν2,

where ν j is the unit outward normal vector on the boundary of K j , j = 1, 2. For any boundary edge e ⊂ Γ , we
define the jump residual

Je = 2(TN uh
N − Buh

N ).

For any boundary edge on the left line segment of ∂Ω , i.e., e ∈ {x = 0} ∩ ∂K1 for some K1 ∈ Mh , and its
corresponding edge on the right line segment of ∂Ω , i.e., e′

∈ {x = Λ} ∩ ∂K2 for some K2 ∈ Mh , the jump
residual is

Je =
[
µ∂x uh

N |K1 + (λ + µ)(1, 0)⊤∇ · uh
N |K1

]
− e−iαΛ [µ∂x uh

N |K2 + (λ + µ)(1, 0)⊤∇ · uh
N |K2

]
,

Je′ = eiαΛ [µ∂x uh
N |K1 + (λ + µ)(1, 0)⊤∇ · uh

N |K1

]
−
[
µ∂x uh

N |K2 + (λ + µ)(1, 0)⊤∇ · uh
N |K2

]
.

For any triangular element K ∈ Mh , denote by ηK the local error estimator which is given by

ηK = hK ∥Ruh
N ∥L2(K ) +

(
1
2

∑
e∈∂K

he∥Je∥
2
L2(e)

)1/2

,

where R is the residual operator defined by

Ru = µ∆u + (λ + µ)∇ (∇ · u) + ω2u.



P. Li and X. Yuan / Computer Methods in Applied Mechanics and Engineering 360 (2020) 112722 7

For convenience, we introduce a weighted norm of H1(Ω ) as

|||u|||
2
H1(Ω) = µ

∫
Ω

|∇u|
2dx + (λ + µ)

∫
Ω

|∇ · u|
2dx + ω2

∫
Ω

|u|
2dx.

It is easy to check that

min
(
µ, ω2)

∥u∥
2
H1(Ω) ≤ |||u|||

2
H1(Ω) ≤ max

(
2λ + 3µ, ω2)

∥u∥
2
H1(Ω), ∀u ∈ H1(Ω ). (5.1)

which implies that the weighted norm is equivalent to standard H1(Ω ) norm.
Now we state the main result of this paper.

Theorem 5.1. Let u and uh
N be the solutions of the variational problem (3.5) and (4.3), respectively. Then for

sufficient large N, the following a posteriori error estimate holds

∥u − uh
N ∥H1(Ω) ≲

⎛⎝ ∑
K∈Mh

η2
K

⎞⎠1/2

+ max
|n|>N

(
|n|e−|β

(n)
2 |(b−b′)

)
∥uinc

∥H1(Ω).

It is easy to note that the a posteriori error consists of two parts: the finite element discretization error and the
truncation error of the DtN operator. We point out that the latter is almost exponentially decaying since b > b′

and |β
(n)
2 | > 0. In practice, the DtN truncated error can be controlled to be small enough such that it does not

contaminate the finite element discretization error.
In the rest of the paper, we shall prove the a posteriori error estimate in Theorem 5.1. First, let us state the trace

regularity for functions in H 1
qp(Ω ). The proof can be found in [35].

Lemma 5.2. For any u ∈ H 1
qp(Ω ), the following estimates hold

∥u∥H1/2(Γb) ≲ ∥u∥H1(Ω), ∥u∥H1/2(Γb′ ) ≲ ∥u∥H1(Ω).

Denote by ξ = u − uh
N the error between the solutions of (3.5) and (4.3). It can be verified that

|||ξ |||
2
H1(Ω) = µ

∫
Ω

∇ξ : ∇ξdx + (λ + µ)
∫
Ω

(∇ · ξ)
(
∇ · ξ

)
dx + ω2

∫
Ω

ξ · ξdx

= ℜa(ξ , ξ ) + 2ω2
∫
Ω

ξ · ξdx + ℜ

∫
Γ

T ξ · ξds

= ℜa(ξ , ξ ) + ℜ

∫
Γ

(T − TN ) ξ · ξds + 2ω2
∫
Ω

ξ · ξdx + ℜ

∫
Γ

TN ξ · ξds. (5.2)

In the following, we shall discuss the four terms in the right hand side of (5.2). Lemma 5.3 gives the error
estimate of the truncated DtN operator. Lemma 5.4 presents the a posteriori error estimate for the finite element
approximation and the truncated DtN operator.

Lemma 5.3. Let u ∈ H1
qp(Ω ) be the solution of the variational problem (3.5). For any v ∈ H1

qp(Ω ), the following
estimate holds:⏐⏐⏐⏐∫

Γ

(T − TN ) u · v ds
⏐⏐⏐⏐ ≤ C max

|n|>N

(
|n|eiβn

2 (b−b′)
)

∥uinc
∥H1(Ω)∥v∥H1(Ω),

where C > 0 is a constant independent of N .

Proof. Using (2.3) and (3.1) yields

φ
(n)
j (b) = φ

(n)
j (b′)eiβ(n)

j (b−b′)
.

It follows from the straightforward calculations that we obtain[
u(n)

1 (b)
u(n)

2 (b)

]
=

1
χn

[
iαn iβ (n)

2
iβ (n)

1 −iαn

][
eiβ(n)

1 (b−b′) 0

0 eiβ(n)
2 (b−b′)

][
−iαn −iβ (n)

2
−iβ (n)

1 iαn

] [
u(n)

1 (b′)
u(n)

2 (b′)

]
:= P (n)

[
u(n)

1 (b′)
u(n)

2 (b′)

]
, (5.3)
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where

P (n)
11 =

1
χn

(
α2

neiβ(n)
1 (b−b′)

+ β
(n)
1 β

(n)
2 eiβ(n)

2 (b−b′)
)

,

P (n)
12 =

αnβ
(n)
2

χn

(
eiβ(n)

1 (b−b′)
− eiβ(n)

2 (b−b′)
)

,

P (n)
21 =

αnβ
(n)
1

χn

(
eiβ(n)

1 (b−b′)
− eiβ(n)

2 (b−b′)
)

,

P (n)
22 =

1
χn

(
α2

neiβ(n)
2 (b−b′)

+ β
(n)
1 β

(n)
2 eiβ(n)

1 (b−b′)
)

.

It is clear to note from (3.2) that β
(n)
j is purely imaginary for sufficiently large |n|. By the mean value theorem,

for sufficiently large |n|, there exists τ ∈ (iβ (n)
1 , iβ (n)

2 ) such that

χn P (n)
11 =

(
α2

n + β
(n)
1 β

(n)
2

)
eiβ(n)

1 (b−b′)
+ β

(n)
1 β

(n)
2

(
eiβ(n)

2 (b−b′)
− eiβ(n)

1 (b−b′)
)

,

=

(
α2

n + β
(n)
1 β

(n)
2

)
eiβ(n)

1 (b−b′)
+ β

(n)
1 β

(n)
2 (b − b′)i(β (n)

2 − β
(n)
1 )eτ (b−b′).

A simple calculation yields

α2
n + β

(n)
1 β

(n)
2 = α2

n − (α2
n − κ2

1 )1/2(α2
n − κ2

2 )1/2

=
α2

n

(
κ2

1 + κ2
2

)
− κ2

1 κ2
2

α2
n + (α2

n − κ2
1 )1/2(α2

n − κ2
2 )1/2

< κ2
1 + κ2

2

and

iβ (n)
2 − iβ (n)

1 = (α2
n − κ2

1 )1/2
− (α2

n − κ2
2 )1/2

=
κ2

2 − κ2
1

(α2
n − κ2

1 )1/2 + (α2
n − κ2

2 )1/2
<

κ2
2 − κ2

1

2(α2
n − κ2

2 )1/2
.

which give

|P (n)
11 | ≲ eiβ(n)

1 (b−b′)
+ |n|eτ (b−b′) ≲ |n|eiβ(n)

2 (b−b′). (5.4)

Similarly, we may show that

|P (n)
i j | ≲ |n|eiβ(n)

2 (b−b′), i, j = 1, 2.

Combining the above estimates lead to

|u(n)
1 (b)|

2
+ |u(n)

2 (b)|
2
≲ n2e2iβ(n)

2 (b−b′)
(
|u(n)

1 (b′)|
2
+ |u(n)

2 (b′)|
2)

.

By (3.3) and (4.2), we have from Lemma 5.2 that⏐⏐⏐⏐∫
Γ

(T − TN ) u · vds
⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐Λ
∑

|n|>N

(M (n)u(n)(b)) · v(n)(b)

⏐⏐⏐⏐⏐⏐
≲
∑

|n|>N

⏐⏐⏐(|n|
1
2 u(n)(b)

)
·

(
|n|

1
2 v(n)(b)

)⏐⏐⏐
≲

⎛⎝∑
|n|>N

|n|

(
|u(n)

1 (b)|
2
+ |u(n)

2 (b)|
2)⎞⎠1/2⎛⎝∑

|n|>N

|n|

(
|v

(n)
1 (b)|

2
+ |v

(n)
2 (b)|

2)⎞⎠1/2
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≲

⎛⎝∑
|n|>N

|n|
3e2iβ(n)

2 (b−b′)
(
|u(n)

1 (b′)|
2
+ |u(n)

2 (b′)|
2)⎞⎠1/2

∥v∥H1/2(Γ )

≲ max
|n|>N

(
|n|eiβ(n)

2 (b−b′)
)

∥u∥H1/2(Γb′ )∥v∥H1/2(Γ )

≲ max
|n|>N

(
|n|eiβ(n)

2 (b−b′)
)

∥u∥H1(Ω)∥v∥H1(Ω).

Using (3.6), we get⏐⏐⏐⏐∫
Γ

(T − TN ) u · vds
⏐⏐⏐⏐ ≲ max

|n|>N

(
|n|eiβ(n)

2 (b−b′)
)

∥uinc
∥H1(Ω)∥v∥H1(Ω),

which completes the proof. □

In the following lemmas, the first two terms in (5.2) are estimated.

Lemma 5.4. Let v be any function in H1
S,qp(Ω ), the following estimate holds

⏐⏐⏐⏐a(ξ , v) +

∫
Γ

(T − TN ) ξ · vds
⏐⏐⏐⏐ ≲

⎛⎜⎝
⎛⎝ ∑

K∈Mn

η2
K

⎞⎠1/2

+ max
|n|>N

(
|n|eiβ(n)

2 (b−b′)
)

∥uinc
∥H1(Ω)

⎞⎟⎠ ∥v∥H1(Ω).

Proof. For any function v ∈ H 1
S,qp(Ω ), we have

a(ξ , v) +

∫
Γ

(T − TN ) ξ · vds = a(u, v) − a(uh
N , v) +

∫
Γ

(T − TN ) ξ · vds

= a(u, v) − ah
N (uh

N , v) + ah
N (uh

N , v) − a(uh
N , v) +

∫
Γ

(T − TN ) ξ · vds

= a(u, v) − ah
N (uh

N , vh) − ah
N (uh

N , v − vh) +

∫
Γ

(T − TN ) uh
N · vds

+

∫
Γ

(T − TN ) ξ · vds

= −ah
N (uh

N , v − vh) +

∫
Γ

(T − TN ) u · vds.

For any function v ∈ H1
S,qp(Ω ) and vh

∈ V h,S , it follows from the integration by parts that

−ah
N (uh

N , v − vh)

= −

∑
K∈Mh

{
µ

∫
K

∇uh
N : ∇

(
v − vh

)
dx + (λ + µ)

∫
K

(∇ · uh
N )∇ ·

(
v − vh

)
dx
}

−

∑
K∈Mh

{
−ω2

∫
K

uh
N ·
(
v − vh

)
dx −

∫
Γ∩∂K

T uh
N ·
(
v − vh

)
ds
}

=

∑
K∈Mh

{
−

∫
∂K

[
µ∇uh

N · ν + (λ + µ)(∇ · uh
N )ν

]
·
(
v − vh

)
dx +

∫
Γ∩∂K

T uh
N ·
(
v − vh

)
ds
}

+

∑
K∈Mh

∫
K

[
µ∆uh

N + (λ + µ)∇∇ · uh
N + ω2uh

N

]
·
(
v − vh

)
dx

=

∑
K∈Mh

[∫
K

Ruh
N ·
(
v − vh

)
dx +

∑
e∈∂K

1
2

∫
e

Je ·
(
v − vh

)
ds

]
. (5.5)
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We take vh
= Πhv ∈ Vh,S , where Πh is the Scott–Zhang interpolation operator and has the following interpolation

estimates

∥v − Πhv∥L2(K ) ≲ hK ∥∇v∥L2(K̃ ), ∥v − Πhv∥L2(e) ≲ h1/2
e ∥v∥H1(K̃e).

Here K̃ and K̃e are the unions of all the triangular elements in Mh , which have nonempty intersection with the
element K and the side e, respectively. By the Hölder equality, we get from (5.5) that

|ah
N (uh

N , v − vh)| ≲

⎛⎝ ∑
K∈Mh

η2
K

⎞⎠1/2

∥v∥H1(Ω),

which completes the proof. □

Lemma 5.5. Let M̂ (n)
= −

1
2 (M (n)

+ (M (n))∗), where M (n) is defined in (3.4). Then M̂ (n) is positive definite for
sufficiently large |n|.

Proof. It follows from (3.2) that β
(n)
j is purely imaginary for sufficiently large |n|. By (3.4), we have

M̂ (n)
= −

1
χn

[
iω2β

(n)
1 i

(
µαnχn − ω2αn

)
i
(
ω2αn − µαnχn

)
iω2β

(n)
2

]
.

Since χn = α2
n − (α2

n − κ2
1 )1/2(α2

n − κ2
2 )1/2 > 0, we get

M̂ (n)
11 = −

i
χn

ω2β
(n)
1 =

ω2

χn
(α2

n − κ2
1 )1/2 > 0.

A simple calculation yields that

χ2
n det M̂ (n)

= −ω4β
(n)
1 β

(n)
2 −

(
µαnχn − ω2αn

)2

= −µ2κ4
2

(
χn − α2

n

)
− µ2α2

n

(
χn − κ2

2

)2

= µ2χn
(
−κ4

2 − α2
nχn + 2α2

nκ
2
2

)
.

Since κ2 > κ1 and α2
n has an order of n2 for sufficiently large |n|, we obtain

2κ2
2 − χn = 2κ2

2 − α2
n + (α2

n − κ2
2 )1/2(α2

n − κ2
1 )1/2

= κ2
2 + (α2

n − κ2
2 )1/2((α2

n − κ2
1 )1/2

− (α2
n − κ2

2 )1/2) > 0,

which gives that det M̂ (n) > 0 and completes the proof. □

Lemma 5.6. Let Ω ′
= {x ∈ R2

: b′ < y < b, 0 < x < Λ}. Then for any δ > 0, there exists a positive constant
C(δ) independent of N such that

ℜ

∫
Γ

TN ξ · ξds ≤ C(δ)∥ξ∥
2
L2(Ω ′) + δ∥ξ∥

2
H1(Ω ′).

Proof. Using (4.2), we get from a simple calculation that

ℜ

∫
Γ

TN ξ · ξds = Λ
∑

|n|≤N

ℜ
(
M (n)ξ (n))

· ξ (n)
= −Λ

∑
|n|≤N

(
M̂ (n)ξ (n)

)
· ξ (n).

By Lemma 5.5, M̂ (n) is positive definite for sufficiently large |n|. Hence, for fixed ω, λ,µ, there exists N ∗ such
that −

(
M̂ (n)ξ (n)

)
· ξ (n)

≤ 0 for n > N ∗. Correspondingly, we split ℜ
∫
Γ TN ξ · ξds into two parts:

ℜ

∫
Γ

TN ξ · ξds = −Λ
∑

|n|≤min(N∗,N )

(
M̂ (n)ξ n

)
· ξ n − Λ

∑
N>|n|>min(N∗,N )

(
M̂ (n)ξ n

)
· ξ n, (5.6)

where
∑

N>|n|>min(N∗,N )

(
M̂ (n)ξ n

)
· ξ n = 0 if N > N ∗. Since the second part in the right hand side of (5.6)

is non-positive, we only need to estimate the first part in the right hand side of (5.6), which has finitely many
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terms. Hence there exists a constant C depending only on ω, µ, λ such that |

(
M̂ (n)ξ (n)

)
· ξ (n)

| ≤ C |ξ (n)
|
2

for all
|n| ≤ min(N ∗, N ).

For any δ > 0, it follows from Yong’s inequality that(
b − b′

)
|φ(b)|2 =

∫ b

b′

|φ(y)|2dy +

∫ b

b′

∫ b

y

(
|φ(s)|2

)′
dsdy

≤

∫ b

b′

|φ(y)|2dy + (b − b′)
∫ b

b′

2|φ(y)||φ′(y)|dy

=

∫ b

b′

|φ(y)|2dy + (b − b′)
∫ b

b′

2
|φ(y)|
√

δ

√
δ|φ′(y)|dy

≤

∫ b

b′

|φ(y)|2dy +
b − b′

δ

∫ b

b′

|φ(y)|2dy + δ(b − b′)
∫ b

b′

|φ′(y)|2dy,

which gives

|φ(b)|2 ≤

[
1
δ

+ (b − b′)−1
] ∫ b

b′

|φ(y)|2dy + δ

∫ b

b′

|φ′(y)|2dy.

Let φ(x, y) =
∑

n∈Z φn(y)eiαn x . A simple calculation yields that

∥∇φ∥
2
L2(Ω ′) = Λ

∑
n∈Z

∫ b

b′

(
|φ′

n(y)|2 + α2
n |φn(y)|2

)
dy,

∥φ∥
2
L2(Ω ′) = Λ

∑
n∈Z

∫ b

b′

|φn(y)|2dy.

Using the above estimates, we have for any φ ∈ H 1(Ω ′) that

∥φ∥
2
L2(Γ ) = Λ

∑
n∈Z

|φn(b)|2

≤ Λ

[
1
δ

+ (b − b′)−1
]∑

n∈Z

∫ b

b′

|φn(y)|2dy + Λδ
∑
n∈Z

∫ b

b′

|φ′(y)|2dy

≤ Λ

[
1
δ

+ (b − b′)−1
]∑

n∈Z

∫ b

b′

|φn(y)|2dy + Λδ
∑
n∈Z

∫ b

b′

(
|φ′

n(y)|2 + α2
n |φn(y)|2

)
dy

≤

[
1
δ

+ (b − b′)−1
]

∥φ∥
2
L2(Ω ′) + δ∥∇φ∥

2
L2(Ω)

≤ C(δ)∥φ∥
2
L2(Ω ′) + δ∥∇φ∥

2
L2(Ω ′).

Combining the above estimates, we obtain

Re
∫
Γ

TN ξ · ξds ≤ C∥ξ∥
2
L2(Γ ) ≤ C(δ)∥ξ∥

2
L2(Ω ′) + δ

∫
Ω ′

|∇ξ |
2dx

≤ C(δ)∥ξ∥
2
L2(Ω ′) + δ∥ξ∥

2
H1(Ω ′),

which completes the proof. □

To estimate
∫
Ω |ξ |

2dx in (5.2) , we introduce the dual problem

a(v, p) =

∫
Ω

v · ξdx, ∀v ∈ H1
S,qp(Ω ). (5.7)

It can be verified that p is the weak solution of the boundary value problem⎧⎪⎨⎪⎩
µ∆ p + (λ + µ)∇∇ · p + ω2 p = −ξ inΩ ,

p = 0 on S,

B p = T ∗ p onΓ ,

(5.8)

where T ∗ is the adjoint operator to the DtN operator T .
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It requires to explicitly solve the boundary value problem (5.8). We consider the Helmholtz decomposition and
let

ξ = ∇ζ1 + curlζ2, (5.9)

where ζ j , j = 1, 2 has the Fourier series expansion

ζ j (x, y) =

∑
n∈Z

ζ
(n)
j (y)eiαn x , b′ < y < b.

Consider the following coupled first order ordinary different equations⎧⎪⎨⎪⎩
ξ

(n)
1 (y) = i αnζ

(n)
1 (y) + ζ

(n)′
2 (y),

ξ
(n)
2 (y) = ζ

(n)′
1 (y) − iαnζ

(n)
2 (y),

ζ
(n)
1 (b) = 0, ζ

(n)
2 (b) = 0.

It follows from straightforward calculations that the solution is

ζ
(n)
1 (y) = −

i
2

eαn (y−b)
∫ b

y
e−αn (t−b)ξ (1)

n (t)dt +
i
2

e−αn (y−b)
∫ b

y
eαn (t−b)ξ (1)

n (t)dt

−
1
2

eαn (y−b)
∫ b

y
e−αn (t−b)ξ (2)

n (t)dt −
1
2

e−αn (y−b)
∫ b

y
eαn (t−b)ξ (2)

n (t)dt,

ζ
(n)
2 (y) = −

1
2

eαn (y−b)
∫ b

y
e−αn (t−b)ξ (1)

n (t)dt −
1
2

e−αn (y−b)
∫ b

y
eαn (t−b)ξ (1)

n (t)dt

+
i
2

eαn (y−b)
∫ b

y
e−αn (t−b)ξ (2)

n (t)dt −
i
2

e−αn (y−b)
∫ b

y
eαn (t−b)ξ (2)

n (t)dt.

It is easy to verify the following estimate⏐⏐⏐ζ (n)
j (y)

⏐⏐⏐ ≲ (
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

) 1
|αn|

e|αn |(b−y), j = 1, 2.

Let p be the solution of the dual problem (5.8). Then it satisfies the following boundary value problem⎧⎪⎨⎪⎩
µ∆ p + (λ + µ)∇∇ · p + ω2 p = −ξ inΩ ′,

p(x, b′) = p(x, b′) onΓ ′

B p = T ∗ p onΓ .

(5.10)

Let function q j , j = 1, 2 have the Fourier expansion in Ω ′:

q j (x, y) =

∑
n∈Z

q (n)
j (y)eiαn x .

The Fourier coefficients q (n)
j are required to satisfy the two point boundary value problem⎧⎪⎨⎪⎩

q (n)′′
j (y) + (κ2

j − α2
n)q (n)

j (y) = −c jζ
(n)
j (y),

q (n)
j (b′) = q (n)

j (b′),

q (n)′
j (b) = −iβ (n)

j q (n)
j (b),

(5.11)

where c1 = (λ+2µ)−1 and c2 = µ−1, ζ
(n)
j are the Fourier coefficients of the potential functions ζ j for the Helmholtz

decomposition of ξ in (5.9).

Lemma 5.7. Let p = ∇q1 + curlq2. Then p satisfies (5.10).

Proof. If (5.11) holds, then it is easy to check that

(λ + 2µ)
(
∆q1 + κ2

1 q1
)

= −ζ1, µ
(
∆q2 + κ2

2 q2
)

= −ζ2.
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Noting p = ∇q1 + curlq2, we obtain

µ∆ p + (λ + µ)∇∇ · p + ω2 p
= µ∇ (∆q1) + µcurl∆q2 + (λ + µ)∇∆q1 + ω2

∇q1 + ω2curlq2

= (λ + 2µ)∇
(
∆q1 + κ2

1 q1
)
+ µcurl

(
∆q2 + κ2

2 q2
)

= −∇ζ1 − curlζ2 = −ξ .

Next is to verify that the boundary condition on y = b. Assume that p admits the Fourier expansion p =∑
n∈Z(p(n)

1 (y), p(n)
2 (y))⊤eiαn x . It follows from the Helmholtz decomposition that[

p(n)
1 (y)

p(n)
2 (y)

]
=

[
iαnq (n)

1 (y) + q (n)′
2 (y)

q (n)′
1 (y) − iαnq (n)

2 (y)

]
,

which gives[
p(n)′

1 (y)
p(n)′

2 (y)

]
=

[
iαnq (n)′

1 (y) + q (n)′′
2 (y)

q (n)′′
1 (y) − iαnq (n)′

2 (y)

]
.

A straightforward calculation yields that

B p = µ∂y p + (λ + µ)(0, 1)⊤∇ · p

=

∑
n∈Z

⎡⎣ µ
(

iαnq (n)′
1 (y) + q (n)′′

2 (y)
)

(λ + µ)iαn

(
iαnq (n)

1 (y) + q (n)′
2 (y)

)
+ (λ + 2µ)

(
q (n)′′

1 (y) − iαnq (n)′
2 (y)

)⎤⎦ eiαn x

=

∑
n∈Z

[
µ
(

iαnq (n)′
1 (y) + q (n)′′

2 (y)
)

(λ + 2µ)q (n)′′
1 (y) − (λ + µ)α2

nq (n)
1 (y) − iµαnq (n)′

2 (y)

]
eiαn x .

Evaluating the above equations at y = b, we get

B p|y=b =

∑
n∈Z

[
iµαnq (n)′

1 (b) + µq (n)′′
2 (b)

(λ + 2µ)q (n)′′
1 (b) − (λ + µ)α2

nq (n)
1 (b) − iµαnq (n)′

2 (b)

]
eiαn x .

Noting ζ
(n)
j (b) = 0, we have from (5.11) that q (n)′′

j (b) = −(κ2
j − α2

n)q (n)
j (b). Hence

B p|y=b =

∑
n∈Z

[
µαnβ

(n)
1 −ω2

+ µα2
n

µα2
n − ω2

−µαnβ
(n)
2

][
q (n)

1 (b)
q (n)

2 (b)

]
eiαn x .

On the other hand, we have

T ∗ p =

∑
n∈Z

(M (n))∗ p(n)(b)eiαn x

=

∑
n∈Z

−
i

χn

[
ω2β

(n)
1 ω2αn − µαnχn

µαnχn − ω2αn ω2β
(n)
2

]
p(n)(b)eiαn x

=

∑
n∈Z

−
i

χn

[
ω2β

(n)
1 ω2αn − µαnχn

µαnχn − ω2αn ω2β
(n)
2

][
iαn −iβ (n)

2

−iβ (n)
1 −iαn

][
q (n)

1 (b)
q (n)

2 (b)

]
eiαn x

=

∑
n∈Z

[
µαnβ

(n)
1 −ω2

+ µα2
n

µα2
n − ω2

−µαnβ
(n)
2

][
q (n)

1 (b)
q (n)

2 (b)

]
eiαn x ,

which shows B p = T ∗ p and completes the proof. □

It follows from the classic theory of second order differential equations that the solution of the system⎧⎪⎨⎪⎩
q (n)′′

j (y) − |β
(n)
j |

2
q (n)

j (y) = −c jζ
(n)
j (y),

q (n)
j (b′) = q (n)

j (b′),
q (n)′

j (b) = −|β
(n)
j |q (n)

j (b)
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is

q (n)
j (y) =

1

2|β
(n)
j |

{
−c j

∫ y

b
e|β

(n)
j |(y−s)

ζ
(n)
j (s)ds + c j

∫ y

b′

e|β
(n)
j |(s−y)

ζ
(n)
j (s)ds

−c j

∫ b

b′

e|β
(n)
j |(2b′

−y−s)
ζ

(n)
j (s)ds + 2|β

(n)
j |e|β

(n)
j |(b′

−y)q (n)
j (b′)

}
. (5.12)

Lemma 5.8. Let p = (p1, p2)⊤ be the solution of the dual problem (5.7). For sufficiently large |n|, the following
estimate hold⏐⏐⏐p(n)

j (b)
⏐⏐⏐ ≲ |n|e|β

(n)
2 |(b′

−b)
(
|p(n)

1 (b′)| + |p(n)
2 (b′)|

)
+

1
|n|

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

)
,

where p(n)
j is the Fourier coefficient of p j , j = 1, 2.

Proof. Evaluating (5.12) at y = b yields

q (n)
j (b) =

1

2|β
(n)
j |

{
c j

∫ b

b′

e|β
(n)
j |(s−b)

ζ
(n)
j (s)ds − c j

∫ b

b′

e|β
(n)
j |(2b′

−b−s)
ζ

(n)
j (s)ds

+2|β
(n)
j |e|β

(n)
j |(b′

−b)q (n)
j (b′)

}
. (5.13)

Taking the derivative of q (n)
j with respect to y in (5.12) and then evaluating at y = b′, we have

q (n)′
j (b′) = c j

∫ b

b′

e|β
(n)
j |(b′

−s)
ζ

(n)
j (s)ds − |β

(n)
j |q (n)

1 (b′), j = 1, 2,

which is equivalent to[
q (n)′

1 (b′)
q (n)′

2 (b′)

]
=

[
−|β

(n)
1 | 0

0 −|β
(n)
2 |

] [
q (n)

1 (b′)
q (n)

2 (b′)

]
+

[
ζ̂

(n)
1

ζ̂
(n)
2

]
,

where

ζ̂
(n)
j = c j

∫ b

b′

e|β
(n)
j |(b′

−s)
ζ

(n)
j (s)ds.

It follows from Lemma 5.7 and the Helmholtz decomposition p = ∇q1 + curlq2 that[
p(n)

1 (b′)
p(n)

2 (b′)

]
=

[
iαnq (n)

1 (b′) + q (n)′
2 (b′)

q (n)′
1 (b′) − iαnq (n)

2 (b′)

]
=

[
iαn −|β

(n)
2 |

−|β
(n)
1 | −iαn

] [
q (n)

1 (b′)
q (n)

2 (b′)

]
+

[
ζ̂

(n)
2

ζ̂
(n)
1

]
,

which gives[
q (n)

1 (b′)
q (n)

2 (b′)

]
=

1
χn

[
−iαn |β

(n)
2 |

|β
(n)
1 | iαn

] [
p(n)

1 (b′)
p(n)

2 (b′)

]
−

1
χn

[
−iαn |β

(n)
2 |

|β
(n)
1 | iαn

] [
ζ̂

(n)
2

ζ̂
(n)
1

]
.

Substituting the boundary condition[
q (n)′

1 (b)
q (n)′

2 (b)

]
=

[
−|β

(n)
1 | 0

0 −|β
(n)
2 |

] [
q (n)

1 (b)
q (n)

2 (b)

]
into the Helmholtz decomposition p = ∇q1 + curlq2, i.e.,[

p(n)
1 (b)

p(n)
2 (b)

]
=

[
iαnq (n)

1 (b) + q (n)′
2 (b)

q (n)′
1 (b) − iαnq (n)

2 (b)

]
,

we obtain[
p(n)

1 (b)
p(n)

2 (b)

]
=

[
iαn −|β

(n)
2 |

−|β
(n)
1 | −iαn

] [
q (n)

1 (b)
q (n)

2 (b)

]
.
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By (5.13),[
q (n)

1 (b)
q (n)

2 (b)

]
=

[
e|β

(n)
1 |(b′

−b) 0

0 e|β
(n)
2 |(b′

−b)

][
q (n)

1 (b′)
q (n)

2 (b′)

]
+

[
η

(n)
1

η
(n)
2

]
,

where

η
(n)
j =

c j

2|β
(n)
j |

∫ b

b′

(
e|β

(n)
j |(s−b)

− e|β
(n)
j |(2b′

−b−s)
)

ζ
(n)
j (s)ds.

Combining the above equations leads to[
p(n)

1 (b)
p(n)

2 (b)

]
=

[
iαn −|β

(n)
2 |

−|β
(n)
1 | −iαn

][
e|β

(n)
1 |(b′

−b) 0

0 e|β
(n)
2 |(b′

−b)

][
q (n)

1 (b′)
q (n)

2 (b′)

]
+

[
iαn −|β

(n)
2 |

−|β
(n)
1 | −iαn

] [
η

(n)
1

η
(n)
2

]
= P (n)

[
p(n)

1 (b′)
p(n)

2 (b′)

]
− P (n)

[
ζ̂

(n)
2

ζ̂
(n)
1

]
+

[
iαn −|β

(n)
2 |

−|β
(n)
1 | −iαn

] [
η

(n)
1

η
(n)
2

]
,

where P (n) is defined in (5.3).
Recall that

|ζ
(n)
j (s)| ≲

1
|αn|

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

)
e|αn |(b−s).

Since s−b ≥ 2b′
−b−s and |αn| ∼ |n|, |β

(n)
j | ∼ |n| for sufficiently large |n|, we have from (5.4) and the mean-value

theorem that

|η
(n)
j | ≲

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

) 1

|β
(n)
j |

⏐⏐⏐⏐∫ b

b′

e|β
(n)
j |(s−b) 1

|αn|
e|αn |(b−s)ds

⏐⏐⏐⏐
=

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

) 1

|αn||β
(n)
j |

−1

|αn| − |β
(n)
j |

(
1 − e

(
|αn |−|β

(n)
j |

)
(b−b′)

)
≲

1
n2

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

)
.

Combining the above estimates yields⏐⏐⏐i αnη
(n)
1 − |β

(n)
2 |η

(n)
2

⏐⏐⏐ , ⏐⏐⏐−|β
(n)
1 |η

(n)
1 − i αnη

(n)
2

⏐⏐⏐ ≲ 1
|n|

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

)
.

Following the similar steps of the estimate for η
(n)
j , we can show that

|ζ̂
(n)
j | ≲

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

) ∫ b

b′

e|β
(n)
j |(b′

−s)e|αn |(b−s) 1
|αn|

ds

≲
1

|αn|(|αn| + |β
(n)
j |)

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

) ⏐⏐⏐⏐e|β
(n)
j |(b′

−b)
− e|αn |(b−b′)

⏐⏐⏐⏐
≲

1
n2

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

)
e|αn |(b−b′),

which gives⏐⏐⏐⏐P (n)
[
ζ̂

(n)
1

ζ̂
(n)
2

]⏐⏐⏐⏐ ≲ |n|e−|β
(n)
2 |(b−b′) 1

n2

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

)
e|αn |(b−b′)

≲
1
|n|

e
(
|αn |−|β

(n)
2 |

)
(b−b′)

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

)
.
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Since for sufficiently large |n|, we have

|αn| − |β
(n)
2 | = |αn| −

(
α2

n − κ2
2

)1/2
=

κ2
2

|αn| +
(
α2

n − κ2
2

)1/2 ∼
1
|n|

.

Hence⏐⏐⏐⏐P (n)
[
ζ̂

(n)
1

ζ̂
(n)
2

]⏐⏐⏐⏐ ≲ 1
|n|

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

)
,

which proves⏐⏐⏐p(n)
j (b)

⏐⏐⏐ ≲ |n|e|β
(n)
2 |(b′

−b)
(
|p(n)

1 (b′)| + |p(n)
2 (b′)|

)
+

1
|n|

(
∥ξ

(n)
1 ∥L∞(b′,b) + ∥ξ

(n)
2 ∥L∞(b′,b)

)
.

The proof is completed. □

Taking v = ξ in (5.7), we have

∥ξ∥
2
L2(Ω) = a(ξ , p) −

∫
Γ

(T − TN ) ξ · p ds +

∫
Γ

(T − TN ) ξ · p ds. (5.14)

By Lemma 5.8, we obtain⏐⏐⏐⏐∫
Γ

(T − TN ) ξ · p ds
⏐⏐⏐⏐ ≤ Λ

∑
|n|>N

⏐⏐(M (n)ξ n(b)
)
· pn(b)

⏐⏐
≲ Λ

∑
|n|>N

|n|

(
|ξ

(n)
1 (b)| + |ξ

(n)
2 (b)|

) (
|p(n)

1 (b)| + |p(n)
2 (b)|

)

≲ N−1

⎡⎣∑
|n|>N

(1 + n2)1/2
(
|ξ

(n)
1 (b)| + |ξ

(n)
2 (b)|

)2

⎤⎦1/2⎡⎣∑
|n|>N

|n|
3
(
|p(n)

1 (b)| + |p(n)
2 (b)|

)2

⎤⎦1/2

≲ N−1
∥ξ∥H1/2(Γ )

⎡⎣∑
|n|>N

|n|
3
(
|p(n)

1 (b)|
2
+ |p(n)

2 (b)|
2)⎤⎦1/2

≲ N−1
∥ξ∥H1(Ω)

⎡⎣∑
|n|>N

|n|
3
(
|p(n)

1 (b)|
2
+ |p(n)

2 (b)|
2)⎤⎦1/2

. (5.15)

Following the similar proof in [41, eq. (30)], we may show that

∥ξ
(n)
j ∥

2
L∞(b′,b) ≤

(
2
δ

+ |n|

)
∥ξ

(n)
j (t)∥2

L2(b′,b) + |n|
−1

∥ξ
(n)′
j (t)∥2

L2(b′,b). (5.16)

It follows from the Cauchy–Schwarz inequality that∑
|n|>N

|n|
3
(
|p(n)

1 (b)|
2
+ |p(n)

2 (b)|
2)

≲
∑

|n|>N

|n|
3
{

n2e2|β
(n)
2 |(b′

−b)
(
|p(n)

1 (b′)|
2
+ |p(n)

2 (b′)|
2)

+
1

|n|
2

(
∥ξ

(n)
1 ∥

2
L∞(b′,b) + ∥ξ

(n)
2 ∥

2
L∞(b′,b)

)}
≲
∑

|n|>N

|n|
5e2|β

(n)
2 |(b′

−b)
(
|p(n)

1 (b′)|
2
+ |p(n)

2 (b′)|
2)

+

∑
|n|>N

|n|

(
∥ξ

(n)
1 ∥

2
L∞(b′,b) + ∥ξ

(n)
2 ∥

2
L∞(b′,b)

)
:= I1 + I2.

Noting that the function t4e−2t is bounded on (0, +∞), we have

I1 ≲ max
|n|>N

(
n4e2|β

(n)
2 |(b′

−b)
) ∑

|n|>N

|n|

(
|p(n)

1 (b′)|
2
+ |p(n)

2 (b′)|
2)

≲ ∥ p∥
2
H1/2(Γ ′) ≲ ∥ξ∥

2
H1(Ω).
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Substituting (5.16) into I2, we get

I2 ≲
∑

|n|>N

[
|n|

(
2
δ

+ |n|

)(
∥ξ

(n)
1 ∥

2
L2(b′,b) + ∥ξ

(n)
2 ∥

2
L2(b′,b)

)
+

(
∥ξ

(n)′
1 ∥

2
L2(b′,b) + ∥ξ

(n)′
2 ∥

2
L2(b′,b)

)]
≤

∑
|n|>N

[(
2
δ
|n| + n2

)
∥ξ n∥

2
L2(b′,b) + ∥ξ ′

n∥
2
L2(b′,b)

]
.

A simple calculation yields

∥ξ
(n)
j ∥

2
H1(Ω ′) = Λ

∑
n∈Z

∫ b

b′

[(
1 + α2

n

)
|ξ

(n)
j (y)|

2
+ |ξ

(n)′
j (y)|

2
]

dy.

It is easy to note that

2
δ
|n| + n2 ≲ 1 + α2

n .

Then

I2 ≲ ∥ξ∥
2
H1(Ω ′) ≤ ∥ξ∥

2
H1(Ω).

Therefore,∑
|n|>N

|n|
3
(
|p(n)

1 (b)| + |p(n)
2 (b)|

)2
≲ ∥ξ∥

2
H1(Ω). (5.17)

Plugging (5.17) to (5.15), we obtain

|

∫
Γ

(T − TN ) ξ · p ds| ≲
1
N

∥ξ∥
2
H1(Ω). (5.18)

Now, we prove Theorem 5.1.

Proof. By Lemmas 5.3, 5.4, and 5.6, we have

|||ξ |||
2
H1(Ω) = ℜa(ξ , ξ ) + ℜ

∫
Γ

(T − TN ) ξ · ξds + 2ω2
∫
Ω

ξ · ξdx + ℜ

∫
Γ

TN ξ · ξds

≤ C1

⎡⎢⎣
⎛⎝∑

T ∈Mh

η2
T

⎞⎠1/2

+ max
|n|>N

(
|n|e|β

(n)
2 |(b′

−b)
)

∥uinc
∥H1(Ω)

⎤⎥⎦ ∥ξ∥H1(Ω)

+ (C2 + C(δ)) ∥ξ∥
2
L2(Ω) + δ∥ξ∥

2
H1(Ω),

where C1, C2, C(δ) are positive constants. From (5.1), by choosing δ such that δ

min(µ,ω2)
< 1

2 , we get

|||ξ |||
2
H1(Ω) ≤ 2C1

⎡⎢⎣
⎛⎝∑

T ∈Mh

η2
T

⎞⎠1/2

+ max
|n|>N

(
|n|e|β

(n)
2 |(b′

−b)
)

∥uinc
∥H1(Ω)

⎤⎥⎦ ∥ξ∥H1(Ω)

+ 2 (C2 + C(δ)) ∥ξ∥
2
L2(Ω). (5.19)

It follows from (5.14) and (5.18) that

∥ξ∥
2
L2(Ω) = b(ξ , p) +

∫
Γ

(T − TN ) ξ · p ds −

∫
Γ

(T − TN ) ξ · p ds

≲

⎡⎢⎣
⎛⎝∑

T ∈Mh

η2
T

⎞⎠1/2

+ max
|n|>N

(
|n|e|β

(n)
2 |(b′

−b)
)

∥uinc
∥H1(Ω)

⎤⎥⎦ ∥ξ∥H1(Ω) + N−1
∥ξ∥

2
H1(Ω). (5.20)
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Table 1
The adaptive finite element DtN method.

(1) Given the tolerance ϵ > 0 and the parameter τ ∈ (0, 1).
(2) Fix the computational domain Ω by choosing b.
(3) Choose b′ and N such that ϵN ≤ 10−8.
(4) Construct an initial triangulation Mh over Ω and compute error estimators.
(5) While ϵh > ϵ do
(6) refine mesh Mh according to the strategy that

if ηK̂ > τ max
K∈Mh

ηK , refine the element K̂ ∈ Mh ,

(7) denote refined mesh still by Mh , solve the discrete problem (4.3) on the new mesh Mh ,
(8) compute the corresponding error estimators.
(9 End while.

Taking sufficiently large N such that 2(C2+C(δ))
N

1
min(µ,ω2)

< 1 and substituting (5.20) into (5.19), we obtain

|||u − uh
N |||H1(Ω) ≲

⎛⎝∑
T ∈Mh

η2
T

⎞⎠1/2

+ max
|n|>N

(
|n|e|β

(n)
2 |(b′

−b)
)

∥uinc
∥H1(Ω).

The proof is completed by noting the equivalence of the norms ||| · |||H1(Ω) and ∥ · ∥H1(Ω). □

6. Numerical experiments

In this section, we introduce the algorithmic implementation of the adaptive finite element DtN method and
present two numerical examples to demonstrate the effectiveness of the proposed method.

6.1. Adaptive algorithm

Our implementation is based on the FreeFem [49]. The first-order linear element is used to solve the problem.
It is shown in Theorem 5.1 that the a posteriori error consists of two parts: the finite element discretization error
ϵh and the DtN operator truncation error ϵN , where

ϵh =

⎛⎝ ∑
K∈Mh

η2
K

⎞⎠1/2

, ϵN = max
|n|>N

(
|n|e−|β

(n)
2 |(b−b′)

)
∥uinc

∥H1(Ω). (6.1)

In the implementation, we choose the parameters b, b′ and N based on (6.1) to make sure that the DtN operator
truncation error is smaller than the finite element discretization error. In the following numerical experiments, b′ is
chosen such that b′

= maxx∈(0,Λ) f (x) and N is the smallest positive integer that makes ϵN ≤ 10−8. The adaptive
finite element algorithm is shown in Table 1.

6.2. Numerical experiments

We report two examples to illustrate the numerical performance of the proposed method. The first example
concerns the scattering by a flat surface and has an exact solution; the second example is constructed such that the
solution has corner singularity.

Example 1. We consider the simplest periodic structure, a straight line, where the exact solution is available. Let
S = {y = 0} and take the artificial boundary Γ = {y = 0.25}. The space above the flat surface is filled with a
homogeneous and isotropic elastic medium, which is characterized by the Lamé constants λ = 2, µ = 1. The rigid
surface is impinged by the compressional plane wave uinc

= deiκ1 x·d , where the incident angle is θ = π/3. The
compressional and shear wavenumbers are κ1 = ω/2 and κ2 = ω, respectively, where ω is the angular frequency.
It can be verified that the exact solution is

u(x) =
1
κ1

[
α

−β

]
ei(αx−βy)

−
1
κ1

(
α2

− βγ

α2 + βγ

)[
α

β

]
ei(αx+βy)

−
1
κ1

(
2αβ

α2 + βγ

)[
γ

−α

]
ei(αx+γ y),
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Fig. 2. Quasi-optimality of the a priori error estimates for Example 1.

Fig. 3. Quasi-optimality of the a posteriori error estimates for Example 2.

where α = κ1 sin θ, β = κ1 cos θ, γ = (κ2
2 − α2)1/2. The period Λ = 0.5. Fig. 2 shows the curves of log eh versus

log DoFh with different angular frequencies, where eh = ∥u − uh
N ∥H1(Ω) is the a priori error and DoFh stands for

the degree of freedom or the number of nodal points. It indicates that the meshes and the associated numerical
complexity are quasi-optimal, i.e., eh = O(DoF−1/2

h ) holds asymptotically.

Example 2. This example concerns the scattering of the compressional plane wave by a piecewise linear surface,
which has multiple sharp angles. The incident wave uinc and the parameters are chosen the same as Example 1,
i.e., b = 0.25,Λ = 0.5, θ = π/3, λ = 1, µ = 2. Clearly, the solution has singularity around the corners of the
surface. Since there is no exact solution for this example, we plot in Fig. 3 the curves of log ϵh versus log DoFh

at different angular frequencies, where ϵh is the a posteriori error. Again, it indicates that the meshes and the
associated numerical complexity are quasi-optimal, i.e., ϵh = O(DoF−1/2

h ). Fig. 4 plots the contour of the magnitude
of the numerical solution and its corresponding mesh at the angular frequency ω = 2. It is clear to note that the
algorithm does capture the solution feature and adaptively refines the mesh around the corners where solution
displays singularity.
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Fig. 4. The numerical solution of Example 2. (left) The contour plot of the magnitude of the solution; (right) The corresponding adaptively
refined mesh.

7. Conclusion

In this paper, we have presented an adaptive finite element DtN method for the elastic scattering problem in
periodic structures. Based on the Helmholtz decomposition, a new duality argument is developed to obtain the a
posteriori error estimate. It contains both the finite element discretization error and the DtN operator truncation
error, which is shown to decay exponentially with respect to the truncation parameter. Numerical results show that
the proposed method is effective and accurate. This work provides a viable alternative to the adaptive finite element
PML method for solving the elastic surface scattering problem. It also enriches the range of choices available
for solving wave propagation problems imposed in unbounded domains. One possible future work is to extend
our analysis to the adaptive finite element DtN method for solving the three-dimensional elastic surface scattering
problem, where a more complicated TBC needs to be considered.
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